MAGNET is a joint research team between INRIA and CRIStAL.
A primary objective of MAGNET is in making artificial intelligence more acceptable to society by solving some ethical issues of Machine Learning (ML) and on empowering end users of artificial intelligence. From a scientific perspective we focus on privacy, fairness, (data) sobriety. Our approaches are typically based on the common theme of leveraging the relationships between data and between learning objectives. We study graph-based machine learning methods which are the common foundations of the research group and we rely on methods coming from statistical and computational learning theory, graph theory, representation learning, (distributed) optimization and statistics.
We are mainly interested in provable properties for machine learning algorithms but we also consider more empirical work. Our application domains cover health, mobility, social sciences, voice technologies.
Research themes
Our research is organized along three main axes:
Mining and learning in graphs: we study the trade-off between predictive accuracy, computational complexity and verification of ethical properties for graph-based learning algorithms.
Machine Learning for Natural Language Processing: we study how to enhance NLP methods with graph-based learning algorithms and how to develop ethical learning algorithms in NLP. The objective is to go beyond vectorial classification to solve task like coreference resolution and entity linking, temporal structure prediction, and discourse parsing.
Decentralized Machine Learning: we address the problem of learning in a private, fair and energy efficient way when users and data are naturally distributed in a network. From an algorithmic perspective, we study federated learning and fully decentralized learning and optimization. We also consider research on a global and holistic level, in complex pipelines that involve learning.
Marc Tommasi
Confidentialité Différentielle pour l'Apprentissage Décentralisé
Technologies scalables de protection de la vie privée pour l'apprentissage fédéré
Privacy-Preserving Machine Learning
Secure protocols for a verifiable decentralized machine learning
Equité et confidentialité en apprentissage automatique
L'équité dans l'apprentissage fédéré
Technologies fiables et multi-sites renforçant le respect de la vie privée
Approches de traitement automatique du langage naturel dans le domaine musical : adaptabilité, performance et limites
Modèles Computationnels pour le Changement Sémantique Lexical
Apprentissage par Transfert Préservant la Confidentialité et l’Utilité pour l’Anonymisation de Texte
Intelligence artificielle et génération de données synthétiques sous contraintes de confidentialité
Modélisation cognitive computationnelle de la mémoire sémantique et son acquisition
Vers un apprentissage automatique générique, décentralisé, sécurisé et préservant la vie privée
IA préservant la vie privée à l'aide de contraintes déclaratives 04/04/2024
Mesurer et atténuer l'injustice d'allocation dans le processus d'apprentissage automatique 27/03/2024
Identifier la structure des problèmes d'apprentissage en ligne et collaboratif 25/11/2022
Anonymisation du locuteur: représentation, évaluation et garanties formelles 02/12/2021
Apprentissage semi-supervisé basé sur les graphes avec des graphes manquants et bruités 27/10/2021
Characterizing edges in signed and vector-valued graphs 16/04/2018
Semi-supervised clustering in graphs 07/12/2017
Task driven representation learning 29/05/2017
Hypernode Graphs For Learning From Binary Relations Between Sets of Objects 23/01/2015
Contributions to Decentralized and Privacy-Preserving Machine Learning 30/11/2021