
Preprint version of Y. Peter, X. Le Pallec, T. Vantroys, Chapitre Pedagogical Scenario
Modelling, Deployment, Execution and Evolution, Architecture Solutions for E-
Learning Systems, sous la direction de Claus Pahl, Information Science Reference –
2007, ISBN 978-1-59904-633-4

Pedagogical Scenario Modelling, Deployment, Enactment and Evolution

Yvan Peter, TRIGONE Laboratory, Bât. B6 – Cité Scientifique – 59655 Villeneuve

d’Ascq cedex - FRANCE, +33 3.20.43.32.64, +33 3.20.43.32.79, Yvan.Peter@univ-

lille1.fr

Xavier Le Pallec, TRIGONE Laboratory, Bât. B6 – Cité Scientifique – 59655

Villeneuve d’Ascq cedex - FRANCE, +33 3.20.43.32.89, +33 3.20.43.32.79,

Xaviel.Le-Pallec@univ-lille1.fr

Thomas Vantroys, TRIGONE Laboratory, Bât. B6 – Cité Scientifique – 59655

Villeneuve d’Ascq cedex – FRANCE, +33 3.20.43.32.65, +33 3.20.43.32.79,

Thomas.Vantroys@univ-lille1.fr

Pedagogical Scenario Modelling, Deployment, Enactment and Evolution

Abstract

The rise of the pedagogical scenario approach supported by the standardisation of

IMS Learning Design is changing the focus from the pedagogical objects to the

activities that support learning. With the standardisation, comes the promise of the

reuse of successful designs for the pedagogical scenarios. However, the uptake of this

approach relies on a sound support of the users both at the design phase and at the

execution phase and the level to which successful design can be adapted for reuse in

both phases. This chapter covers the whole lifecycle of pedagogical scenarios and

shows the current level of support one can find in existing platforms and tools. It

present also the way to enhance this support through the use of Model Driven

Engineering for the design and deployment phase and implementation techniques to

provide enactment engines that allow flexible runtime execution.

INTRODUCTION

The management and reuse of learning objects has now reached a certain maturity

thanks to the standards such as SCORM (ADL, 2006) that enables the reuse of

learning objects across platforms and LOM (LTSC, 2002) that defines metadata for

their description. CORDRA (CORDRA, 2006) completes this with the means to

federate object repositories and to enable the retrieval of learning objects. Thanks to

this set of standards, the cost of design is lessened because of the possible reuse and

the better perenniality of the resources. This level of maturity has not been reached

already when one considers the pedagogical scenarios design. Indeed, the focus is

evolving from the resources to the activities. The emerging standard related to these

scenarios is IMS-LD (IMS, 2003). However designing pedagogical scenarios is still

an expert job at least because there is still a lack of proper editors. Having however

succeeded in the design of a pedagogical scenario, it is still common to reengineer it

or to make it evolve slightly because the context or the hosting Learning Management

System (LMS) changes or because the learners have difficulties with some activities.

These modifications of the scenarios can happen between two executions (iterative

design) or at runtime if the platform can support it. In this chapter, we will present

solutions to support the lifecycle of pedagogical scenarios from the design time to the

deployment on a specific platform and the enactment and runtime evolution. These

solutions aim at keeping the pedagogical design across different contexts which will

lessen the cost of the design while permitting a continuous adaptation.

This chapter is composed of two parts. In the first part, we take into consideration the

fact that most Learning Management Systems do not provide any support for the

enactment of pedagogical scenarios. We will first analyse the shortcomings of these

platforms in the light of the IMS-LD proposal and the means to build manually a

learning environment corresponding to a given pedagogical scenario. We will then

show how Model Driven Engineering (MDE) helps to focus on the pedagogical

scenario modelling and design while supporting the process of implementing it on a

specific platform.

The second part of the chapter provides the alternative view of the current efforts to

provide enactment capability to existing LMS. The focus is put on standalone

enactment services which can be embedded into a LMS. We first focus on the general

architecture of such systems. Next we present the research related to the flexible

enactment of the pedagogical scenarios which enables adaptation according to the

learners’ needs. Finally, we review existing solutions for and examples of integration

of an enactment engine into a LMS.

In the conclusion we will show how these two approaches complement each other and

contribute to the uptake of the pedagogical scenarios by supporting their whole

lifecycle.

MODELLING AND DEPLOYING PEDAGOGICAL SCENARIOS

Most of wide-spread e-learning web platforms do not support enactment of

pedagogical scenarios. Underlying mechanisms for such enactment are present but are

not sophisticated enough. However, if a teacher thinks about a detailed pedagogical

scenario, it is still possible to create the corresponding learner(s) environment while

respecting underlying pedagogical intentions of the scenario. For instance, she/he

could find convenient names to items like forums (e.g., by adding a suffix referring to

the corresponding activity like forum_studyChapter1), document repositories, etc.

and/or could add textual help in these ones. Teacher may thus mitigate the lack of

automation mechanisms and continue to use her/his regular platform which is not

powerful but accessible.

Model Driven Engineering (MDE) provides theoretical frameworks that could serve

for automatic construction of such learner environments based on the modelling of

pedagogical scenario. This approach has many strategic benefits: pedagogical

scenarios become more productive and so useful which also implies a better

reusability of underlying courses; if construction is related to several platforms, there

will be less barriers for a teacher to use other platforms because her/his courses will

be automatically created on them … In this part, we detail one approach that

combines MDE, pedagogical scenarios and e-learning platforms.

First, we review the most widespread e-learning web platforms and show their limits

concerning pedagogical scenarios. We also show how to use these platforms to enact

‘manually’ such scenarios. Next, we show how using pedagogical scenarios changes

the usual course design process. The increasing place of computational models is one

of the main changes. We finally describe how such models may be used efficiently to

automatically produce learner(s)’s environments and to provide other interesting

benefits.

Current widespread e-learning web platforms

No support for enactment of pedagogical scenarios
E-learning web platforms1 are a widespread means to support learning. Users of such

platforms are millions (Adkins 2005). World wide consortiums (ex: ADL, IMS)

create related standards like SCORM, Learning Design, QTI, etc. which are objects of

many scientific works. Functionalities of current e-learning web platform has

significantly increased this last decade. However, platform designers still have to

implement a lot of mechanisms in order to support missing strategic types of

pedagogical intention: checking knowledge related to prerequisites, objectives,

1 May be referred to Learning Management System, Learning Content Management System, …

progression rate, sequencing activities, managing needed cognitive conflicts… As we

previously mentioned, we focus in this chapter on pedagogical scenarios. The concept

of pedagogical scenario is currently in the spotlight if we consider the amount of

related scientific works and the IMS-LD standardisation initiative. (Schneider, 2003)

defines a pedagogical scenario as “a sequence of phases within which students have

tasks to do and specific roles to play”. In the IMS-LD vision, this refers to usual

workflow management system mechanisms like conditional control, parallel flows,

time management, etc. E-learning platforms which support enactment of pedagogical

scenarios allow constructing learning environments with a better respect of original

pedagogical intentions.

Unfortunately the most-used e-learning platforms do not support enactment. We may

verify this assumption by considering five features among the main ones related to

IMS-LD pedagogical scenarios and five widespread e-learning web platforms (see

Table 1): Blackboard (Blackboard 2006), Claroline (Claroline 2006), Ganesha

(Anema 2006), Moodle (Moodle 2006), WebCT (WebCT 2006). We illustrate first

the five features on an example of pedagogical scenario (see Figure 1).

The scenario is a typical framework of course that we make in our diploma (e-

services, IPM). This course concerns a tutor and a set of students (two roles). There

are two main activities that run in parallel which are respectively related to course and

project. These plays are named Play One and Play Two. Play one is composed of

three acts which are so executed sequentially. Act Theory 1 is only about studying

course documents related to chapter 1. While students are studying these documents,

they may ask questions on a forum (asynchronous conference service) and tutor (but

also students) may provide answers. When this act is over (see further) there is a 2

hours - chat session in order to definitively close the study (act Discussion 1).

Students make exercises in the final act (Practice) while tutor may answer students’

questions. This last act is very similar to the single one act of Play two. This act

(Project 1) is dedicated to the project: students work on it and tutor help them. We

have reduced the play one to one chapter for more readability, but each additional

chapter may have its own three acts.

