Ce travail de thèse a été réalisé dans le contexte de la recommandation dynamique. La recommandation est l'action de fournir du contenu personnalisé à un utilisateur utilisant une application, dans le but d'améliorer son utilisation e.g. la recommandation d'un produit sur un site marchant ou d'un article sur un blog. La recommandation est considérée comme dynamique lorsque le contenu à recommander ou encore les goûts des utilisateurs évoluent rapidement e.g. la recommandation d'actualités. Beaucoup d'applications auxquelles nous nous intéressons génèrent d'énormes quantités de données grâce à leurs millions d'utilisateurs sur Internet. Néanmoins, l'utilisation de ces données pour évaluer une nouvelle technique de recommandation ou encore comparer deux algorithmes de recommandation est loin d'être triviale. C'est cette problématique que nous considérons ici. Certaines approches ont déjà été proposées. Néanmoins elles sont très peu étudiées autant théoriquement (biais non quantifié, borne de convergence assez large...) qu'empiriquement (expériences sur données privées). Dans ce travail nous commençons par combler de nombreuses lacunes de l'analyse théorique. Ensuite nous discutons les résultats très surprenants d'une expérience à très grande échelle : une compétition ouverte au public que nous avons organisée. Cette compétition nous a permis de mettre en évidence une source de biais considérable et constamment présente en pratique : l'accélération temporelle. La suite de ce travail s'attaque à ce problème. Nous montrons qu'une approche à base de bootstrap permet de réduire mais surtout de contrôler ce biais.
Directeur de thèse : Philippe PREUX, Université de Lille 3 Co-encadrant : Jérémie MARY, Université de Lille 3 Rapporteurs : Olivier CAPPÉ, CNRS, Telecom ParisTech Ludovic DENOYER, Université Paris 6 Examinateurs : Olivier CHAPELLE, CRITEO Labs Rémi GILLERON, Université de Lille 3 Invité : Lihong LI, Microsoft Research