
Managing Requirements in a Co-evolution Context

Anne Etien, Camille Salinesi

Centre de Recherche en Informatique, Université Paris 1 – Panthéon Sorbonne

90, rue de Tolbiac – 75013 Paris – France

aetien@univ-paris1.fr, camille@univ-paris1.fr

Abstract
Complex artefacts, such as Information Systems

(IS), have multiple aspects and components: business

processes, databases, architecture, or software. It is

generally agreed that all these should be kept
consistent over time. One major issue to preserve

consistency is when required evolutions affect multiple

aspects or components of the system at the same time.

As each evolution requirement can have an impact

onto several projects, teams, engineering domains,
viewpoints, or system components, the question of “is

the consistency link preserved by this requirement?”

has to be continuously raised.

This paper presents: (i) a framework that defines

challenges for RE caused by co-evolution and (ii) an

approach to solve some of these RE-related co-
evolution challenges. The framework was developed

based on our experience in three IS evolution projects:

ERP installation, baselining of an IS across

subsidiaries, and business process improvement driven

IS evolution. Each challenge identified in the

framework is discussed with respect to our experience
with practice and state of the art methods. Our

approach was developed for the business process

improvement driven IS evolution project, then

generalised for the IS baselining project. The approach

is presented, and then illustrated with the case of the

latter project.

1. Introduction

Modifying a system can have multiple

consequences. On the one hand, the initial system

modifications can engender other ones, which are

discovered through impact analysis [1]. On the other

hand, once the system has evolved, a conceptual

mismatch [2] can appear between the system and

another entity such as its architectural environment or

business processes, hence reducing the performance of

the organisation [3]. This conceptual mismatch

requires adapting the other entity to re-establish the

alignment [4]. Such successive evolutions can

obviously occur the other way round, which again

causes system evolution.

One purpose of biology is among others to study

interacting species, i.e. species that influence each

other’s evolution; this is called co-evolution. Similarly

researches have been achieved in computer sciences to

analyse the reciprocal evolution of systems or software

and other entities such as organisations [5], business

processes [4], or environment [6]. This paper proposes

to take a look at co-evolution on a requirements

engineering perspective.

Requirements engineering can be seen as a way to

establish a relationship between the “why” and the

“what” of the system under development [7], [8]. The

latter deals with the system functionality whereas the

former provides its rationale. A global view on co-

evolution can therefore be taken by analysing the

rationale for making systems or software evolve in

coordination with other entities.

This paper first proposes a framework to define the

qualities expected from RE approaches that aim at

understanding co-evolution and engineering it. The

framework is structured around five dimensions. Each

dimension corresponds to a RE-related issue that we

see as a key to understanding and engineering co-

evolution. Different approaches can be taken to solve

each issue. These approaches are presented as values in

the dimension that corresponds to the issue. RE

methods are positioned in the framework by

identifying which value they take in each of the five

dimensions.

The next section presents the dimensions of our

framework that deal with the issues of understanding

co-evolution. Section 3 presents the dimensions that

deal with the issues of engineering it. Section 4

presents our approach to deal with co-evolution though

an application example inspired from an industrial

collaboration with the financial branch of the French

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

car constructor Renault. The concluding section uses

the framework to discuss our position with respect to

state of the art and emphasises open issues of co-

evolution in RE.

2. Understanding Co-evolution

One issue when a system evolution project is

undertaken is to handle the consistency of the evolving

system with other co-evolving entities. Another issue is

to express the requirements which specifically relate to

system evolution in an adequate way. These issues are

respectively tackled by the framework in the

dimensions named “understanding relationship” and

“expressing evolution requirements”. Each dimension

is presented in the next two sub-sections.

2.1. Dimension 1: Understanding relationship

Handling the consistency of an evolving system

with other co-evolving entities requires understanding

the consistency relationship between those. At the

requirements level, the presence of different entities

can introduce difficulties to understand the consistency

relationship. These difficulties are caused by the use of

heterogeneous languages, the fact that documentations

are physically separated, or because the entities have

different system-subsystem decompositions.

For example, when a business and an information

system co-evolve, different languages are used to deal

with the business level, and with the system level.

Business models use concepts such as goals, processes,

actors and roles whereas system functionality models

deal with objects, operations, events and the like.

Understanding if these entities interact and cooperate

properly, they need to be linked by a consistency

relationship. Such a link allows to know how the two

entities are aligned in the current state, and after co-

evolution. It is also useful to decide on when to

undertake co-evolution.

Different approaches exist to define such

relationship: traceability, links/rule typologies, metrics,

and common languages. Each produces a value in the

“understanding relationship” dimension.

Traceability “makes it possible to look at a change

to a requirement and to find those parts of the design

and code details that are affected by the change” [9].

Pohl also uses traceability to understand the

relationship between different products of the same

system used in different phases of an evolution project

[10].

