OPTIMA

ORKAD team

Operational Research, Knowledge And Data

Leader: Laetitia Jourdan

PRESENTATION MEMBERS THESES PUBLICATIONS

Presentation

The ORKAD team aims to exploit simultaneously expertise in combinatorial optimization and knowledge extraction to address upcoming optimization problems. While the two scientific areas are developed more or less independently, the synergy between combinatorial optimization and knowledge extraction offers an opportunity first, to improve the performance and autonomy of optimization methods thanks to Knowledge and secondly to solve efficiently Knowledge extraction problems thanks to operational research methods. Our approaches are mainly based on mono and multi-objective combinatorial optimization and led to the development of open source software.

Raymonde Akiki

Apport des cartes auto-adaptatives à la classification supervisée partielle à l'aide de méthodes d'optimisation

Mathilde Lepers

Caractérisation de maladies à partir de courriers médicaux, à l’aide d’optimisation combinatoire sur plongement lexical

Narges Tavassoli kejani

Parameterized complexity : A tool for multiobjective problems. Application to lung cancer detection

Qianyun Ye

Développement d'un Écosystème d'Apprentissage Adaptatif Exploitant les Profils Utilisateurs, les Méthodes Évolutives et les Modèles de Langage Development of an Adaptive Learning Ecosystem Exploiting User Profiles, Evolutionary Methods and Language Models

Les autres équipes du groupe thématique ' OPTIMA '

BONUS INOCS OSL