With this example, we may examine five main features of IMS-LD and their

implementation on most widespread e-learning web platforms.

1. Properties management. *-Property concepts provide one of the most powerful

mechanisms of LD. A scenario may define global/local and personal/group variables,

change their values or use them at control/notification points (e.g. when an act is

completed). Designer also may define what properties may be viewed or changed

through the monitor service.

Figure 1. Example of pedagogical scenario (LD-oriented UML activity diagram)

Student TutorPlay One

Study Chapter 1
course

Answer
questions

Asynchronous conference service
Participants = student, tutor
Moderator = tutor

Monitor
Role=tutor

Ask/answer
questions

Conduct
discussion

Synchronous conference service
Participants = student, tutor
Moderator = tutor

Act Theory 1
completed
>>Time-limit = 2 weeks
loc- property :
Chapter1_prerequisites

Act Discussion 1
completed
>>Time-limit = 2 hours

Do chapter 1
exercices

May answer
questions

Asynchronous conference service
Participants = student, tutor
Moderator = tutorAct Practice 1

completed
>>Time-limit = 1 week
>>when-role-part-completed(Student)

Chapter 1 Course
documents

Chapter 1
Course

documents

Chapter 1
Exercices
wording

Study Chapter 1
prerequisites

Answer
questions

[Chapter1_Prerequisites=“acquired”]

[Chapter1_
Prerequisites
=“acquired”]

Student TutorPlay Two

Work on
project

Monitor
projects

Asynchronous conference service
Participants = student, tutor
Moderator = tutor

Monitor [work on project]
Role=student / self

Monitor [Monitor projects]
Role=tutor

Project
documents

Act Project
completed
>>Time-limit = 4 weeks
>> CourseXproject not null
(mail to tutor)

globpers- property :
CourseX_project

Global elements
set-property-group :
Chapter1_prerequisites

view/set-property :
CourseX_project

Chapter 1
Course

documents

In our scenario, we define Chapter1_prerequisites and Chapter1_project properties

which are used further. Chapter1_prerequisites is a local property: it is associated to

one execution and there is one value for all users. Chapter1_project is global and

personal property. This one has its own life, that is to say it does not stop when the

unit of learning is over, and there is one value for each participant. The underlying

idea of this property is that each student may have her/his project in her/his e-

portfolio.

None of the studied platforms proposes properties management.

2. Event mechanism. An event notification mechanism is available in LD through

different concepts: conditions, on-completion, when-property-value-is-set (associated

to completion of activity, act and play)… First, it is possible to associate processing

instructions to the end of an activity. Instructions consist of changing properties value

and showing/hiding some scenario elements. For example, when Study Chapter 1

prerequisite ends, Chapter1_prerequisites property is changed to “acquired”. Second,

it is also possible to associate instructions to the change of a property through

conditions: designer may define conditions (if-then-else) for the scenario and each

one are evaluated when concerned properties change. For example, when

Chapter1_prerequisites is set to “needed”, the Study Chapter 1 course activity is

hidden and the Study Chapter 1 prerequisites one is shown. Finally the when-

property-value-is-set feature of completion allows ending an activity, an act or a play

when the value of a property changes. The act “Project” ends when every student has

given its project (all CourseXProject properties are not null). The notification concept

allows sending an email to the tutor at this point.

Studied platforms provide some trigger points. For example, Claroline allows defining

some actions based on dates (rights for students to upload their works), Ganesha,

WebCT and Blackboard allow running a learning step when a student passes a test.

But these features are related to ad-hoc mechanisms and can not compete with generic

mechanisms of IMS-LD.

3. Conditional control flow. Properties management and event mechanism are really

interesting thanks to the condition concept. Each condition definition is essentially

composed by an if-then-else statement.

None of the considered platforms is able to provide a generic conditional control flow

mechanism. However we find specific/ad-hoc control points like the previously

mentioned one related to test results.

4. Time management. Time-limit concept is the main LD time management

mechanisms. Activities may be terminated (and following ones may be launched)

according to specific time limits. Moodle, Blackboard and WebCT provide an

efficient support for this feature, yet without ability to combine with properties/event

mechanisms.

5. Group management. Managing learning path for a group of student is another

main feature of LD. Every platform allows managing students groups (own document

repositories, discussions, forums …). They also provide definition of rules and

associated access rules to contents or tools items. But conditional control flow for

group is generally limited to the time dimension (for each platform). There is no way,

in any platform, to specify that activity B may be active when previous activity A has

been completed by every students of the group.

Table 1 presents a summary of our analysis for the main used platforms.

Table 1. Platforms and their support to pedagogical scenarios enactment

How to enact manually pedagogical scenarios
If a teacher wants to or used to describe her/his courses through pedagogical

scenarios, she/he does not have to banish all platform which miss enactment of such

scenarios. When a course is implemented on a platform, teacher may give the scenario

to students in order to explain them her/his primary pedagogical intentions. She/he

may also give a map to describe correspondences between the scenario and course

items on the platform. Another solution may be more efficient: every item reflect the

underlying scenario by their name, their order, the presence of small textual help in

each forum, document repositories… in addition to the description (somewhere) of

the original scenario. This does not replace automation mechanisms but mitigate their

absence. We illustrate such implementation (on the previous scenario) of the Claroline

platform with two different strategies. The choice of Claroline is that it is a very user-

friendly platform but unfortunately the poorest one considering functionalities.

Exists but
without
group
control

Exists but
without
group
control

Exists but
without group
control

Exists but without
group control

Exists but
without
group control

Group management

NononononoEvent mechanism

NononononoProperties management

Effective
support

Effective
support

Only for
statistics

Only for statistic
and stopping
submission

Effective
support

Time management

Only time
directed

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Only test-
result

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Conditional control flow

WebCTMoodleGaneshaClarolineBlackboard

Exists but
without
group
control

Exists but
without
group
control

Exists but
without group
control

Exists but without
group control

Exists but
without
group control

Group management

NononononoEvent mechanism

NononononoProperties management

Effective
support

Effective
support

Only for
statistics

Only for statistic
and stopping
submission

Effective
support

Time management

Only time
directed

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Only test-
result

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Only time
directed

(no choice
between two
activities)

Conditional control flow

WebCTMoodleGaneshaClarolineBlackboardPlatforms

Features

Figure 2. Example of Claroline implementation of a LD scenario with Time-Strategy

The first strategy may be named time-strategy because it relies on time-limit of each

act. It first creates in Documents and Links a directory for each play, a subdirectory

for each act and a sub-subdirectory for each activity where documents will be placed.

Second, if a forum is needed in one LD (learning-) activity, a forum is created in the

Claroline course with the name [ActName].[Activity_Name]. This forum will be in the

Course Menu

forum category created for owner play. The final point is the main one: each LD

activity is transformed into an entry in the course agenda (as illustrated in Figure 2).

Each entry contains URLs of associated learning objects or services in order to

present an environment which corresponds to the activity. Duration is also present.

This time-strategy works fine if no time-limit is missing. It has the benefit of being

very simple. But if one or more time-limit is missing, it does not work. We may then

use a Wiki-strategy which uses Claroline Wiki. A Wiki page is created which

represent the organisation of all the activities with links to related resources (learning

objects and services). Benefit of this strategy is that tutor has a structural description

of her/his course and she/he has great expressive capabilities to exploit it thanks to

Wiki.

Figure 3. Example of Claroline implementation of a LD scenario with Wiki-Strategy

We have seen that if most-used e-learning web platforms have a lot of functionalities

they do not provide a support to enact pedagogical scenarios. However, designer or

tutor may implement a scenario in such platforms by applying mapping rules

according to her/his context (scenario complexity, her/his skills about concerned

platform…). Resulting learning environment is far from being as powerful as with a

scenario runtime engine but it remains correct and has the benefit to provide familiar

environment to users (tutors and students).

Design learning course

We have previously mentioned that teachers or tutors may define pedagogical

scenarios for courses in order to better express their pedagogical intentions. However

it is important to discuss about the relation between teachers and pedagogical

scenarios in e-learning web platforms context.