Typologies of links or rules help to define in a

formal way what consistency between models

expressed with different languages is. For example,

Landtsheer and al [11] propose a technique for

deriving event-based specifications, written in the SCR

tabular language, from operational specifications built

according to the KAOS goal-driven requirements

language. [12] identifies links between concepts of the

i* meta-model and those of the Z language. The

approach specifies how changes on an i* model can be

translated into modifications of Z specifications.

Authors like [13] propose to define consistency

using metrics. The other way round, [14] suggests that

identification of unfit requires the application of a fit

measurement method.

Using a common language is useful to materialize

the alignment between two entities. This approach is

used by Clarke for which “to address the misalignment

of design and code, one approach is to impose the same

development paradigm on all software artefacts – both

are written in the object oriented paradigm” [9]. This

idea is also conveyed by SysML [15], which purpose is

to adapt UML to multiple disciplines involved in

systems engineering projects, such as electronics or

mechanics, so as to understand how the different

models used in these disciplines integrate with each

other.

Our experience in information system evolution

projects showed us that there is a great need in the

industry to document the level of alignment of

information system components with each other and

with business models. Our approach is to express

alignment using a common language, namely

oal/Strategy Map, [4].

A map is represented with a directed graph in which

nodes are labelled with goals and edges labelled with

strategies. Having several edges pointing to the same

node allows to represent the different strategies

available to achieve the same goal. The directed nature

of the graph is a way to represent the flows of goals.

Therefore, a map can be defined as composed of

several sections where each section is an aggregation

of two kinds of goals, source and target, linked

together with a strategy. see Figure 6 or [16] for more

details .

The coupling between business processes and

system functionalities is achieved in the map

formalism by simply relating map sections to the

business processes and system functionalities that they

abstract. Therefore, a map materializes the alignment

between business processes and system functionalities

when both can be abstracted into the same goals and

strategies. We believe that the oal/Strategy Map

language is adequate to understand the consistency

relationship because it is intentional by nature, and thus

can be interpreted both in the perspective of the

business and in the perspective of the system.

Consistency issues are raised when there is a system

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

goal that does not match a business goal, or the other

way round when a business goal cannot be achieved

using the system.

2.2 Dimension 2: Expressing evolution

requirements

Requirements must be expressed in evolution

projects as in any other system development projects.

In some cases, the requirements are expressed as if the

system was developed for the first time. In other cases,

the requirements document is produced from an older

one and takes into account the evolutions without

making them really explicit. In both cases, the

requirements documents only deals with the new

system. In a third kind of approach, the gaps and

similarities required between the new system and the

older one are made explicit under the form of evolution

requirements specifications. Specifying the evolution

requirements is a concern that differs from making the

requirements documents evolve. The three values in

the “expressing requirements” dimension are: 1 from

scratch, 2 by requirements evolution, and 3 through

evolution requirements.

In many projects, requirements are expressed as if

from scratch. Several approaches as Merise, i*, Kaos

or the RUP do not provide indications concerning

evolution of the current models. They help to construct

a new one. As Figure 1 shows, the focus is on the

future To-Be situation. The current situation can be

ignored either because it is too poorly documented, or

because the future one is too different from it. Poor

documentation of the legacy is a situation frequently

met in organisations that have developed their

information system a long time ago and where many

evolutions have occurred without concern for overall

integration. ERP installations are typically projects in

which the future system and business processes are

likely to be so radically different from the current ones

that comparing those would be too costly or simply

meaningless.

To-Be
Figure 1. Expressing requirements from
scratch: focus on the future

In practice, requirements management tools such as

RequisitePro or Doors are often used to make evolve

the requirements documentation when evolutions are

required. At the requirements level, an evolution

results in adding, removing or changing a requirement

in the requirements documents. The transition from a

new situation As-Is to the new one To-Be shown in

Figure 2 occurs when the requirements documents is

released. In this approach, the required evolutions are

kept implicit. Therefore, a retrospective analysis must

be achieved to understand what will actually evolve

and to conduct change itself. However, the advantage

of this approach is that requirements that do not change

do not have to be specified again. Besides, approaches

such as [17] [18] are able to exploit successive

modifications of the requirements documents to keep

the specification of the future system permanently up

to date and consistent.

To-BeAs-Is

Figure 2. Expressing requirements through
requirements evolution: the evolution required
is implicit

Evolution requirements can be made explicit just as

any other requirement can be. As shown in Figure 3,

evolution requirements are in-between the As-Is and

To-Be situations: they express the transition required

between the old system and the new one. Languages to

express evolution requirements focus on the gaps and

on the similarities between the old system and the new

one.

Evolution requirements are typically defined under

the form of gaps when the evolution is limited and a

large part of the system shall remain as is.

Specifying evolution requirements under the form

of gaps allows to identify the impacted part of the

existing system, and to automatically check the

consistency between the requirements for the future

system and the required evolutions.

