
On stricter reachable repetitiveness measures

Gonzalo Navarro 1,2 and Cristian Urbina 1,2

1Departament of Computer Science, University of Chile

2CeBiB — Center for Biotechnology and Bioengineering

SPIRE 2021
October 4-6th, 2021 - Lille, France

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 1 / 26

Contents

1 Motivation

2 Macro systems

3 L-systems

4 NU-systems

5 Open questions

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 2 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Text collections: Bioinformatics, Software engineering, etc.

They are becoming huge, but highly repetitive, which enables
handling them efficiently.

Studying their repetitiveness allow us determine how much can they
be compressed.

Most repetitiveness measures are based on existing compressors.

Theoretical lower bounds like δ (based on substring complexity) and γ
(size of the smallest string attractor) have been proposed.

γ: NP-hard to compute. Reachable? We don’t know yet.

δ ≤ γ: Nice properties, leads to tight lower bounds, apparently the
best measure so far.

But... is it?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 3 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.

Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.

Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Motivation

Thue-Morse words:

Defined inductively as T0 = 0 and Tn+1 = TnTn.
Or as T0 = 0, Tn = hn(0) with h : 0→ 01, 1→ 10.

Recent results:

Kutsukake et al. (2020) showed that γ = Θ(1) on Thue-Morse words.
Bannai et al. (2021) showed that b = Θ(log n) on Thue-Morse words.

b is the best reachable measure that can be achieved with copy-paste
mechanism.

So b is a good characterization of repetitive strings.

Is it the only feature to exploit?

We exploit structural repetitiveness, also known as self-similarity.

This form of repetitiveness is not captured by the current measures.

For Thue-Morse words, for example, we obtain a reachable
representation of constant size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 4 / 26

Contents

1 Motivation

2 Macro systems

3 L-systems

4 NU-systems

5 Open questions

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 5 / 26

Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 6 / 26

Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 6 / 26

Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 6 / 26

Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 6 / 26

Bidirectional macro schemes

a b a a b a b a a b a | a | b | a b a a b a b a

A BMS for w is a mapping from phrases to sources avoiding cycles.

In the example, B = (abaababaaba, 9), (a,⊥), (b,⊥), (abaababa, 9) is
a minimal BMS of size 4.

We store a pair of O(log n) bits per phrase, containing length and
source, to recover w . In the example, (11, 9), (1, a), (1, b), (8, 9).

The size b(w) of the smallest of them is NP-hard to compute.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 6 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Definition

A macro system is a context free grammar where the rules are extended
with extraction symbols:

R : V → (V ∪ Σ ∪ {A[i , j] | A ∈ V , i , j ∈ N})∗,

The size of a macro system is the sum of the right hand side of its
rules.

For a macro system to be valid, the expansion of its initial symbol
must be deterministic and also must not loop. exp(S) = w is the
string generated by the macro system.

The extraction symbols A[i , j] mean to extract the explicit symbols of
exp(A)[i , j].

We denote by m the size of the smallest macro system generating w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 7 / 26

Macro systems - Results

Theorem 1

It always holds that m = O(b).

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 8 / 26

Contents

1 Motivation

2 Macro systems

3 L-systems

4 NU-systems

5 Open questions

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 9 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Definition

An L-system is a tuple L = (V ,R,S , τ, d , n), where:

V is a finite set of symbols called variables.

R : V → V+ is the set of rules.

S ∈ V ∗ is a string of variables called the axiom.

τ : V → V is a coding.

d ∈ N is the level where to stop.

n ∈ N is the length of the string to generate.

The size of an L-system is |S |+
∑

A∈V |R(A)|. We call ` the size of the
smallest L-system generating a string w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 10 / 26