Typical lifecycle when designing and building courses through
pedagogical scenarios

Current platforms are well supplied but they are not really powerful. This has a

positive consequence: if a teacher wants to create an environment on such platform

for a particular course, she/he makes a draft concerning learning activities and relation

with pedagogical contents on a sheet of paper and creates corresponding ‘items’ on

the selected platform. In other terms, due to their low-level complexity, usual

platforms are accessible by most teachers: they can “easily” implement their courses

themselves. We verify such a simple lifecycle within our on-line diplomas named e-

services and IPM (Elearning 2006) and through our partnership with other universities

(AUF 2006) (Tempus 2006) and our participation to related conferences (Unfold

2005), (Le Pallec 2006). It seems to be a current practice for learning environments

with few students (i.e. less than 50).

“Accessible by teachers” means that teachers generally need about one or two hours

of training to become familiar with a particular platform. This is totally different when

one considers e-learning platforms supporting the enactment of pedagogical scenarios.

The expressiveness increase goes unfortunately with a complexity increase. The

construction of an electronic learning environment from a paper draft is no longer so

trivial. As in software engineering, the definition of a computational model (like a

UML model) is required before the implementation. But writing computational

scenarios need skills that few teachers have and that few ones are ready to spend time

to acquire. This is the reason why design/construction processes, which may be

associated to such platforms, integrate someone with these particular skills: generally

an instructional designer, that is, a professional whose competence is two-fold,

feeling at ease with both pedagogy and computer related subjects (particularly in the

e-learning arena). UML activity diagrams on Figure 4 and Figure 5 represent two

lifecycles which are associated to “evolved” platforms. The five-step Instructional

System Development (ISD) process is a proposition related to designing a course for

LD-compliant platforms (Koper 2005). It contains very technical steps. The design

and development steps need someone who is familiar with formal activity diagrams

and LD concepts and can write XML instance documents. The six-phase MISA

process is currently associated to the platform Explor@ (Paquette 2005). MISA

includes definition of workflow-like models (called here Learning Event Network) but

also knowledge or maintenance models. Expressive capabilities of MISA imply the

presence of context experts, media producers, training managers … and instructional

designers (particularly for Learning Event Network).

Figure 4. The five-step Instructional System Development (ISD) process

Figure 5. The six-phase MISA process

Pedagogical scenarios are generally defined through computational models. Most of

software engineering areas use models, because they constitute a convenient way to

transform informal analysis into software implementation. (Caron 2005) underlines

that they are efficient boundary objects between teacher and instructional designers in

e-learning context. (Pernin 2006) also demonstrates that models are well-suited to re-

use pedagogical scenarios. Modelling concepts or modelling tools which are used to

define pedagogical scenarios are then important because they may improve or degrade

discussion during design process.

1.Analysis
Instructional

Problem

2.Design Instructional Scenario

Define
Learning

Flow

XML
Coding

Activity
table

Activity
table

Non-formal
description

Non-formal
description

3.Developme
nt Resources

XML
doc

XML
doc

XML
doc

4.Implementation
Instantiation for
specific envmt

XML
doc

5.Evaluation

Evaluation
report

Evaluation
report

1.Define
problem and

customize MISA

2. Define
Preliminary

Solution

3. Build LS
Architecture

4. Design
Instructional

Materials

5. Produce
and validate

materials

6. Prepare
Delivery of LS

Description
education
problem

Preliminary
solution Knowledge,

competency,
instructional models

Instructional models
& materials

Learning
materials

Accessible model editors to keep teacher in design process
The degree of teacher participation in the pedagogical scenario definition is related to

the respect of her/his primary pedagogical intentions. The used authoring tool plays a

strategic role because it may reduce complexity and difficulty to define scenario

elements and then it may increase action abilities of teachers. Such tools should allow

teachers to define themselves their scenarios because employing an instructional

designer is far from being economically possible for all e-learning structures.

So, authoring or modelling tools are a fundamental aspect of the current e-learning

approach based on pedagogical scenarios.

Unfortunately, if we consider the LD community, current tools (Kew 2006) are not

suitable for teachers. Reload does not provide a user-friendly interface because it is

based on forms. MOT+ is more intuitive thanks to its graphical interface but it does

not hide complexity of LD concepts. LAMS may seem to be more accessible but it

does not allow defining complex scenarios as with IMS-LD (LAMS is not a full LD-

compliant editor). Finally the Collage prototype (Hernandez-Leo et al, 2006) seems to

be an interesting initiative: it aims to define scenarios through using pattern. This

hides efficiently complexity. Unfortunately creating patterns currently still needs

coding in Java. We may hope that, considering these are only the first LD authoring

tools, a lot of improvements will be made and particularly concerning their

complexity level.

Building automatically pedagogical scenarios-based learner environments through

Model-Driven engineering

If mapping LD scenarios into usual e-learning web platforms is interesting, manual

mapping/building is not. As LD scenarios are computational models, it is possible to

use mechanisms from Model Driven Engineering (MDE) to automatically construct

learning environment from a LD scenario in such platforms. We present an approach

which is inspired by MDE in this part. We first summarize the principles of MDE.

Model-Driven Engineering (MDE) principles
Rather that giving a new definition of what is Model Driven Engineering, let’s use the

one given by (Van Der Straeten, 2005): “Model-driven engineering (MDE) is an

approach to software development where the primary focus is on models, as opposed

to source code. Models are built representing different views on a software system.

Models can be refined, evolved into a new version, and can be used to generate

executable code. The ultimate goal is to raise the level of abstraction, and to develop

and evolve complex software systems by manipulating models only”. Models, model

transformation and code generation are the three main aspects of MDE.

Models. There has been a lot of works to increase the relevance of models when

considering their (code) productivity. Among them, we find mechanisms or

specifications which allow defining formal or strict modelling concepts tuned for a

specific business area (like IMS-LD for pedagogical scenarios). Standards like

OMG’s Meta-Object Facility (MOF), UML Profile and Eclipse Modelling Framework

(EMF) (Abouzahra 2005) allow defining such metamodels (i.e. sets of modelling

concepts). Generic graphical editors were developed so as to permit designers to

define specific domain oriented models using UML notation (rather than writing

XML documents). Graphical Modeling Framework (GMF, 2006) or TopCaseD

(Farail, 2006) are such generic editors for EMF but there are also Magic Draw

(MagicDraw, 2006) for UML Profile and ModX for MOF (Le Pallec, 2005). Other

interesting tools for models are generic programming languages (Perez 2006) like

Kermeta for EMF or MOFScript for MOF. They allow testing models validity (ex: are

there never-reached activities in our previous LD scenario?) or simulating their future

production. Finally, works like (Marvie, 2006) focus on a step-by-step model

definition.

Code generation. One of the main requirements of MDE is that models have to be

productive. Productivity is mainly possible thanks to code generators. Generation may

be made by generic engines with set of rules dedicated to a specific domain or by

domain dedicated engines. Generation from a model may also be done through the

definition of an intermediary platform/technological model (MDA 2003). For

example, a designer may model a system by adopting a service oriented approach.

Before generating WSDL and corresponding Java implementation, she/he may define

a WSDL model in order to refine her/his previous abstract service-oriented model.

Model transformation. The concept of intermediary model between abstract model

and implementation code has been one of the main innovations of MDE. But such

models are economically interesting if they are automatically generated. Model

transformation engines like YATL (Patrascoiu, 2004) allow this kind of generation.

But the abstract/concrete dimension must not be considered as the only one interest of

model transformation. Model merging (Brunet 2006) is also relevant: for example we

could imagine merging a LD pedagogical scenario with several SCORM individual

learning paths in order to product a Claroline-specific model. UML templates, step-

by-step model definition and aspect-oriented modelling (AOM) also belong to model

transformation area and demonstrate its wide scientific interest.

The Model Driven Architecture (MDA 2003) from OMG consortium is the most

famous MDE initiative. It currently insists on the abstract/concrete dimension.

Implementing pedagogical scenarios on e-learning platforms
through MDE

The work we present is one of the BRICOLES project results (Caron, 2005) (Caron,

2006) whose main objective is to suggest MDE-based solutions to reintroduce teacher

in e-learning courses design. This work deals with BUILDING from a LD scenario

one corresponding learning environment in Claroline, Ganesha or Moodle. The

designer (instructional designer or teacher) follows a four-step production cycle (see

Figure 6):

1. She/he defines the LD scenario.

2. She/he chooses the targeted platform, the way to map her/his scenario and get

a model of her/his scenario which is expressed with the concepts of the

platform. We called this model a technological model or a platform specific

model (PSM).