Different gap and similarity based languages have

been defined in different domains to specify evolution

requirements. [19] proposes similarities formulae to

reuse source code, [20] uses other formulae in an

object oriented model context whereas [21] compares

UML models. [22], [23], and [24], allow to express

requirements of database schema evolutions, the

language proposed by [25] can be used to expressed

evolutions required on XML DTDs, requirements of

evolution of workflow model can be specified using

languages such as the ones defined by [26], [27], or

[28]. Each language is defined under the form of a

collection of operators that specify a transition that can

be typically required between models of the As-Is and

To-Be situations. The main advantage of this approach

is that it allows to express evolution requirements in a

synthetic way. Besides, it makes explicit which part of

the current system is impacted by evolutions, and

under what constraints it shall evolve. However, such

approach can only be used when the As-Is and To-Be

situations are defined with semi-formal or formal

models.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

To-BeAs-Is ∆
Figure 3. Expressing explicit evolution
requirements as a transition between the
current and the future

We proposed in [29] a generic requirements

evolution language under the form of a typology of gap

operators that can be specialised for any modelling

language. Once specialised for the oal/Strategy map

formalism, our language can be used to express how

gaols and strategies shared by the business and the

system shall change, e.g. a goal can change of name, a

strategy can be replaced by another one, sections can

be merged or the other round split, etc. Combined with

maps of the current situation, evolution requirements

expressed with this language can be used to

automatically control the consistency of the

requirements actually released for the future system

under the form of goal/strategy maps.

As required by [27] and [24], our typology of

operators is complete and consistent [30].

Completeness refers to the possibility of expressing

any type of evolution requirement; correctness relates

to the problem of expressing an evolution requirement

that does not generate an issue in the future system i.e.

by preserving a set of correctness invariants [24] .

Besides, our approach is exhaustive as only one gap

operator is used to express each evolution requirement

[30]. Most of the evolution requirements languages are

complete and consistent. However, these languages

often provide the simplistic CRUD view on evolution,

which results in difficulty to express complex

evolution requirements [25].

Our approach can be adapted to other requirements

modeling languages such as KAOS, I*, L’Ecritoire, or

bram. Its drawback is that it cannot be used in

projects in which requirements are not modelled, i.e.

only specified in natural language.

The three values of the dimension “Expressing

evolution requirements” are: from scratch,

requirements evolution and evolution requirements.

3. Engineering Co-evolution

Co-evolution involves both impact analysis and

change propagation. The purpose of change
propagation is to carry out evolution requirements into

the To-Be [1]. Impact analysis aims at evaluating how

evolution requirements can affect the internal

consistency of the evolving system and its compliance

with other entities and identify modifications that are

estimated necessary to preserve consistency.

Different ways of working can be used to engineer

co-evolution. In any case, it is necessary to i identify

estimated modifications from initial ones, ii carry out

these evolutions and iii check the consistency of the

evolutions of co-evolving entities. Each of these three

aspects is treated in the following sub-sections.

3.1. Dimension 3: Eliciting evolution

requirements

The question raised through the elicitation issue is

that of impact analysis: how to elicit evolution

requirements taking into account that several entities

have to evolve at the same time. Figure 4 shows that

impact analysis approaches can be divided into four

families, namely independence, interdependence,

dependence, and double dependence. Each family is

defined according to the direction of the dependency

relationships between the evolving entities.

M1

M2

M’1

M’2

M1

M2

M1

M2

∆

∆

∆

∆

∆

∆

∆

Interdependence

Dependence Double dependence

M1

M2

∆

∆

Consistency

checking

Independence

Figure 4. Dependence approaches to
engineering evolution requirements of co-
evolving entities

Co-evolution is engineered independently left

upper corner of Figure 4 , when there is no dependency

between the engineering processes of each evolving

entity. This is typically the case in projects under high

time pressure: evolution requirements are directly

implemented into the system without checking

consistency with the target business organisation. This

approach is also taken for evolutions projects that

involve systems that shall disappear in the short term,

or when the evolution requirements are themselves

highly volatile and likely to be quickly abandoned.

Independent co-evolution often goes along with

projects in which evolution is implicit or when the

number of co-evolving entities is too high. This

situation is well illustrated by systems engineering

projects involving many different engineering

disciplines. Not only the evolution requirements are

often implicit different requirements documents are

even sometimes released at different moments , but

also it often occurs that it is technically difficult to

understand how an evolution required in one discipline

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

impacts the system in the perspective of the other

disciplines.

To solve this issue, consistency can be checked in

retrospect to verify that the new system is aligned with

other entities [31]. Alignment can also be evaluated

using metrics [13]. If misalignment is observed, other

evolutions are needed and a new engineering cycle can

be performed. This is typically what happens in ERP

projects where the customisation of an individual

transaction has to be implemented to check through

non-regression tests that there is no impact on other

transactions or modules.

In the dependent approach to eliciting evolution

requirements, the evolution requirements of an entity

are deduced from the evolution requirements elicited

for another co-evolving entity. This is typically the

kind of approach taken in a business process

improvement project when information system

evolution requirements are generated to comply with

evolutions required at the business level. This approach

is also frequently taken by managers of projects

portfolio who define master projects with which other

information system evolution projects should comply.