L-systems - Example: Thue-Morse words

0

0

0

0

0 1

1

1 0

1

1

1 0

0

0 1

1

1

1

1 0

0

0 1

0

0

0 1

1

1 0

L0

L1

L2

L3

L4

V = {0, 1},R = {0→ 01, 1→ 10},S = 0
d = 4, n = 13, τ = {0→ 0, 1→ 1}

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 11 / 26

L-systems - Example: Thue-Morse words

0

0

0

0

0 1

1

1 0

1

1

1 0

0

0 1

1

1

1

1 0

0

0 1

0

0

0 1

1

1 0

L0

L1

L2

L3

L4

V = {0, 1},R = {0→ 01, 1→ 10},S = 0
d = 4, n = 13, τ = {0→ 0, 1→ 1}

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 11 / 26

L-systems - Example: Thue-Morse words

0

0

0

0

0 1

1

1 0

1

1

1 0

0

0 1

1

1

1

1 0

0

0 1

0

0

0 1

1

1 0

L0

L1

L2

L3

L4

V = {0, 1},R = {0→ 01, 1→ 10}, S = 0
d = 4, n = 13, τ = {0→ 0, 1→ 1}

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 11 / 26

L-systems - Results

Theorem 2

There exist string families where δ = Ω(` log n), where δ is the maximum
of the substring complexity divided by length, for each length.

Proof.

The L-system Ld = (V ,R,S , τ, d , n) where V = {0, 1}, S = 0,
R(0) = 001, R(1) = 1, τ = id , and n = 2d+1 − 1, trivially has constant
size as d (and n) grows. The first strings of the family generated by this
system by growing d , are 0, 001, 0010011, 001001100100111, and so on.
For d ≥ 4, in exp(Ld) there exist d2/8 + d/4 distinct substrings of length
d , and δ(exp(Ld)) ≥ (d2/8 + d/4)/d = d/8 + 1/4.
Hence, on the family {exp(Ld) | d ≥ 0}, it holds that δ = Ω(` log n).

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 12 / 26

L-systems - Results

Theorem 2

There exist string families where δ = Ω(` log n), where δ is the maximum
of the substring complexity divided by length, for each length.

Proof.

The L-system Ld = (V ,R, S , τ, d , n) where V = {0, 1}, S = 0,
R(0) = 001, R(1) = 1, τ = id , and n = 2d+1 − 1, trivially has constant
size as d (and n) grows. The first strings of the family generated by this
system by growing d , are 0, 001, 0010011, 001001100100111, and so on.
For d ≥ 4, in exp(Ld) there exist d2/8 + d/4 distinct substrings of length
d , and δ(exp(Ld)) ≥ (d2/8 + d/4)/d = d/8 + 1/4.
Hence, on the family {exp(Ld) | d ≥ 0}, it holds that δ = Ω(` log n).

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 12 / 26

L-systems - Results

Theorem 3

There exist string families where ` = Ω(δ log n).

Proof.

Kociumaka et al. showed a family of strings with δ = O(1) that needs
Ω(log n) = Ω(δ log n) space, to be represented with any method. On the
other hand, an L-system of size ` is described in O(`) space. Therefore
` = Ω(δ log n) on this family.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 13 / 26

L-systems - Results

Theorem 3

There exist string families where ` = Ω(δ log n).

Proof.

Kociumaka et al. showed a family of strings with δ = O(1) that needs
Ω(log n) = Ω(δ log n) space, to be represented with any method. On the
other hand, an L-system of size ` is described in O(`) space. Therefore
` = Ω(δ log n) on this family.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 13 / 26

L-systems - Results

Theorem 4

It always holds that ` = O(g) where g(w) is the size of the smallest
context free grammar generating only w.

Proof.

Consider the smallest grammar G = (V ,Σ,R,S) of size g and height h
generating the string w [1, n]. We can easily construct an L-system of size
O(g) simulating G by defining rules a→ a for the terminals, keeping the
rules for the variables of the grammar, letting R(S) be the axiom, and
d = h.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 14 / 26

L-systems - Results

Theorem 4

It always holds that ` = O(g) where g(w) is the size of the smallest
context free grammar generating only w.

Proof.

Consider the smallest grammar G = (V ,Σ,R,S) of size g and height h
generating the string w [1, n]. We can easily construct an L-system of size
O(g) simulating G by defining rules a→ a for the terminals, keeping the
rules for the variables of the grammar, letting R(S) be the axiom, and
d = h.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 14 / 26

L-systems - Results

Theorem 5

For any L-system L = (V ,R, S , τ, d , n) of size ` generating w [1, n], there
is a context-free grammar of size (d + 1)` generating w. If the morphism
represented by R is expanding, then the grammar is of size O(` log n).