3. She/he refines the technological model because it was not possible to express

some subtleties related to the final realisation in the LD scenario.

4. She/he uses a deployment tool to implement the technological model on

her/his platform.

For the first step, the designer may use any LD authoring tool or our modelling tool

ModX. ModX is a graphic tool used to create both model and MOF-based metamodel

(ModX 2006). For pedagogical scenario concern, we have defined the MOF

metamodel for IMS-LD and associated a graphical syntax to it. We have made a LD

dedicated version of ModX – with functions which are related to import/export LD

native documents - where we have also included the Best-Practices methodology in

order to assist designer when she/he defines a LD model (ICALT 2006).

For the second step, designer must use ModX in order to benefit from its

transformation model abilities. The designer may transform her/his scenario into

Claroline, Moodle or Ganesha technological context. For each platform, there is one

or more kinds of mapping. The resulting model is expressed in a metamodel related to

the selected platform. For this, we have defined one MOF metamodel for each

platform.

For the third step, the designer goes on using ModX because it allows editing and so

refining the previous technological model.

Finally, the designer runs GenDep (GenDep 2006) in order to implement the previous

refined technological model on her/his platform. GenDep is a Java software which is

based on the XMI library of ModX and on SOAP communication. It automatically

builds a SOAP communication layer for a platform from its metamodel. This layer is

used when GenDep builds one learning environment from one model from previous

metamodel. In other words, it will build a learning environment on an instance of

Claroline, Ganesha or Moodle from the technological model. GenDep will interact

with the designer to know which students and tutor(s) - already present in the platform

– have to be associated to the created learning environment.

Step 1. Design a LD scenario (ModX)

Step 2. Transformation in Claroline Context (ModX)

Step 3. Refine Claroline Model (ModX)

Step 4. Build a Claroline-based environment for scenario (GenDep)

Figure 6. Bricoles project: 4 steps to automatically build a claroline environment from a LD
scenario

Other benefits
Automatic building of learning environment is not the only one benefit of our

approach. First, as models become productive, they also become more relevant in

actual distant learning practice. So it may contribute to a better use/reuse of models

and, as a result, to a better distant learning experience sharing. Second, we have noted

that tutors have difficulties to adopt a new e-learning web platform. From our first

experiences with Bricoles, we have seen that tutors grasped faster a new platform if

their own course was implanted into it with, in addition, an overview of it thanks to

the corresponding technological model. Finally, we have also noted that, after one or

two uses of the complete production cycle, tutors generally prefer to work directly

with technological model. It may seem to be a problem. But, it may be easier to define

computational models related to a (accessible) platform than IMS-LD models which

are complex. They somehow get learning staff used to define computational models.

However we think that technological models may be more relevant than we planned

at the beginning. They provide a good flexibility point in our production cycle. We

plan to study what may be the new practices brought by technological models.

EXECUTION AND RUNTIME EVOLUTION OF PEDAGOGICAL SCENARIOS

At the moment, there are very few solutions compatible with IMS-LD standard or at

least targeted at pedagogical scenarios (Britain, 2004). This is particularly true when

one considers the enactment of these scenarios which is considered in this part. In a

first step, we will consider the architecture of IMS-LD enactment engines. Next, we

will consider how flexibility can be provided by such engines so as to permit a

continuous adaptation of the pedagogical scenario. Finally, we will see how

enactment engines can be integrated into Learning Management Systems.

Enactment of Pedagogical Scenarios

The enactment of pedagogical scenarios requires two elements: a learning design

engine that can interpret the IMS-LD scenario and keep track of the activities so as to

provide the right activities with the related resources and services to the participants

and a client or player that will provide a learning environment for the learners and

tutors. The learning design engines can be developed in two ways:

• Embedded in a Learning Management System as in the .LRN platform

(.LRN 2006). This approach has the benefit of permitting a tight integration

with the LMS services which enables a rich learning environment, in terms of

services and user interface. However, this means an ad hoc development that

can hardly be reused in another setting.

• As a standalone service with well defined interfaces that permit its

integration into a LMS. This approach provides the advantage of a reuse of the

enactment service. However, since the service is generic, one has to take care

of the integration issues both with the support services (e.g. chat, mail) and

with the player.

In the following, we will concentrate more on the second type of approach based on

examples such as the Coppercore engine and its extensions as well as the Cooperative

Open Workflow engine. Based on these, we will delve into the technological basis

and the means to provide flexibility. We will also cover the issues related to the

integration into a LMS.

Developing a learning design engine: design and technologies
The design

Users of the pedagogical scenarios will interact with the player for different purposes:

to get the activities they have to perform, to manage the scenarios… The player then

relies on the learning design engine to manage these tasks. Hence, the LD engine

should provide the following services:

• Runtime services to provide the right activities, resources and pedagogical

services to the actors. The main interaction mode between the player and the

engine is pull mode, i.e., the player retrieves the information from the engine.

• Administration services to provide the means to administrate and instantiate

the pedagogical scenarios. This means defining the students and support staff

participating in a particular instance, creating groups…

• Monitoring services to provide the means for a tutor to monitor the progress

of the students/groups in a particular instance. This type of service is also

interesting to be able to put in evidence problems related to the scenario itself,

which would trigger a reengineering of the scenario.

The engine must take care of the models but also of the instances (called runs in

Coppercore). This corresponds to the actors and groups, the resources but also to keep

track of the position of everybody in the scenario (current activities…). Since a

pedagogical scenario can last for a long time (e.g., weeks or months), the engine

should take care of the persistence of these information.

Technologies

Since the engine must be integrated into an existing learning environment, it should

provide interfaces for this. Middleware technologies such as CORBA (Common

Object Request Broker Architecture), Java RMI (Remote Method Invocation) and

DCOM (Distributed Component Object Model) provide the basis for a remote

integration and the means to define the interfaces. However, while solving the

integration problem, these technologies do not support the developer in providing

robust software since every service such as persistence or security has to be managed

explicitly. Component standards have appeared to solve the problem by a declarative

management of these non functional properties. The definition and configuration of

the services to provide is then used by a component container to provide a suitable

runtime environment. The Enterprise JavaBeans (EJB) component model has been

used to develop both CopperCore and COW, so we will provide a brief description for

it. The EJB model defines three types of components:

• Entity beans provide an object oriented view of the persistent information

managed by the software. Each modification to an entity is persisted in a

permanent storage, typically a relational database.

• Session beans are associated to a client and can be seen as the providers of the

service. Sessions can be stateless or stateful. In the latter case, they can

manage the interactions with the user/client. Sessions typically provide the

business logic and manipulate the entities according to the business rules.

• Message Driven beans (MDB) allow asynchronous communication based on

the Java Messaging Service (JMS) standard. Upon receipt of a message, the

MDB can interact with sessions or entities.

During the deployment, the container uses an XML descriptor provided with the

beans to provide a suitable runtime environment. This deployment descriptor defines

the configuration of the beans and non functional services. After deployment the

beans interfaces are available through Java RMI and eventually as Web Services for

the session beans. Indeed, it is still difficult to integrate third party services which

may not be developed with the same model. To cope with this heterogeneity problem

Web Services are the current solution. The principle is to use existing standards like

HTTP or XML to realize remote procedure call. SOAP (Simple Object Access

Protocol) (SOAP, 2003) allows an easy integration by using an XML language to

realise the method invocation. The exposed interfaces are described with an XML

language called WSDL (Web Service Description Language) (Christensen, 2001).

Based on this, one can envision an enhanced reuse of existing services which can be

combined to provide new services. This is the Service Oriented Architecture (SOA)

vision. One example in the domain of technology enhanced learning is the E-Learning

Framework (Wilson et al, 2005). This framework intends to standardise all the useful

services of a learning environment so as to allow for a greater reuse of existing

implementations. Since the LD engine is an enactment service, it should be provided

as a Web Service to enhance integration. This is the case of both Coppercore and

COW.

