Thesis of Joelle Al Hage

Fusion de données tolérante aux défaillances : application à la supervision de l'intégrité d'un système de localisation

L'intérêt des recherches dans le domaine de la fusion de données multi-capteurs est en plein essor en raison de la diversité de ses secteurs d'applications. Plus particulièrement, dans le domaine de la robotique et de la localisation, l'exploitation des différentes informations fournies par les capteurs constitue une étape primordiale afin d'assurer une estimation fiable de la position. Dans ce contexte de fusion de données multi-capteurs, nous nous attachons à traiter le diagnostic, menant à l'identification de la cause d'une défaillance, et la tolérance de l'approche proposée aux défauts de capteurs, peu abordés dans la littérature. Nous avons fait le choix de développer une approche basée sur un formalisme purement informationnel : filtre informationnel d'une part, et outils de la théorie de l'information d'autre part. Des résidus basés sur la divergence de Kullback-Leibler sont développés. Via des méthodes optimisées de seuillage, ces résidus conduisent à la détection et à l'exclusion de ces défauts capteurs. La théorie proposée est éprouvée sur deux applications de localisation. La première application concerne la localisation collaborative, tolérante aux défauts d'un système multi-robots. La seconde application traite de la localisation en milieu ouvert utilisant un couplage serré GNSS/odométrie tolérant aux défauts.

Jury

Directeur de Thèse : El Badaoui El Najjar Maan, Pomorski Denis Rapporteurs : Bonnifait Philippe, Chapuis Roland Examinateurs : Bayart Mireille, Maquin Didier, Meizel Dominique

Thesis of the team defended on 17/10/2016