This approach is formalised by MDA methods. At the

requirements level, rules are for example proposed by

[12] to deduce evolution requirements on system

specifications expressed in Z from evolution

requirements expressed at the intentional level with I*

models. In a dependent approach, consistency is

checked as an external property where the dependent

requirements should comply with a dependee entity,

e.g. domain knowledge in [18].

There is a double-dependence when each co-

evolving entity can play the role of master in the

impact analysis of evolution requirements. For

example, [32] proposes rules to evaluate the impact of

evolution requirements specified at the business level

on system-level evolution requirements and vice-versa.

A double dependence approach can be considered as

the combination of two one-way dependence

approaches.

On the contrary, an interdependent approach can be

considered two-way. Indeed, in this kind of approach

each evolution requirement specifies how all co-

evolving entities evolve at the same time. Then, impact

analysis and propagation are performed with a single

collection of evolution requirements. This can be

achieved using invariants [24], or using heuristic rules

as suggested by [1].

Our approach uses a unique model that integrates a

business process perspective and a system functionality

perspective. It is thus interdependent. The approach

gives the same importance to the two co-evolving

entities since each evolution requirement is expressed

for both of them. Our experience in industrial projects

showed us that the risk lies in the propagation of the

evolution requirements on the actual specifications of

the co-evolving entities. Indeed, even when

systematically guided by mapping rules, the double

propagation can generate inconsistencies as soon as

design decisions are required. We propose to handle

this issue using goal-by-goal top-down exploration of

our models to ensure that the impact of each design

decision was immediately evaluated on both co-

evolving entities business process and information

system , and therefore that consistency was preserved

[29].

This dimension has thus four values: Independence,

Dependence, Double dependence and Interdependence.

3.2. Dimension 4: Propagating changes

The process of carrying out the initial and the

estimated modifications is called change propagation

[1]. Once evolution requirements have been elicited,

specifications of the new system have to be produced.

In other terms, this issue focuses on the way to design

the To-Be models. We found that this part of the co-

evolution process is seldom described in literature or

documented in projects. Two families of approaches

can however be defined: symmetric and asymmetric

approaches.

The most current approach is illustrated in Figure 5

on the left hand side. It consists in combining the

evolution requirements with the As-Is model of each

evolving entity, so as to obtain the corresponding To-

Be models [12]. This approach is called symmetric

propagation because specific evolution requirements

are symmetrically combined to each of the co-evolving

entities [33].

In the asymmetric propagation approach, evolution

requirements which were designed to generate the To-

Be model of an entity is also used to generate the to-Be

model of the other co-evolving entity [33].

M’1

M’2

∆ M1

M2

M’1

M’2

∆

∆

Figure 5. Symmetric and asymmetric evolution
requirements propagation

Our approach consists in propagating evolution

requirements expressed in reference to a goal model

onto business process models and functional models of

the system. At first sight, it is therefore twice

asymmetric. Our propagation from evolution

requirements to the target models is however not

direct. We decided to first build a consistent intentional

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

model that integrates the view of each co-evolving

entity the business and the system . Then, the

intentional To-Be model is used to guide evolution

requirements propagation on the business process

models and on the functional models of the system.

The initial symmetric propagation of evolution

requirements onto the To-Be goal/strategy maps is thus

useful to lower the drawbacks reported in section 3.1.

Two values symmetric and asymmetric have been

identified for the change propagation dimension of the

framework.

3.3. Dimension 5: Verifying relationship

between the To-Be entities

“With no suitable policy, inconsistencies provoked

by changes in one of the two concerned sets usually

lead to irremediable erosion and the very common

situations where, for example, architectural artefacts

are no longer updated” [34]. Co-evolution aims to

bring the To-Be models in a state where the

consistency relationship holds between the different

entities. Practice shows that drifts occur through time.

Different approaches can be taken to check the

consistency relationship and manage the drift.

The most current way to check consistency in

practice is through integration tests. This approach has

been widely documented and is well spread in practice.

In some situations, such as the one illustrated in the

upper left corner of Figure 4, it is very difficult to

avoid it. However, its drawback is also very well

known: the later an issue is identified, the more costly

and risky it is. Other approaches are thus necessary to

check consistency earlier; in particular at the

requirements level.

Consistency can be checked through dependence

links, each time an evolution requirement is elicited. In

that case, each time a couple of evolution requirements

is elicited, the two entities are consistent. In theory, it

is the links between requirements that assures that the

resulting models of the co-evolving entities are

consistent. However, this approach does not provide a

global view on the evolution requirements. Evolution

requirements can be complex, and be in conflict with

one another without being identified by the

dependency links.

On the opposite a global view can be established on

consistency using metrics. In this approach, the

consistency relationship is established by consistency

metrics that measure the “distance” between models of

the co-evolving entities. A drift is identified when the

metrics show that the evolution requirements that were

elicited lead to a loss of consistency. In this case, either

new evolution requirements should be elicited, or the

newly elicited requirements should be revised.

Adaptations are then made until full consistency is re-

established [33]. A list of ten metrics is available in

[35]. For example, the support ratio, similar to the

criterion defined by Bodhuin [13] is the extent to

which business activities are supported by the system.