Existing implementations
In this part, we will focus on CopperCore and SLeD implementation and the

Cooperative Open Workflow engine which are the main examples of standalone

enactment services. Among the few implementations we can also mention works

presented in (Chen et al, 2005) and (Hagen et al, 2006). The former follows the same

architectural principles as the ones we will see hereafter. Based on the implementation

work they raise questions about the interpretation of some IMS-LD constructs. The

latter is also a prototype to question the implementation of the standard.

The Coppercore Engine

The CopperCore engine is one of the results of the aLFanet (Active Learning for

Adaptive Internet) IST project. The objective is to provide a reference implementation

of IMS-LD. Coppercore handles the three levels of IMS-LD, that is static (level A)

and dynamic scenarios based on properties and conditions (level B) as well as

notifications (level C). Level B and C support are in fact a contribution from the

SLeD project presented hereafter. Coppercore has been built as a proof of concept and

demonstrator and for this reason it provides a command line and a web based client

that should not be useful in an embedded setting. It is based on J2EE (Java 2

Enterprise Edition) technologies and provides three levels of interfaces for its

integration into a LMS (cf. Figure 7):

• A set of java objects that shield the developer from the intricacies of J2EE

development, in particular the access to the session beans’ interfaces.

• The Remote Method Invocation (RMI) interfaces provided by the Enterprise

JavaBeans component framework which is also restricted to java

environments.

• The Web Service interfaces based on WSDL that can be used at a distance and

in a heterogeneous setting.

For these three levels, we will find a learnflow interface corresponding to the runtime

services describe beforehand and an administration interface.

Core Business
Objects (LD and

Run)

EJB Entities

Engine
functions

access

EJB Sessions

Administration

Learnflow

Client

Java
objects

Client

Java
objects
s

RMI

SOAP

RMI

Server side Client side

RMI

Figure 7: CopperCore architecture and interfaces

The SLED Project

The Service-based Learning Design system (SLeD) project started in 2004 and had

multiple follow-up to extend the work (SLeD 2) and to assess its use in real settings

(SliDe project, Barret-Baxendale (2005)). In addition to contributing to Coppercore,

the aim of the project was to provide another implementation that enable the

integration of new services which can be used in the pedagogical scenarios (e.g., QTI

engine, e-portfolio…). This work is made in the spirit of the Service Oriented

Architecture (SOA) and E-Learning Framework. The objective of the project was to

explore the tension between generic service description as used in IMS-LD that

facilitate reuse of the design and a rich service description which would provide a

higher integration and functionality. Indeed, to fully take the benefit of SOA, it is

necessary to have standardised services which truly enables to switch

implementations transparently and permit to define a service with few information

(identifier and configuration data). This has lead to the proposition of the architecture

presented in Figure 8 as an output of the SLeD2 project. The IMS Content Package

provides the definition of the needed services within the IMS-LD scenario. This is

used in the integration layer to manage the relevant services implementations. The

integration layer is responsible for calling the right service and provide the input data

based on the performed activities and user inputs as well as catching notifications

from the services and forwarding to other services as necessary (e.g., to notify the end

of an activity to the LD engine). Since there is scarcely a standard for the service, an

adaptation layer is necessary to accommodate different implementations with

different APIs. For each service type (e.g., forum, e-portfolio…) it is necessary to

define a common interface and for each service implementation, one has to develop a

translator that will implement this interface and make the right calls on the actual

service.

Figure 8: SLeD architecture for a service oriented LD

The adaptation service is only necessary because of the low maturity of the field

regarding standardisation. In the long term, the situation should evolve driven by the

work done by standardisation bodies like the IMS consortium. An example of this is

the IMS Enterprise Services Specification (IMS, 2004).

The COW project

The Cooperative Open Workflow (Peter, Vantroys 2005) developed by the TRIGONE

laboratory since 2001 aims at providing a bridge between the concept of activity in

the EMLs (Educational Modelling Language) and in workflows systems in order to

enact learning scenarios. COW has been built using workflow technologies with the

Learning
Design
Engine

QTI
Engine

ELF
service

ELF
service

T
ra

ns
l

at
or

T
ra

n
sl

at
o

r

T
ra

n
sl

at
o

r

T
ra

n
sl

at
o

r

Adaptation
layer

Services Integration
layer

Broker and
dispatcher

Content
Package

Player

Presentation
layer

idea that learning scenarios are only a certain kind of processes. This workflow based

enactment service has been design around the following principles:

- To design a platform centred on the user (Bourguin & al, 2001) which allows

a continuous adaptation to provide the best learning experience.

- To recognise the importance of the scenario model and to make it constantly

available and easy to handle.

- To provide flexibility mechanisms allowing the realization of the preceding

principles.

To provide an easy integration of this enactment service into a LMS and to foster

reusability the development is based on existing standards at both technical and

pedagogical levels. As the project begun before the rise of IMS-LD, the main

concepts come from the workflow world but there are several links between classical

workflow processes and learning scenarios. Based on a metamodelling approach, we

have designed a translator that can map IMS-LD concepts into workflow concepts

(Vantroys, Peter, 2003), which shows the two approaches are compatible.

At the technical level, the development is based on J2EE standards in particular using

EJB components and useful interfaces are also published as Web Services to enhance

integration. The implementation of the service follows the Workflow Management

Facility (WMF) specification (WMF, 2000) of the Object Management Group (OMG,

2006) and the workflow reference model of the Workflow Management Coalition

(WfMC, 1995). The WMF describes the architecture of a workflow engine by

defining the interfaces of the different objects. Each object represents a concept in a

workflow model (process, activity …).

Figure 9: COW global architecture

The global architecture of COW is depicted in Figure 9 the technical architecture is

show in Figure 10. It is decomposed into three specific layers:

- The microkernel represents the heart of our system. The philosophy of this

type of architecture is to offer a minimal set of specific functions (Tanenbaum,

1994). This minimalism allows this architecture to be very flexible because it

implies few constraints to add dedicated functionalities at higher level. Within

the framework of a workflow system the basic functionalities relate to the

rudimentary management of the processes and the activities, the flow of data

between activities and event notification that enable external systems to be

aware of the enactment evolution. This minimalist approach was also

employed for the design of micro-workflow (Manolescu, 2000). For COW that

corresponds to the implementation of the WMF interfaces (activity,

process…), made with EJB entities to ensure the persistence of the data (see

Figure 10).

- The services layer offers an additional level of abstraction compared to the

core by offering added value services which correspond to the runtime,

administration and monitoring services. These interfaces abstract the

complexity of the kernel based on the façade design pattern (Gamma & al,

l995). The basic services are implemented as EJB sessions.

- The external tools and components correspond to the clients of the services

offered by the platform. This level corresponds to the player and offers user

interfaces to the monitoring tools, model management, and activities for the

learners and staff.

COW service

WorkItemManager
{EJB = SessionBean}

ProcessManager
{EJB = SessionBean}

ActivityManager
{EJB = SessionBean}

WfProcess
{EJB = EntityBean}

WfActivity
{EJB = EntityBean}

MetaManager
{EJB = SessionBean}

WfProcess
{EJB = EntityBean}

WfProcess
{EJB = EntityBean}

WfActivity
{EJB = EntityBean}

WfActivity
{EJB = EntityBean}

WfWorkItem
{EJB = EntityBean}

WfWorkItem
{EJB = EntityBean}

WfWorkItem
{EJB = EntityBean}

SOAP

RMI

Figure 10: COW internal architecture

Support for the flexible enactment of pedagogical scenarios

Many adaptations to the pedagogical scenario will be done at design time when one

reuses a scenario. The adaptations to the actual context may also be done during

deployment (e.g., to link a service to a specific implementation). However, even with

these late adaptations, one cannot envision all the events that can occur during the

execution of the scenario nor the particular difficulties of the learners or differences in

the way they approach the learning activities (e.g. learning styles, knowledge

level…). There are even some times when one does not know beforehand all the

activities needed. Because of this it is necessary to support runtime modification of

the scenario.

The aLFanet project which is at the origin of CopperCore has also developed an

adaptation component for IMS-LD. The runtime adaptations provided are targeted at

guiding the users to improve their learning experience according to a constructed user

model (Boticario et al, 2004). This is based on machine learning to detect user

categories and to keep the memory of the successful interactions related to the

different categories. The learning part relies on a multi-agent system. The adaptation

of the scenario relies on modifications to the properties in level B to change the

course of the activities.

