Thesis of Rémi Auguste

Reconnaissance dynamique de personnes dans les émissions audiovisuelles

L'analyse automatique de contenu des vidéos en vue de leur annotation est un domaine de recherche en plein essor. Reconnaître les personnes apparaissant dans des émissions audiovisuelles permet une structuration automatique d'une quantité grandissante d'archives audiovisuelles. Nous présentons une approche dynamique originale de reconnaissance de personnes dans les flux vidéo. Cette approche est dynamique car elle tire avantage de la richesse des informations contenues dans la vidéo, contrairement aux approches statiques basées uniquement sur les images. L'approche proposée comprend deux volets. Le premier volet consiste à isoler toutes les occurrences de personnes d'une émission, et à les regrouper en clusters en se basant sur un descripteur original : les histogrammes spatio-temporels, ainsi que sur une mesure de similarité dédiée. L'originalité vient de l'intégration d'informations temporelles dans le descripteur, qui permet une estimation plus fiable de la similarité entre les occurrences de personnes. Le second volet propose la mise en oeuvre d'une méthode de reconnaissance faciale. Différentes stratégies sont envisagées, d'une part pour identifier les occurrences de personnes selon les trames qui composent la séquence,et d'autre part pour propager les identités au sein des groupes selon leurs membres. Ces deux aspects de notre contribution ont été évalués à l'aide de corpus de données réelles contenant des émissions issues des chaînes BFMTV et LCP. Les résultats des expérimentations menées indiquent que l'approche proposée permet d'améliorer notablement la précision de reconnaissance en prenant en compte la dimension temporelle

Jury

Directeur de Thèse : DJERABA CHABAANE Co-encadrant de Thèse : MARTINET JEAN Rapporteurs : CHRISMENT CLAUDE, QUENOT GEORGES Membres : TISON SOPHIE, CARINCOTTE CYRIL

Thesis of the team FOX defended on 09/07/2014