This metric is calculated as follows:
Number of activities represented by system events

Support ratio Sr = ---

Number of activities
The higher this ratio is, the more automated the

activities are. Conversely, a low support ratio expresses

that a large number of business activities are manually

carried out and implies that new evolution

requirements have to be elicited to better align the

business and the system. However, a high value for the

support ratio does not signify that business and system

are completely aligned. For this reason we define other

metrics.

Obviously, to avoid a misfit between the business

and the system there should be a strong

correspondence between the business information and

the system information. This can be measured by the

fact that there exist things in the system that map

business things. The informational completeness

criterion measures the proportion of this mapping and

can be written as follows a business object being for

example, a client, an account, or a demand :
Number of business object mapping system object

Informational completeness Ic = ---

Number of business object
These two metrics as the eight other rely on generic

metrics, which have been defined using i two generic

models to represent the business and system and ii

links that have been identified between concepts of

these two models. The generic metrics are adapted to

specific business and specific system models.

4. Application example

This section illustrates our co-evolution approach

using an application example inspired from an

industrial collaboration, in which stakeholders wanted

to make evolve both their business processes and the

functionalities of their information system. The first

sub section, gives an overview of the project. Then, the

As-Is business processes and system functionalities are

presented using the goal/strategy Map formalism. Then

the application of our co-evolution requirements

elicitation approach is illustrated.

4.1. Overview of the project

DIAC is a subsidiary of the financial branch of the

French car constructor Renault. Besides providing

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

other financial services, DIAC’s information system

deals with granting credit to French Renault customers.

After several mergers and take-overs, a number of

similar systems are running at other subsidiaries

located in different countries. It was required to

standardise these across Europe by adapting the

Spanish software system in France, Spain, Portugal,

and ermany.

The adapted software system, called FUSE, must

comply with the functionalities available in the French

software system and meet all the financial regulations

in the different countries. There are new business needs

too: a adopting a client driven strategy and no more a

product-oriented one, b including additional financial

services, such as personal loans in addition to car loans

and c planning for the same software system to be

used across Europe.

The first concern of the project was to evaluate how

to make co-evolve the Spanish system so that it

complies with French business processes and the

Spanish business processes so that it complies to new

ways of working . As the current situation was poorly

documented in so far as French business processes

were concerned and in a foreign language in so far as

the Spanish system is concerned, we proposed to start

by developing a high-level view of the current situation

with intentional models, rather than a time-taking and

costly translation of detailed specifications and detailed

audit of all French business processes. The language

selected to specify the As-Is situation was that of

goal/strategy Map. A complete documentation was

produced in about a month. The document is 120 pages

long and describes 34 models.

4.2. Presentation of the As-Is situation

The overall objective of the company is to sell

financing products credits and leases associated to

vehicles manufactured by the Renault group. DIAC's

main business goal is traditionally split into on pre-

sales and post-sales. Pre-sales involves building

product catalogues, marketing, and making contracts

with customers. Post-sales includes treasury,

coordination with partners, customer management, and

information flow management. For the sake of space,

this paper only deals with post-sales, and more

precisely with repayment of loans.

Each contract defines a schedule of repayment,

which determines the amount of each monthly

recovery. The repayments received by DIAC must be

allocated to contracts and the schedules are monitored

to check late or incomplete payments. The repayment

item can correspond to 1 the contractual schedules

represented in Figure 6 by the section <Manage

schedule repayment item, Manage schedule repayment

item, by payment> or 2 the schedule resulting from

renegotiation after unpaid debts materialised in Figure

6 by the strategy by no payment .

It is also necessary to terminate the contract. A

contract can be closed normally, i.e. after total loan

repayment. A contract can also be terminated by

anticipation; in that case, for example, the client asks

for paying several repayment items at the same time.

The by contract revocation strategy corresponds to a

contract cancellation at the client initiative in the legal

revocation period. In every case, ending a contract

engenders different activities: to record administrative

operations; to manage the residual debt either by

friendly agreement or by bone of contention. The

strategy by archiving that ends the process corresponds

to a legal obligation to materially keep contracts during

several years.

This map also indicates how the system works. For

example, the strategies by invoicing and by manual

archiving respectively imply that i an invoicing

module and ii a contracts editing and printing module

exist in the system. When no payment is received for

an item, the system triggers a procedure to identify the

unpaid debts and define a new repayment schedule, or

abandon the debts, or even begin a contentious

procedure. Similarly, the by anticipation strategy

introduces some flexibility in the system in the sense

that it allows to cash in several repayment items at a

time.

Start

Manage
Schedule

Repayment Item

Stop

Terminate
Contract

By invoicing

By manual
archiving

By
anticipation

By no payment

Normally

By
termination

By payment

By archiving

By bone of
contention By friendly

agreement

By administrative
operations

Figure 6: Manage the customer relationship by
loan recovery

The map presented in Figure 6 corresponds to the

Spanish system and business processes before

standardisation across the French subsidiary.

