Thèse de Jimmy Petit

Filtrage somesthésique pour des interfaces cerveau-ordinateur utilisant des stimulations vibro-tactiles

Une interface cerveau-ordinateur (ICO) est un système visant à différencier différents états mentaux d'un utilisateur pour les traduire en commandes transmises à un dispositif externe. Une catégorie d'ICO, appelée ICO réactive, utilise les réponses automatiques du cerveau provenant d'une stimulation sensorielle de l'utilisateur pour différencier plusieurs états mentaux. Un potentiel évoqué est la manifestation sous la forme d'une variation du potentiel électrique de la réponse du cerveau. Notre travail se concentre sur les potentiels évoqués apparaissant dans le cortex somatosensoriel, aussi appelé cortex somesthésique. Il s'agit d'un composant du système somatosensoriel, c'est-à-dire le réseau de structures neuronales qui permet la perception des sensations liées à la peau et à la proprioception. Une action mécanique appliquée sur la peau évoque une réponse cérébrale spécifique dans le cortex somesthésique primaire controlatéral à la stimulation. L'électroencéphalographie (EEG) de surface permet de mesurer cette réponse en produisant ce que l'on appelle un potentiel évoqué somesthésique (PES). Lorsque l'action mécanique est périodique et maintenue, comme c'est le cas lors d'une vibration, le PES est également périodique avec la même fréquence, il est alors appelé PES stationnaire (PESS). Des activités mentales spécifiques, telles que la focalisation attentionnelle, modulent l'amplitude et/ou la phase du PESS. Cette modulation volontaire constitue un marqueur significatif de l'activité mentale communément utilisé dans les ICOs exploitant des PESSs. Dans cette thèse, nous étudions un nouveau marqueur basé sur le filtrage somesthésique du cortex. Le filtrage somesthésique est la capacité du cortex à filtrer les stimuli non pertinents ou répétitifs reçus par le système somatosensoriel, dans notre cas, issus des récepteurs mécaniques de la peau. Le filtrage somesthésique est une forme spécifique du filtrage sensoriel qui est plus général. Ce phénomène de filtrage sensoriel existe aussi avec la vue ou l'ouie, mais dans ces travaux, nous nous concentrons sur le filtrage somesthésique. Ce dernier a été observé dans la littérature, par exemple, une diminution de l'amplitude d'un PESS provoquée électriquement pendant une tâche d'imagerie motrice (IM). L'architecture des ICOs est souvent décrite comme une boucle. Dans un premier temps, l'utilisateur effectue une tâche mentale censée générer une activité cérébrale spécifique. Son activité cérébrale est alors mesurée continuellement par un instrument de mesure. Suit une étape de traitement du signal pour extraire les caractéristiques clés de l'activité cérébrale spécifique susmentionnée. Un classificateur identifie l'état mental généré parmi plusieurs modèles d'états mentaux étiquetés. Un retour d'information est enfin fourni à l'utilisateur sur la base des résultats de la classification. Ce dernier permet à l'utilisateur de réagir en conséquence, et la boucle d'interaction recommence. Dans cette thèse, nous étudions chaque étape de cette boucle pour une ICO combinant PESS et IM, ainsi que les caractéristiques des PESSs et les contraintes méthodologiques résultant de leur utilisation. Nous étudions les aspects théoriques du PESS sur des données synthétiques afin d'identifier le traitement du signal adéquat pour notre application. Nous évaluons les aspects humains liés à l'interaction avec notre système. Nous nous concentrons également sur la relation entre la performance de l'ICO et l'utilisabilité ressentie du système ou la charge mentale de l'utilisateur. Enfin, nous souhaitons que notre système soit utilisable par des individus affectés par une déficience motrice lourde, comme les personnes en situation d'enfermement disposant toujours du sens du toucher. L'approche somatosensorielle a été choisie car elle exploite le sens du toucher de l'utilisateur. En outre, contrairement à la focalisation attentionnelle, l'imagerie motrice peut facilement être réalisée avec plusieurs membres à la fois. Cette propriété de l'imagerie motrice nous a conduits à choisir une combinaison liant PESS et IM car elle pourrait augmenter le nombre de commandes disponibles pour notre système ICO.

Jury

M. François CABESTAING Université de Lille Directeur de thèse M. Fabien LOTTE Université de Bordeaux Rapporteur M. Ouriel GRYNSZPAN Université Paris-Saclay Rapporteur M. José ROUILLARD Université de Lille Co-directeur de thèse Mme Andrea KüBLER Julius-Maximilians Universität Würzburg Examinatrice M. Arnaud DELVAL Université de Lille Examinateur

Thèse de l'équipe BCI soutenue le 06/12/2022