Proof.

We create a variant of each terminal sub indicated by the level where it is
used in the parse tree. This allows us control the level where to stop but
multiplies the size by the expansion height.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 15 / 26

L-systems - Results

Theorem 5

For any L-system L = (V ,R, S , τ, d , n) of size ` generating w [1, n], there
is a context-free grammar of size (d + 1)` generating w. If the morphism
represented by R is expanding, then the grammar is of size O(` log n).

Proof.

We create a variant of each terminal sub indicated by the level where it is
used in the parse tree. This allows us control the level where to stop but
multiplies the size by the expansion height.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 15 / 26

L-systems - Results

Theorem 6

Let w ∈ Σ∗, φ : Σ∗ → Σ∗ be a non-erasing automorphism, and let
τ : Σ→ Σ be a coding. Then ` = Θ(1) on the family {τ(φd(w)) | d > 0}.

Proof.

We can easily simulate the automorphism φ on the L-system
L = (Σ,R,w , τ, d , n) of fixed size, with R(a) = φ(a) and n = |τ(φd(w))|.
This system generates τ(φd(w)), and as d grows, it does not change its
size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 16 / 26

L-systems - Results

Theorem 6

Let w ∈ Σ∗, φ : Σ∗ → Σ∗ be a non-erasing automorphism, and let
τ : Σ→ Σ be a coding. Then ` = Θ(1) on the family {τ(φd(w)) | d > 0}.

Proof.

We can easily simulate the automorphism φ on the L-system
L = (Σ,R,w , τ, d , n) of fixed size, with R(a) = φ(a) and n = |τ(φd(w))|.
This system generates τ(φd(w)), and as d grows, it does not change its
size.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 16 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

L-systems - Summary

The measure ` is:

computable.

reachable.

sometimes o(δ).

decompressible in polynomial time.

On the other hand, it is probably NP-hard to compute `.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 17 / 26

Contents

1 Motivation

2 Macro systems

3 L-systems

4 NU-systems

5 Open questions

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 18 / 26

NU-systems - Definition

A NU-system is a tuple N = (V ,R,S , τ, d , n), which works on the same
way that an L-system, but with the addition of extractions rules, that is,
R : V → (V ∪ E)+ with E = {A(l)[i , j] | A ∈ V , l , i , j ∈ N}.

Semantics for A(l)[i , j]: expand A for l levels and then extract
τ(Al [i , j]).

ν(w) is the size of the smallest NU-system for w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 19 / 26

NU-systems - Definition

A NU-system is a tuple N = (V ,R,S , τ, d , n), which works on the same
way that an L-system, but with the addition of extractions rules, that is,
R : V → (V ∪ E)+ with E = {A(l)[i , j] | A ∈ V , l , i , j ∈ N}.

Semantics for A(l)[i , j]: expand A for l levels and then extract
τ(Al [i , j]).

ν(w) is the size of the smallest NU-system for w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 19 / 26

NU-systems - Definition

A NU-system is a tuple N = (V ,R,S , τ, d , n), which works on the same
way that an L-system, but with the addition of extractions rules, that is,
R : V → (V ∪ E)+ with E = {A(l)[i , j] | A ∈ V , l , i , j ∈ N}.

Semantics for A(l)[i , j]: expand A for l levels and then extract
τ(Al [i , j]).

ν(w) is the size of the smallest NU-system for w .

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 19 / 26

NU-systems - Example

Consider a NU-system with rules a→ a, b → b, A→ ab, and
S → A S(2)[1, 4], d = 2, n = 6, and τ = id . The derivation is then
generated as follows:

L0 = S −→ A S(2)[1] S(2)[2] S(2)[3] S(2)[4]
A A(1)[1] A(1)[2] (S(2)[1])(1)[1] (S(2)[2])(1)[1]
A a b (A(1)[1])(1)[1] (A(1)[2])(1)[1]

L1 = A a b a b ←− A a b a(1)[1] b(1)[1]
L2 = a b a b a b.