It was chosen to express evolution requirements

under the form of gaps between the current and the

future goals and strategies. A set of evolution gap

operators was specifically developed to match with the

Map formalism. The proposed evolution requirements

language included gap operators such as merge

sections, split goals, change the target of a strategy,

rename a strategy, add a strategy, and the like. All the

operators defined in the resulting evolution language

cannot be reported here for the sake of place, but a

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

more complete description can be found in [29]. Most

of the operators that we proposed were used in the

projects to express evolution requirements.

4.3. Engineering co-evolution

It was chosen to represent the relationship between

the two co-evolving entities with a unique model, the

Map formalism. Evolution requirements were thus

elicited by analysing interdependencies between the

two entities business processes and information

system functionalities .

Table 1 gathers some of the evolution requirements

that were initially identified based on the map Manage

the customer relationship by loan recovery. The table

shows for example, that business processes and system

functionality implementing the section <Start,

Establish customer relationship, by welcome> had to

be added so as to improve customer relationship. The

purpose of this section is to welcome and to

communicate on essential information of the contract.

This evolution requirement results both i in business

process modifications since mail and/or phone have to

be given to each client and ii in system evolutions

since information concerning the client must be

available from a secure area on the Internet.

The Spanish system does not allow direct payment

by bank transfer on the order of the customer, because

an invoice must be sent to the client before the

company receives the payment. The gap corresponding

to change the origin of the strategies by invoicing and

by payment allows to dissociate these two activities

and eventually to manage them at the same time in the

future. The business processes are thus modified i to

allocate payment directly to the client account and ii

to henceforth accept direct debit payment. In the

system, the implementation of the business rules have

to change; invoice i is no more considered as a

precondition to the payment and ii it should be

possible to conserve the customer banking information,

thus modifying the structure of the customer class if

the system is modelled with a UML class diagram.

Contracts have to be physically archived by an

external provider. In the system to be, it should be

possible to numerically archive the contracts via an

electronic management of the documents. This

requirement is materialised by replacing the strategy

By manual archiving by By contract archiving. It well

corresponds to a replacement insofar as the activity

corresponding to this section has changed. It is thus not

only a naming problem. This gap introduces

modifications in the system as adding the module to

electronically manage documents. This implies the

construction of a new database or an adjunction of a

new part to the existing one.

One of the new business needs is to include additional

financial services. This, on the one hand, changes the

conceptual structure of a contract. On the other hand,

this implies to contact the services providers to transfer

money and inform them in case of anticipated end of

contract respectively corresponding to the gaps

‘adding By transferring money to service providers’

and ‘adding By information to service providers' . This

implies to add new actors in the business model.

Finally, it is necessary to distinct the end of the

repayment and the end of the contract. The intention

Terminate the contract is thus split into Terminate the

contract management and Terminate the repayment

schedule. Thus, the complete loan repayment does not

imply that the additional services end. In that case, it is

important to differentiate the repayment and the

contract terminations. Such evolution requirements

imply modifications in the system. Indeed, the

customer relationship and the contract have eventually

to be maintained after the complete loan repayment

until the end of the additional services. Client must be

able to terminate, by anticipation, his/her repayment of

schedule and/or his/her contract. This has for

consequences adding the strategy by withdrawal to end

a contract and changing the origin of the strategy by

anticipation.
Operator Element

By withdrawal

By transferring money to service providers

By information to service providers

AddSection <Start, Establish the client relationship, by

welcome>

ReplaceStrategy By manual archiving by By contract archiving

SplitIntention Terminate the contract into Terminate the contract

management and Terminate the repayment

schedule

By invoicing source intention to Establish the client

relationship

By payment source intention to Establish the client

relationship

By anticipation target intention Terminate the

repayment schedule

ChangeOrigin

AddStrategy

Table 1. Gaps between the As-Is and To-Be
maps.

For sake of place, only few evolution requirements

have been presented in Table 1 corresponding to the

gaps identified above. For each evolution requirement,

we tried to show how an interdependence approach

helps us to elicit new requirements either on the

business or on the system. During the project, only for

this map, 21 gaps have been identified all having an

impact on the system and the business. lobally,

around 350 evolution requirements have been elicited.

Sometimes these gaps have been identified since the

construction of the As-Is models by the French or

Spanish business specialists. Indeed, we worked by

group of three persons, a French and a Spanish

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

business specialist and one of us to construct the

models.

Once the To-Be maps have been constructed, it was

necessary to design both the future system and the

future business processes using respectively, on the

one hand a class and an event UML diagrams and, on

the other hand, a use case and an activity UML

diagrams. Finally, use of metrics helped us

determining if the business and the system were

aligned. For example, the support ratio and the

information completeness metric respectively

indicating the rate of the supported activity and the rate

of the business objects supported by the system were

equal 1 and 0.97 1 being the maximum . This meant

that each activity existing in the system could be

performed with the system and that almost each

business object corresponded to a system object. The

two To-Be entities were not completely aligned but the

result was satisfying insofar as before the project, the

metrics only reached 0.6 in average. It was possible to

improve the consistency relationship between the

business system by introducing new object in the

system or removing from the business some others that

did not map with a system object.

