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Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?
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Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.
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Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.
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Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j ] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j ] mean to extract the explicit symbols of
exp(A)[i , j ].

We denote by m the size of the smallest macro system generating w .
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Macro systems - Results

Theorem 1

It always holds that m = O(b).
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L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .
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L-systems - Example: Thue-Morse words
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1

1
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0

0 1
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0

0 1

1

1 0

L0

L1

L2

L3

L4

V = {0, 1},R = {0→ 01, 1→ 10},S = 0
d = 4, n = 13, τ = {0→ 0, 1→ 1}
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L-systems - Results

Theorem 2

There exist string families where δ = Ω(` log n), where δ is the maximum
of the substring complexity divided by length, for each length.

Proof.

The L-system Ld = (V ,R,S , τ, d , n) where V = {0, 1}, S = 0,
R(0) = 001, R(1) = 1, τ = id , and n = 2d+1 − 1, trivially has constant
size as d (and n) grows. The first strings of the family generated by this
system by growing d , are 0, 001, 0010011, 001001100100111, and so on.
For d ≥ 4, in exp(Ld) there exist d2/8 + d/4 distinct substrings of length
d , and δ(exp(Ld)) ≥ (d2/8 + d/4)/d = d/8 + 1/4.
Hence, on the family {exp(Ld) | d ≥ 0}, it holds that δ = Ω(` log n).
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L-systems - Results

Theorem 3

There exist string families where ` = Ω(δ log n).

Proof.

Kociumaka et al. showed a family of strings with δ = O(1) that needs
Ω(log n) = Ω(δ log n) space, to be represented with any method. On the
other hand, an L-system of size ` is described in O(`) space. Therefore
` = Ω(δ log n) on this family.
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L-systems - Results

Theorem 4

It always holds that ` = O(g) where g(w) is the size of the smallest
context free grammar generating only w.

Proof.

Consider the smallest grammar G = (V ,Σ,R,S) of size g and height h
generating the string w [1, n]. We can easily construct an L-system of size
O(g) simulating G by defining rules a→ a for the terminals, keeping the
rules for the variables of the grammar, letting R(S) be the axiom, and
d = h.
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L-systems - Results

Theorem 5

For any L-system L = (V ,R, S , τ, d , n) of size ` generating w [1, n], there
is a context-free grammar of size (d + 1)` generating w. If the morphism
represented by R is expanding, then the grammar is of size O(` log n).

Proof.

We create a variant of each terminal sub indicated by the level where it is
used in the parse tree. This allows us control the level where to stop but
multiplies the size by the expansion height.
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L-systems - Results

Theorem 6

Let w ∈ Σ∗, φ : Σ∗ → Σ∗ be a non-erasing automorphism, and let
τ : Σ→ Σ be a coding. Then ` = Θ(1) on the family {τ(φd(w)) | d > 0}.

Proof.

We can easily simulate the automorphism φ on the L-system
L = (Σ,R,w , τ, d , n) of fixed size, with R(a) = φ(a) and n = |τ(φd(w))|.
This system generates τ(φd(w)), and as d grows, it does not change its
size.
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L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.
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NU-systems - Definition

A NU-system is a tuple N = (V ,R,S , τ, d , n), which works on the same
way that an L-system, but with the addition of extractions rules, that is,
R : V → (V ∪ E )+ with E = {A(l)[i , j ] | A ∈ V , l , i , j ∈ N}.

Semantics for A(l)[i , j ]: expand A for l levels and then extract
τ(Al [i , j ]).

ν(w) is the size of the smallest NU-system for w .
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NU-systems - Example

Consider a NU-system with rules a→ a, b → b, A→ ab, and
S → A S(2)[1, 4], d = 2, n = 6, and τ = id . The derivation is then
generated as follows:

L0 = S −→ A S(2)[1] S(2)[2] S(2)[3] S(2)[4]
A A(1)[1] A(1)[2] (S(2)[1])(1)[1] (S(2)[2])(1)[1]
A a b (A(1)[1])(1)[1] (A(1)[2])(1)[1]

L1 = A a b a b ←− A a b a(1)[1] b(1)[1]
L2 = a b a b a b.

The number of extraction symbols is bounded by |V | ·max(l) · n, so it is
computable if the derivation of a NU-system eventually ends.
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NU-systems - Results

Theorem 7

It always holds that ν = O(min(`,m)).

Proof.

It is trivial that ν ≤ ` because L-systems are a particular case of
NU-systems.
With respect to m, we do the same that we did for simulating grammars
with L-systems. We handle the extractions rules of the form A→ B[i , j ]
by replacing them with rules A→ B(h)[i , j ], where h is the height of the
macro system.
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NU-systems - Results

Theorem 8

Let N1 and N2 be NU-systems generating w1 and w2, respectively. Then
there are NU-systems of size O(size(N1) + size(N2)) that generate w1 · w2

and the composition of N1 ◦ N2 (N2 with axiom w1).

Proof.

We can use the the NU-systems N1 and N2 to construct new NU-systems
satisfying these claims.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 22 / 26



NU-systems - Results

Theorem 8

Let N1 and N2 be NU-systems generating w1 and w2, respectively. Then
there are NU-systems of size O(size(N1) + size(N2)) that generate w1 · w2

and the composition of N1 ◦ N2 (N2 with axiom w1).

Proof.

We can use the the NU-systems N1 and N2 to construct new NU-systems
satisfying these claims.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 22 / 26



NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.
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Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system?

Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?
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Closing

Thank you very much for your
attention.
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