Another approach which is more related to the context of learning rather than the

learners themselves is presented in (Zarraonandia et al, 2006). Design patterns and

aspect oriented programming are used to extend the Coppercore implementation with

adaptation features. Adaptations are defined using a language that describes the

manipulations of the scenario. To this end, they have defined the set of modifications

that can be achieved for the elements in level A and B (e.g. change activity title, add

an activity, change a property value…). Modifications are expressed within an

adaptation command file which may be accompanied with a manifest that provides

IMS-LD fragments used in the modifications. Adaptations can then be defined for

specific contexts which will be triggered based on the acquisition of contextual

information. However, for this approach to work, the considered context should be

limited otherwise the combination of values and corresponding adaptations could not

be handled.

The flexibility brought by COW is found according to two axes: the first relates to the

possibility to modify the model of the scenario in the course of execution, the second

relates to the possibility to modify the interpretation of the scenario (i.e., the

behaviour of the engine). The first axis rests on mechanisms of introspection and

intercession and the principle of open implementation (Kiczales & al., 1991) which

make it possible to handle the model in order to add/withdraw/modify activities and to

modify the sequencing of these activities. One can also modify the activity model

(e.g., changing tools or learning objects, modifying activities assignment to roles).

These changes can be realized for one learner or for a group of learners. The second

axis of flexibility relates to the behaviour of the engine itself. Indeed, it is impossible

for the programmer to foresee all the use cases of the system. The modification of the

behaviour relies on the use of the strategy design pattern to be able to provide ad hoc

behaviour depending on the context. It is then necessary to identify the flexibility

points within the engine and to use the strategy pattern at these points. The way of

managing the time constraints is a typical example of behaviour which one must be

able to adapt. Indeed, the management of time is one of the other properties of COW.

Two temporal concepts are provided: duration and deadlines. The first represents the

minimal or maximum time to perform an activity. The second concept specifies the

periods during which work must happen. In order to manage the calculation of the

durations and the deadlines, it is possible to use various “strategies”, such as for

example taking into account the weekends or not. One can thus dynamically adapt

calculation according to the context of use and the wishes of the users. The strategy

pattern is also used to allow various behaviours when constraints are violated, for

example, to send an email to the learner or the tutor, or to validate in an automatic

way the activity.

Integration of learning scenario enactment services in LMS
As indicated previously, there are few LMS integrating support for learning scenarios.

The solution is thus to integrate a third party enactment service like CopperCore or

COW in the LMS. From a technological point of view that does not seem to be a

problem because these services have been designed to be integrated. They use in

particular SOAP for the access to their API. By exploring this question a little, one

note that it is not so simple because integration requires necessarily modifications of

the LMS and it is also necessary to determine the desired level of integration, from

slightly coupled to strongly integrated into the LMS. This choice will also depend on

non-technical parameters. It will be directed by the level of knowledge of the users

and by their level of adoption of IMS-LD and the learning scenarios approach. If the

users have little knowledge and where one simply wishes to add a new functionality

to the LMS without changing its architecture, a weak coupling can be selected. It is

for example the case of (Bergren et al, 2005). They have integrated Coppercore player

into Moodle in order to offer a new functionality to the users of Moodle. CopperCore

player is regarded as a simple resource of the type “Web link”. Thus the users are

redirected on the Web interface of the player when necessary. This approach is simple

but presents disadvantages. The first one relates to the user interface which does not

correspond to the traditional ergonomics of the LMS. The second point relates to the

communication. The engine can use learning resources provided by the LMS, but it

has no possibility to return information to the LMS. Because of these limitations, the

authors plan a stronger integration in order to have a bidirectional communication. It

is to obtain a better integration that (Harrer et al, 2005) had an approach based on the

development of a communication module called “remote control component”, to

integrate the CopperCore engine with Cool Mode (Pinkwart, 2003). They extended

CopperCore to produce events related to the enactment. These events are listened by

the LMS. Thus a bidirectional communication is possible. A third integration more

strongly coupled is explained in (Vantroys, Peter, 2006). COW was integrated into a

commercial platform, the “Campus Virtuel” of the French enterprise Archimed

(Archimed 2006). The “Campus Virtuel” already contained a learning scenario

service which did not fulfil all the requirements of the users, in particular in term of

flexibility of the learning path. Here what was needed was a strong integration with

bidirectional communication so as to maintain the existing modes of operation. There

was also the additional constraint of not changing the user interfaces and to avoid to

the maximum modifying the other existing functionalities. Figure 11 summarizes the

integration. For the existing components managing the learning scenarios, a large

development was carried out to replace the old service based on COM components.

The integration was carried out by using SOAP. For the communication with the other

services (chat, forum…), an event-driven type of connector was developed in the

same spirit as the approach described above.

Diary

Pedagogical
ressources

Communication
tools

E-Mail, chat, forum,
instant messaging

Application
« learner

management »

Database of
the LMS

Modules
Creation of the

learning modules

Steps
Creation of the

pedagogical steps

Assignment
Assignment of the

learners in the learning
scenarios

Application «Teaching
Modules»

SOAP

Connector

Events (JM
S)

Figure 11: COW integration in the Campus Virtuel

CONCLUSION

(Hummel et al, 2004, pp 125) conclude that “…staff and educational developers can

already benefit from the philosophy of IMS-LD by focusing on learners’ activities and

objectives...” and that the final objective is the emergence of educational best

practices expressed as reusable learning designs which can then be adapted for use in

particular contexts and enacted in IMS-LD compliant environments. To achieve this

vision, it is necessary to provide a suitable support to the designers of the learning

activities and to have means to enact these learning designs. Moreover, since there are

many good reasons for an evolution of the design it should be possible to adapt it even

at runtime to accommodate specific contexts or learners’ problems. However, the

world of learning design and IMS-LD has not reached that maturity yet. In this

chapter, we present the current state of support at both design time and runtime.

Concerning design time, we have presented how one can mitigate the absence of IMS-

LD support in most LMS while still benefiting from the effort of a careful design of

the learning process. We have also presented an approach based on Model Driven

Engineering to provide a better support for design and to ensure a faithful and easy

implementation in a specific LMS.

Concerning runtime support for pedagogical scenarios, we have presented the design

and technologies for an enactment engine and the main existing services. It is

important to note that the main implementations comply with existing standards from

the technical perspective and from the pedagogical perspective: EJB components,

Web Services, IMS QTI… This approach provides the opportunity to take the benefit

of existing tools and services, a good basis for reuse of the developed services and

facilitates the integration with other services. This prepares the way for the uptake of

the Service Oriented Architecture as seen in the E-Learning framework (Wilson et al,

2005). In the long term, this will allow the deployment of customised learning

environment based on the integration of existing services. We have then presented

some specific implementation targeted at providing a flexible runtime execution that

enables the evolution of the scenario. In one case, the adaptation relies on IMS-LD

properties within the level B which implies the range of adaptation is known

beforehand. The approach of the two other examples is to enable an explicit

manipulation of the model to change it at runtime. Finally, we have analysed on

different examples the technical solutions for the integration of an enactment service

into a LMS.

The work presented in the design and runtime supports both provide a contribution to

the uptake of the Learning Design approach. They can be seen has two alternative

views at the moment, but this is due to the low maturity of the existing platforms and

tools. When enactment support will be more common, we will have integrated

solutions to cover the whole lifecycle of the pedagogical scenarios. The last missing

link which is still to build will be to feed runtime adaptations into the design tools so

as to avoid loosing good evolutions and their rationale. This will enable a continuous

evolution of the scenarios.

REFERENCES

.LRN (2006) .LRN platform web site http://www.dotlrn.org/, last visited September

2006.

Abouzahra, A. & Bézivin, J. & Didonet Del Fabro, M. & Jouault, F. (2005). A

Practical Approach to Bridging Domain Specific Languages with UML profiles, In:

Proceedings of the Best Practices for Model Driven Software Development at

OOPSLA'05, San Diego, California, USA.

http://www.dotlrn.org/

Adkins S. (2005), Wake-Up Call: Open Source LMS, ASTD's source for e-learning,

Learning Circuits, http://www.learningcircuits.org/2005/oct2005/adkins.htm, October

2005.