5. Conclusion

In this paper, a framework presenting five

dimensions of co-evolution management has been

proposed. Each dimension represents an issue.

Different ways to handle each issue have been drawn

from the literature thus establishing values in the

framework.

Our framework also situates our approach

comparatively to other one as shown in Table 2. The

black squares specify that this point is clearly

explained by the authors whereas the grey squares

result from deduction reading descriptions of a given

approach.

Dimension Values

C
larke

K
rishna

B
odh

uin
Z
ow

ghi
M

ens
K

ard
asis

O
ur

a
ppro

ach

Understanding

Co-evolution

Traceability

Links or rules

Metrics

Common language

From scratch

Requirements evolution

Evolution requirements

Independence

Dependence

Dependence double

Interdependence

Symmetric

Asymmetric

Requirements driven

Model driven

Using Metrics

Propagating

Changes

Verifying

relationship

Understanding

Co-evolution

Expressing

evolution

requirements

Eliciting

evolution

requirements

Table 2. Positioning different approaches with
the framework

Table 2 highlights that 1 there is not a single way

to deal with co-evolution; advantages and

disadvantages were discussed in the framework

description. We believe that a situational method

integration could help define and integrate approach

able to deal with different co-evolution situations. 2

some aspects of co-evolution are not very well treated.

The reason can be threefold: our review of the state of

the art is not complete, the issue is not as important as

we thought, the issue is important and not well treated,

therefore it should be treated in future research. Our

experience in several projects with the industry showed

us that this tend to be the case.

Our approach has the advantage i to use the map

formalism as a common language to represent both the

system functionalities and the business processes; and

ii to be based on explicit evolution requirements. The

first point allows to gain time when the As-Is models

are not up to date and to use a language understandable

by everyone, the stakeholders as well the technicians or

the users. The second point allows to focus only on

what changes. Our approach seems the only one to

propagate changes symmetrically or to elicit evolution

requirements through interdependence. However, this

results from the choice to represent the relationship

between two entities with a common language. This

approach has been evaluated on several projects and

continually evolves to answer new issues met in

industrial context.

Our agenda relies on two key axes: i a definition

of eventually generic rules or guidelines to pass from

the Map formalism to the two meta-models ii an

extension of our approach to allow co-evolution

between different entities and not only between system

functionalities and business processes.

6. References

[1] J. Han, “Supporting Impact Analysis and Change

Propagation in Software Engineering Environments”,

Proceedings of Workshop on Software Technology and

Engineering Practice STEP'97 / CASE'97 , IEEE Computer

Society Press, London, UK, July 1997, pages 172-182.

[2] A. Arsanjani, J. Alpigini, “Using rammar-oriented

Object Design to Seamlessly Map Business Models to

Component-based Software Architectures”, Proceedings of

the International Symposium of Modelling and Simulation,

Pittsburgh, PA, USA, 2001, pp 186-191.

[3] Henderson, J. C. and N. Venkatraman 1993 . “Strategic

Alignment: Leveraging Information Technology for

Transforming Organizations”. IBM Systems Journal, 32 1 :

4-16.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

[4] C. Salinesi and C. Rolland, “Fitting Business Models to

Systems Functionality Exploring the Fitness Relationship”.

Proceedings of CAiSE’03, Velden, Austria, 2003.

[5] M.M Lehman, J.F Ramil and Kahen, “Evolution as a

Noun and Evolution as a Verb”, Proceedings of Workshop on

Software and Organisation Co-evolution, London, 2000

[6] E. Mitleton-Kelly and M-C Papaefthimiou “Co-evolution

& an enabling infrastructure: a solution to legacy?”, Systems

engineering for business process change’, Peter Henderson,

Springer-Verlag, 2000, ch. 14

[7] A. van Lamsweerde. “ oal-Oriented Requirements

Engineering: A uided Tour”. IEEE International

Symposium on Requirements Engineering, Toronto, August,

2001, pp. 249-263

[8] E. Yu. “Agent Orientation as a Modelling Paradigm”.

Wirtschaftsinformatik. 43 2 April 2001. pp. 123-132.

[9] S. Clarke, W. Harrison, H. Ossher and P. Tarr. “Subject-

Oriented Design: Towards Improved Alignment of

Requirements, Design and Code”, Proceedings of Object-

Oriented Programming, Systems, Languages and

Applications OOPSLA , 1999.

[10] K. Pohl, S. Jacobs, “Concurrent Engineering: Enabling

Traceability and Mutual Understanding”, Journal of

Concurrent Engineering Research and Application, Special

Issue on Concurrent Engineering and Artificial Intelligence,

Vol.2, No.4, 1994, pp. 279-290

[11] R. de Landtsheer, E. Letier, A. van Lamsweerde,

“Deriving Tabular Event-Based Specifications from oal-

Oriented Requirements Models”, Proceedings of RE’03,

IEEE International Conference on Requirements

Engineering, Montgomery Bay, USA, September 2003.

