Cette thèse est consacrée à la détection des contours à partir d'images acquises par des caméras couleur mono-capteur. Dans ces dispositifs, le capteur est recouvert d'une mosaïque de filtres chromatiques (Color Filter Array, ou CFA) et forme une image (dite <<brute>> ou CFA) qui ne comporte qu'une seule composante couleur par pixel. Une procédure de dématriçage est classiquement appliquée à cette image pour estimer les deux composantes couleur manquantes en chaque pixel et obtenir une image couleur. Cependant, les artéfacts générés par le dématriçage peuvent altérer les performances des méthodes d'analyse bas-niveau des images. Ceci nous amène à éviter le dématriçage pour la détection des contours. Dans une approche de type gradient, nous proposons d'estimer les dérivées partielles soit en calculant les dérivées partielles dans les trois plans couleur (approche vectorielle), soit en estimant une luminance adaptée à la détection des contours (approche scalaire). L'état de l'art met en évidence que l'exploitation directe de l'image brute a été peu abordée et que les approches développées dans cette thèse sont originales. Pour l'approche vectorielle, nous proposons une adaptation de l'implantation récursive du filtre de Deriche au treillis du CFA. Pour l'approche luminance, nous utilisons un filtre optimal qui lisse et dérive conjointement les données brutes. Nous évaluons les performances des méthodes développées sur une base d'images synthétiques dont la vérité terrain est connue. Nous montrons ainsi que la détection des contours à partir des données brutes peut être satisfaisante tout en étant peu coûteuse en temps de calcul.
Directeurs de thèse : Ludovic MACAIRE et Olivier LOSSON Rapporteurs : Hélène LAURENT et Jean-Christophe BURIE Examinateur : Philippe MONTESINOS
Thèse de l'équipe Imagerie Couleur soutenue le 21/12/2017