The number of extraction symbols is bounded by |V | ·max(l) · n, so it is
computable if the derivation of a NU-system eventually ends.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 20 / 26

NU-systems - Example

Consider a NU-system with rules a→ a, b → b, A→ ab, and
S → A S(2)[1, 4], d = 2, n = 6, and τ = id . The derivation is then
generated as follows:

L0 = S −→ A S(2)[1] S(2)[2] S(2)[3] S(2)[4]
A A(1)[1] A(1)[2] (S(2)[1])(1)[1] (S(2)[2])(1)[1]
A a b (A(1)[1])(1)[1] (A(1)[2])(1)[1]

L1 = A a b a b ←− A a b a(1)[1] b(1)[1]
L2 = a b a b a b.

The number of extraction symbols is bounded by |V | ·max(l) · n, so it is
computable if the derivation of a NU-system eventually ends.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 20 / 26

NU-systems - Example

Consider a NU-system with rules a→ a, b → b, A→ ab, and
S → A S(2)[1, 4], d = 2, n = 6, and τ = id . The derivation is then
generated as follows:

L0 = S −→ A S(2)[1] S(2)[2] S(2)[3] S(2)[4]
A A(1)[1] A(1)[2] (S(2)[1])(1)[1] (S(2)[2])(1)[1]
A a b (A(1)[1])(1)[1] (A(1)[2])(1)[1]

L1 = A a b a b ←− A a b a(1)[1] b(1)[1]
L2 = a b a b a b.

The number of extraction symbols is bounded by |V | ·max(l) · n, so it is
computable if the derivation of a NU-system eventually ends.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 20 / 26

NU-systems - Results

Theorem 7

It always holds that ν = O(min(`,m)).

Proof.

It is trivial that ν ≤ ` because L-systems are a particular case of
NU-systems.
With respect to m, we do the same that we did for simulating grammars
with L-systems. We handle the extractions rules of the form A→ B[i , j]
by replacing them with rules A→ B(h)[i , j], where h is the height of the
macro system.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 21 / 26

NU-systems - Results

Theorem 7

It always holds that ν = O(min(`,m)).

Proof.

It is trivial that ν ≤ ` because L-systems are a particular case of
NU-systems.
With respect to m, we do the same that we did for simulating grammars
with L-systems. We handle the extractions rules of the form A→ B[i , j]
by replacing them with rules A→ B(h)[i , j], where h is the height of the
macro system.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 21 / 26

NU-systems - Results

Theorem 8

Let N1 and N2 be NU-systems generating w1 and w2, respectively. Then
there are NU-systems of size O(size(N1) + size(N2)) that generate w1 · w2

and the composition of N1 ◦ N2 (N2 with axiom w1).

Proof.

We can use the the NU-systems N1 and N2 to construct new NU-systems
satisfying these claims.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 22 / 26

NU-systems - Results

Theorem 8

Let N1 and N2 be NU-systems generating w1 and w2, respectively. Then
there are NU-systems of size O(size(N1) + size(N2)) that generate w1 · w2

and the composition of N1 ◦ N2 (N2 with axiom w1).

Proof.

We can use the the NU-systems N1 and N2 to construct new NU-systems
satisfying these claims.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 22 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

NU-systems - Summary

The measure ν is:

computable.

reachable.

always in O(b).

sometimes o(δ).

On the other hand ν is probably NP-hard and does not have a guaranteed
polynomial decompression time.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 23 / 26

Contents

1 Motivation

2 Macro systems

3 L-systems

4 NU-systems

5 Open questions

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 24 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system?

Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system? Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system? Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor?

Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system? Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system? Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Open questions

Is the size ` of the smallest L-system upper bounded by the size c of
the smallest collage system? Or at least by the size grl of the smallest
RLSLP?

Is the size ν of the smallest NU-system upper bounded by the size γ
of the smallest string attractor? Or at least is ν = o(γ log n)?

Is the size g of the smallest SLP upper bounded by ` log n?

Can we find a good theoretical lower bound for self-similarity
schemes?

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 25 / 26

Closing

Thank you very much for your
attention.

G. Navarro and C. Urbina On stricter reachable repetitiveness measures SPIRE 2021 26 / 26

	Motivation
	Macro systems
	L-systems
	NU-systems
	Open questions

