Thèse de Amir Sani

Machine Learning for Decision-Making under Uncertainty

La prise de décision stratégique concernant des ressources de valeur devrait tenir compte du degré d’aversion au risque. D’ailleurs, de nombreux domaines d’application mettent le risque au cœur de la prise de décision. Toutefois, ce n’est pas le cas de l’apprentissage automatique. Ainsi, il semble essentiel de devoir fournir des indicateurs et des algorithmes dotant l’apprentissage automatique de la possibilité de prendre en considération le risque dans la prise de décision. En particulier, nous souhaiterions pouvoir estimer ce dernier sur de courtes séquences dépendantes générées à partir de la classe la plus générale possible de processus stochastiques en utilisant des outils théoriques d’inférence statistique et d’aversion au risque dans la prise de décision séquentielle. Cette thèse étudie ces deux problèmes en fournissant des méthodes algorithmiques prenant en considération le risque dans le cadre de la prise de décision en apprentissage automatique. Un algorithme avec des performances de pointe est proposé pour une estimation précise des statistiques de risque avec la classe la plus générale de processus ergodiques et stochastiques. De plus, la notion d’aversion au risque est introduite dans la prise de décision séquentielle (apprentissage en ligne) à la fois dans les jeux de bandits stochastiques et dans l’apprentissage séquentiel antagoniste.

Jury

Thèse de l'équipe soutenue le 12/05/2015