ADL (2006). ADL web site for SCORM related specifications,

http://www.adlnet.gov/scorm/, last visited June 2006.

Anemalab.org (2006) Description de la plateforme Ganesha,

http://www.anemalab.org/ganesha/descriptif.htm, Last visited October 2006

Archimed (2006). Archimed web site, http://www.archimed.fr, last visited October

2006.

AUF (2006), FOAD Formations Ouvertes et A Distance, Master pro (M2) E-Services,

http://foad.refer.org/rubrique59.html

Barrett-Baxendale M. & Hazelwood P. & Oddie A. & Anderson M. & Franklin T.

(2005). SLeD Integration Demonstrator – Final Report, retrieved September 2006

from http://www.hope.ac.uk/slide/.

Berggren A. & Burgos D. & Fontan J.M. & Hinkelman D. & Hung V. & Hursh A. &

Tielemans G. (2005). Practical and Pedagogical Issues for Teacher Adoption of IMS

Learning Design Standards in Moodle LMS, Journal of Interactive Media in

Education, 2005(02).

Blackboard (2006) Blackboard Learning System,

http://www.blackboard.com/products/as/learningsys, Last visited October 2006.

Boticario, J.G. & Santos, O.C. & Barrera, C. & Gaudioso, E. & Hernandez, F &

Rodriguez, A. & van Rosmalen, P. & Koper, R. (2004). Defining adaptive learning

design templates for combining design and runtime adaptation in aLFanet, retrieved

June 2006 from http://hdl.handle.net/1820/210.

http://hdl.handle.net/1820/210
http://www.blackboard.com/products/as/learningsys
http://www.hope.ac.uk/slide/
http://foad.refer.org/rubrique59.html
http://www.archimed.fr/
http://www.anemalab.org/ganesha/descriptif.htm
http://www.adlnet.gov/scorm/

Bourguin G., Derycke A., Tarby JC. (2001) Beyond the interface: Co-evolution Inside

Interactive Systems - A Proposal Founded on Activity Theory. In Jean Vanderdonckt,

Ann Blandford, et Phil Gray, editors, People and Computers XV - Interaction without

Frontiers, pages 297 - 310, Lille, France, September 2001. ISBN: 1-85233-515-7.

Britain, S. (2004). A Review of Learning Design: Concept, Specifications and Tools,

report for the JISC E-learning Pedagogy Programme.

Brunet, G &, Chechik, M. & Easterbrook, S. & Nejati, S. & Niu, N. & Sabetzadeh, M.

(2006), A manifesto for model merging, In : Proceedings of the 2006 international

workshop on Global integrated model management, International Conference on

Software Engineering, Shanghai, China, May 22 - 22, 2006.

Caron, P.-A. & Derycke, A. & Le Pallec X. (2005). The Bricoles project: support

socially informed design of learning environment, In: International Conference on

Artificial Intelligence in Education (AIED 2005), Amsterdam, IOS Press, 2005, p 759

– 761.

Caron, P.-A. & Derycke, A. & Le Pallec, X. (2005). Bricolage and Model Driven

Approach to design distant course, In: E learn 2005, world conference on E-learning

in corporate Government, Healthcare & higher education, Vancouver, Association for

the Advancement of Computing in Education (AACE), p 2856- 2864.

Caron, P.-A. & Le Pallec, X. & Sockeel, S. (2006). Configuring a Web-based tool

through pedagogical scenarios, in IADIS Virtual Multi Conference on Computer

Science and Information Systems (MCCSIS 2006)

Chen, M.C. & Chen, C.T & Cheng, Y.C. & Hsieh, C.Y. (2005). On the Development

and Implementation of a Sequencing Engine for IMS Learning Design Specification,

5th IEEE International Conference on Advanced Learning Technologies, 2005, 5-8

juillet, Kaohsiung, Taiwan.

Christensen, E. & Curbera, F. & Meredith, G. & Weerawarana, S. (2001). Web

Services Description Language (WSDL) 1.1. Retrived from

http://www.w3.org/TR/wsdl.

Claroline (2006), Claroline.net - Open Source eLearning, http://www.claroline.net/,

Last visited October 2006

CopperCore (2006). Coppercore platform home page, http://coppercore.org, last visited

June 2006

CORDRA (2006). What's "CORDRA"™,

http://cordra.net/docs/info/whatscordra/v1p00/info-whatscordra-v1p00.php, last visited June

2006.

Elearning (2006) Master professionnel Ingénierie Pédagogique Multimédia,

Elearning Actu, http://www.elearning.fr/index2.php?

option=content&task=view&id=46&pop=1&page=0, Last visited October 2006

ELF (2006). E-Learning Framework web page: http://www.elframework.org/ last visited

in June 2006

Farail, P. & Gaufillet, P. & Canals, A. & Le Camus, C. & Sciamma, D. & Michel, P.

& Crégut, X. & Pantel, M. (2006). The TOPCASED project: a Toolkit in Open source

for Critical Aeronautic SystEms Design, In : Eclipse Technology eXchange workshop

(eTX) at ECOOP 2006, Tuesday 4th July 2006, Nantes, France.

Gamma, E. & Helm, R. & Johnson, R. & Vlissides, J. (1995). Design Patterns:

Elements of reusable Object-Oriented Software, Addison-Wesley, ISBN 0-201-

63361-2.

GenDep (2006), GenDep Web site, http://noce.univ-lille1.fr/projets/ModX/index.php?

option=com_content&task=view&id=15&Itemid=35

GMT (2006), GMT Project, http://www.eclipse.org/gmt/, Last visited October 2006.

http://www.eclipse.org/gmt/
http://noce.univ-lille1.fr/projets/ModX/index.php?option=com_content&task=view&id=15&Itemid=35
http://noce.univ-lille1.fr/projets/ModX/index.php?option=com_content&task=view&id=15&Itemid=35
http://www.elframework.org/
http://cordra.net/docs/info/whatscordra/v1p00/info-whatscordra-v1p00.php
http://www.coppercore.org/
http://www.claroline.net/
http://www.w3.org/TR/wsdl

Hagen, K. & Hibbert, D. & Kinshuk (2006) Developping a Learning Management

System based on the IMS Learning Design Specification, Sixth International

Conference on Advanced Learning Technologies (ICALT’06), 5-7 july 2006, pp420-

424.

Harrer, A. & Malzahn, N. & Hoeksema, K. & Hoppe, U., (2005). Learning Design

Engines as Remote Control to Learning Support Environments. Journal of Interactive

Media in Education (Advances in Learning Design. Special Issue, eds. Colin

Tattersall, Rob Koper), 2005/05. ISSN:1365-893X [jime.open.ac.uk/2005/05].

Hernández-Leo,D & Villasclaras-Fernández, E. D. & Asensio-Pérez, J. I.&

Dimitriadis Y. &, Jorrín-Abellán, I. M.& Ruiz-Requies,I. Rubia-Av, Bartolomé

(2006). COLLAGE: A collaborative Learning Design editor based on patterns.

Journal of Educational Technology & Society. Vol 9(1), p 58-71.

Hummel, H. & Manderveld, J. & Tattersal, C. & Koper, R. (2004). Educational

Modelling language and learning design: new opportunities for instructional

reusability and personalised learning. International Journal of Learning Technology,

Vol 1, No1, 2004.

IMS (2003). IMS, IMS Learning Design Information Model - version 1.0. IMS Global

Learning Consortium, Inc., retrieved from

http://www.imsglobal.org/learningdesign/index.html.

IMS (2004). IMS, Enterprise Services specification - Version 1.0 Final Specification,

IMS Global Learning Consortium, Inc., retrieved from

http://www.imsglobal.org/es/index.html

Kew, C. (2006), Learning Design tools currently available or under development,

web page, UNFOLD, http://www.unfold-

http://www.unfold-project.net/developers_folder/dev_resources/tools/currenttools/
http://www.imsglobal.org/es/index.html
http://www.imsglobal.org/learningdesign/index.html

project.net/developers_folder/dev_resources/tools/currenttools/, Last visited October

2006.