[12] A. Krishna, A.K. hose, S. Vilkomir, “Co-Evolution of

Complementary Formal and Informal Requirements”,

Proceedings of International Workshop on Principles of

Software Evolution IWPSE'04 , September, 2004, Kyoto,

Japan, pp. 159-164

[13] T. Bodhuin, R. Esposito, C. Pacelli and M. Tortorella,

“Impact Analysis for Supporting the Co-Evolution of

Business Processes and Supporting Software Systems”,

Proceedings of BPMDS’04, Riga, Latvia, 2004.

[14] P. Soffer, “Fit Measurement: How to Distinguish

Between Fit and Misfit”, note for BPMDS'04, Riga, Latvia,

2004

[15] http://www.sysml.org

[16] C. Rolland and N. Prakash. “Matching ERP System

Functionality to Customer Requirements”, International

Symposium on Requirements Engineering (RE), Toronto,

Canada, August 2001

[17] D. Zowghi, A.K. hose and P. Peppas, “A Framework

for Reasoning about Requirements Evolution”, Proceedings

of PRICAI96, Australia, 1996.

[18] D. Zowghi and V. ervasi “On the Interplay Between

Consistency, Completeness, and Correctness in

Requirements Evolution,” Information and Software

Technology, 45, 14 November 2003 , pp. 993-1009

[19] L. Prechelt, . Mahpohl, and M. Phlippsen. Jplag:

Finding Plagiarisms among a set of Programs. Technical

Report 2000-1, Universitat Karlsruhe, March 2000.

[20] A. Sarireta and J. Vaucher. “Similarity Measure in the

Object Model”. Proceedings of. ECOOP.97, Jyvaskyala,

Finland, 1997.

[21] M.C. Blok and J.L. Cybulski. “Reusing UML

Specifications in a Constrained Application Domain”.

Proceedings 5th Asia Pacific Software Engineering

Conference pp. 196-202. Dec. 2-4, 1998.

[22] C. Delgado, J. Samos and M. Torres. “Primitive

Operations for Schema Evolution in ODM Databases”

Proceedings of Object Oriented Information Systems,

Springer-Verlag Lecture Notes in Computer Science, Vol.

2817, eneva, Switzerland, 2003, pp. 226-237.

[23] S. E. Lauteman. „Schema Versions in Object-Oriented

Database Systems”, Proceedings of the Fifth International

Conference on Database Systems for Advanced Applications,

Melbourne, Australia, April, 1997

[24] J. Banerjee, W. Kim, H.J. Kim and H.F. Korth,

“Semantics and Implementation of Schema Evolution in

OODB”, Proceedings of ACM SIGMOD Conference on

Management of Data, ACM, 1987, pp. 311-322.

[25] L. Al-Jadir, “Once Upon a Time a DTD Evolved into

Another DTD”, Proceedings of Object Oriented Information

Systems, Springer-Verlag Lecture Notes in Computer

Science, Vol. 2817, eneva, Switzerland, 2003, pp.3-17.

[26] M. Kradolfer. “A Workflow Metamodel Supporting

Dynamic, Reuse-based Model Evolution”. PhD thesis,

Department of Information Technology, University of

Zurich, Switzerland, 2000

[27] F. Casati, S. Ceri, B. Pernici and . Pozzi, “Workflow

Evolution”, Proceedings of the Conference On Conceptual

Modeling ER'96 , Cottbus, ermany, 1996, pp. 438-455.

[28] M. Reichert, S. Rinderle and P. Dadam, A Formal

Framework For Workflow Type And Instance Changes

Under Correctness Constraints, UIB-2003-01, April 2003

[29] C. Rolland, C. Salinesi, and A. Etien, “Eliciting aps in

Requirements Change”, Requirement Engineering Journal,

Vol. 9, 2004, pp1-15

[30] A. Etien and C. Salinesi, “Towards a Systematic

Definition of Requirements for Software Evolution: A Case-

study Driven Investigation”. Proceedings of EMMSAD’03,

Austria, 2003.

[31] T. Mens, A. Eden “On the evolution complexity of

design patterns” Proceedings of Software Evolution through

Transformations SETra, Rome, Italy, October, 2004

[32] Kardasis, P. and Loucopoulos, P. “Aligning Legacy

Information Systems to Business Processes”, Proceedings of

CAiSE*98, Pisa, Italy, 1998, pp. 25 - 40

[33] R. Lämmel “Coupled Software Transformations”,

Proceedings of International Workshop on Software

Evolution Transformation SET2004, 2004, pp31-35

[34] J.M. Favre, “Meta-Model and Model Co-evolution

within the 3D Software Space” workshop on Evolution of

Large-scale Industrial Software Applications ELISA03,

Amsterdam, Netherlands, September 2003

[35] Etien A. and Rolland C. “Measuring the Fitness

relationship”, submitted to the special issue Coordinated

Development of Business Processes and their Support

Systems of the Requirements Engineering Journal, 2005

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