Kiczales, G. & des Rivières, J. & Bobrow, D. (1991). The art of the Metaobject

Protocol. The MIT Press. ISBN: 0-262-61074-4

LTSC (2002). IEEE LTSC, Draft Standard for Learning Object Metadata, IEEE

1484.12.1-2002.

Koper, R. & Tattersall, C. (2005), Learning Design – a handbook on Modelling and

Delivering Networked Education and Training, Springer-Verlag Berlin Heidelberg

2005.

Le Pallec, X. & Renaux, E. & Moura, C. O. (2005). ModX, Tools Exhibition in

European Conference on Model Driven Architecture - Foundations and Applications,

Nuremberg, Germany, November 2005.

Le Pallec, X. & de Moura Filho, C. & Marvie, R. & Nebut, M. & Tarby, J.-C. (2006),

Supporting generic methodologies to assist IMS-LD modeling. In: The 6th IEEE

International Conference on Advanced Learning Technologies (ICALT'2006), July 5-

7, 2006, Kerkrade (The Netherlands), pp 923 – 927.

MagicDraw (2006), MagicDraw, http://www.magicdraw.com/, Last visited October

2006

Manolescu, D. A. (2000). Micro-Workflow: A Workflow Architecture Supporting

Compositional Object-Oriented Software development. Ph’D Thesis, University of

Illinois. http://micro-workflow.com/PhDThesis.

Marvie, R & Nebut, M. (2006), Processus de modélisation incrémentaux, in 2nd

Journées sur l'Ingénierie Dirigée par les Modèles (IDM'06), Lille, Juin 2006.

http://micro-workflow.com/PhDThesis
http://www.magicdraw.com/
http://www.unfold-project.net/developers_folder/dev_resources/tools/currenttools/

McAndrew, P. & Woods, W.I.S. & Little, A. & Weller, M.J. & Rob Koper, R. &

Hubert Vogten, H. (2004). Implementing Learning Design to support web-based

learning. AusWeb 2004, Gold Coast, Australia 3-7 July 2004.

McAndrew, P. & Nadolski, R. & Little A. (2005). Developing an approach for

Learning Design Players. Journal of Interactive Media in Education (Advances in

Learning Design. Special Issue, eds. Colin Tattersall, Rob Koper), 2005/14.

ISSN:1365-893X [jime.open.ac.uk/2005/14].

MDA (2003) MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf

ModX (2006), ModX Web site, http://noce.univ-lille1.fr/projets/ModX/.

Moodle (2006) Moodle - A Free, Open Source Course Management System for

Online Learning, http://moodle.org/, Last visited October 2006.

OMG (2006) Object Management Group official web site, http://www.omg.org last

visited October 2006.

Paquette, G. (2005). The IMS Learning Design Conceptual Model,

http://www.licef.teluq.uquebec.ca/gp/docs/Article%20EML-MISAedited.doc

Patrascoiu O. (2004), YATL:Yet Another Transformation Language, In : the 1st

European MDA Workshop, MDA-IA, University of Twente, the Nederland, January

2004.

Perez C. E. (2006), Open Source Model Driven Translators Written in Java,

Manageability Website, http://www.manageability.org/blog/stuff/open-source-model-

translators-java/view.

Pernin, J.-P. & Lejeune, A. (2006), Models for the re-use of scenarios of training,

IFIP - WG 3.1, 3.3, & 3.5 Joint Conference, "Imagining the future for ICT and

Education" - 26th-30th June 2006 in Ålesund, Norway.

http://www.manageability.org/blog/stuff/open-source-model-translators-java/view
http://www.manageability.org/blog/stuff/open-source-model-translators-java/view
http://www.licef.teluq.uquebec.ca/gp/docs/Article%20EML-MISAedited.doc
http://www.omg.org/
http://moodle.org/
http://noce.univ-lille1.fr/projets/ModX/
http://www.omg.org/docs/omg/03-06-01.pdf

Peter, Y. & Vantroys, T. (2005). Platform support for pedagogical scenarios,

Educational Technology and Society Journal, International Forum of Educational

Technology & Society – ISSN 1176-3647, 8(3), 122-137.

Pinkwart, N. (2003). A Plug-In Architecture for Graph Based Collaborative

Modeling Systems. In U. Hoppe, F. Verdejo & J. Kay (eds): Proc. Of Artificial

Intelligence in Education, Amsterdam, IOS Press.

Schneider, D. & Synteta, P. & Frété, C. & Girardin, F. & Morand, S. (2003)

Conception and implementation of rich pedagogical scenarios through collaborative

portal sites: clear focus and fuzzy edges, ICOOL 2003 - International Conference on

Open and Online Learning December 7-13, 2003 University of Mauritius.

SOAP (2003) SOAP specification, http://www.w3.org/TR/2003/REC-soap12-part1-

20030624/, last visited October 2006.

Tanenbaum, A. (1994). Systèmes d’exploitation :Systèmes centralisés, systèmes

distribués. Informatique Intelligence Artificielle, InterEdition, Paris. ISBN :2-7296-

0706-4.

Tempus (2006) TEMPUS MEDA Programme - Lebanon, The European Union's

Cooperation with Lebanon - Programmes and Projects 2005-2006, Call for proposals

2003 - International distance training e-services,

http://www.dellbn.cec.eu.int/en/eu_and_lebanon/project4.htm, Last visited October

2006.

UNFOLD (2005), Atelier sur les usages et les outils d’IMS Learning Design,

UNFOLD Paris Workshop April 2005.

Vantroys, T. & Peter, Y. (2003). COW, a Flexible Platform for the Enactment of

Learning Scenarios, 9th Conference Groupware (CRIWG 2003), Springer-Verlag

LNCS 2806 France, 2003

http://www.dellbn.cec.eu.int/en/eu_and_lebanon/project4.htm
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

Vogten, H. & Martens, H. & Nadolski, R. & Tattersall, C. & van Rosmalen, P. &

Koper, R. (2006). CopperCore Service Integration - Integrating IMS Learning

Design and IMS Question and Test Interoperability. Sixth International Conference

on Advanced Learning Technologies (ICALT 2006). 05-07 July 2006 Page(s):378 –

382

WebCT (2006) WebCT.com, http://www.webct.com/, Last visited October 2006.

Weller, M. & Little, A. & McAndrew, P. & Woods, W. (2006). Learning Design,

generic service descriptions and universal acid, Educational Technology & Society

Journal, 9 (1), 138-145.

Wilson, S. & Olivier, B. & Jeyes, S. & Powell, A. & Franklin, T. (2005) A Technical

Framework to Support e-Learning, retrieved from

http://www.elearning.ac.uk/frameworks/resources

Workflow Management Coalition (1995) ”The Workflow Reference Model”, WfMC-

TC-1003, Version 1.1, 19 january 1995. http://www.wfmc.org/.

WMF (2000) Object Management group. ”Workflow Management Facility”,Version

1.2, http://www.omg.org/technology/documents/formal/workflow_management.htm

last visited October 2006

Yongwu M. (2005). Enabling learning designers to model dynamic learning

processes. Fifth IEEE International Conference on Advanced Learning Technologies,

(ICALT 2005). 5-8 July 2005 Page(s):399 - 401

Zarraonandia, T. & Dodero, R.M. & Fernandez, C. (2006), Crosscutting Runtime

Adaptations of LD Execution, Educational Technology & Society Journal, 9 (1), 123-

137.

http://www.omg.org/technology/documents/formal/workflow_management.htm
http://www.wfmc.org/
http://www.elearning.ac.uk/frameworks/resources

	Current widespread e-learning web platforms
	No support for enactment of pedagogical scenarios
	How to enact manually pedagogical scenarios

	Design learning course
	Typical lifecycle when designing and building courses through pedagogical scenarios
	Accessible model editors to keep teacher in design process

	Building automatically pedagogical scenarios-based learner environments through Model-Driven engineering
	Model-Driven Engineering (MDE) principles
	Implementing pedagogical scenarios on e-learning platforms through MDE
	Other benefits

	Enactment of Pedagogical Scenarios
	Developing a learning design engine: design and technologies
	Existing implementations

	Support for the flexible enactment of pedagogical scenarios
	Integration of learning scenario enactment services in LMS

