ON EXPLOITING PSEUDO-LOCALITY OF INTERCHANGEDISTANCE

Avivit Levy

Shenkar College of Engineering and Design

Motivation: Studying String Metrics

String metrics in computational tasks:
\square Similarity search and analysis
\square Text editing
\square Pattern matching
\square Comparative genomics

Definitions: What are String Metrics?

-Set of operators:

$$
O P=\{o p 1, o p 2, \ldots\}
$$

- Distance:

Remark: In this paper we assume UCM (Unit-Cost Model)

Definitions: What are String Metrics?

-Set of operators:

$$
O P=\{0 p 1, o p 2, \ldots\}
$$

- Distance:

Definitions: Pseudo-Locality

A string metric under UCM is pseudo-local if there is constant $c \geq 1$ s.t. for every strings $s 1$, s2, if:

$$
\operatorname{dist}\left(s_{1}, s_{2}\right)=k
$$

then:

$$
k \leq H\left(s_{1}, s_{2}\right) \leq c \cdot k\left(\begin{array}{c}
\operatorname{dist}_{i n t}(a b c, b c a)=2 \\
2 \leq H(a b c, b c a)=3 \leq 4
\end{array}\right.
$$

where H is Hamming distance.

Example: interchange distance ($\mathrm{c}=2$)

Definitions: Strong Pseudo-Locality

A string metric under UCM is strong pseudo-local if there is constant $c \geq 1$ s.t. for every strings s1, s2, if:

$$
\operatorname{dist}\left(s_{1}, s_{2}\right)=k
$$

then:
Example: swap distance ($\mathrm{c}=2$) $\operatorname{dist}_{\text {swap }}(a b a a, b a a a)=1$

$$
H\left(s_{1}, s_{2}\right)=c \cdot k \backsim H(a b a a, b a a a)=2
$$

where H is Hamming distance.

Interchange Distance - Background

> Operator of comparison-based sorting algorithms
> Classical distance studied by Cayley in 1849
> NP-hard to compute on general strings even for binary strings [AHKLP, SICOMP 2009]
> Linear-time to compute on permutations, where each character appears once [AABLLPSV, JCSS 2009]
> 1.5-approximation in linear time [AHKLP, SICOMP 2009]

The Scope Problems

- Approximate Nearest Neighbor Search:

Given $n D B d$-dimensional vectors, $\varepsilon>0$ and query vector q, a $C(\varepsilon)-\operatorname{ANN}(q)$ is $a \in D B$ s.t. for every $b \in D B$

$$
\operatorname{dist}(q, a) \leq C(\varepsilon) \cdot \operatorname{dist}(q, b)
$$

- Approximate Pattern Matching:

Given m-length $P, \varepsilon>0$ and T of length $n>m$, output a $C(\varepsilon)$-approx. distance dist between P and m-length substring of T for each position i.

Results: Interchange Distance

- Approximate Nearest Neighbor Search:

Main tool is pseudo-locality Known: No known ANN DS for Interchange distance

New: $(2+\varepsilon)$-ANN search data structure

- Approximate Pattern Matching:

Known: $\Theta(n m)$ algorithm giving 1.5 approximation
New: $O(n)$ randomized algorithm giving $(2+\varepsilon)$-approximation
$\tilde{O}(n)$ determinitic algorithm giving 2-approx. for fixed-size alphabets

The Basic Idea

Transformation from $C^{\prime}\left(\varepsilon^{\prime}\right)$-approx. to $C(\varepsilon)$-approx. due to c-pseudo-locality 10/23

This work shows how to apply for
 Interchange Distance

Approximate Nearest Neighbor Search

KOR ANN Data Structure (binary vectors)

> KOR Test: $\quad \beta$-Test τ
Randomly choose $C \subseteq\{1, \cdots, d\}$ with prob. β,
for each $i \in C$ randomly pick $r_{i} \in\{0,1\}$.
Define:

$$
\tau(v)=\sum_{i \in C} r_{i} \cdot v_{i} \quad(\bmod 2)
$$

Property: For query q and a, b in DB s.t. $H(q, a) \leq \ell, H(q, b)>(1+\varepsilon) \ell$, $\beta=\frac{1}{2 \ell}$-test distinguishes between a and b with constant probability.

KOR ANN Data Structure (binary vectors)

> KOR Data Structure:

S has S_{1}, \cdots, S_{d} substructures for each distance.
Each S_{ℓ} has $M=M(d, \mathcal{E}, \mu)=\tilde{O}(d)$ structures T_{1}, \cdots, T_{M}.
Each T_{i} has list $T=\mathrm{T}(d, \varepsilon, \mu)=O(\log \log d) \frac{1}{2 \ell}$-tests $t_{1}, \cdots, t_{\mathrm{T}}$ and 2^{T}-size table for $D B$ vectors results.

For a database vector v, its trace is the vector

$$
t(v)=t_{1}(v), \cdots, t_{\mathrm{T}}(v) \in\{0,1\}^{T} .
$$

KOR ANN Data Structure (binary vectors)

$>$ KOR Search Algorithm: Given query q, binary search min distance ℓ, s.t. random T_{i} in S_{ℓ} has a $D B$ point in table entry

$$
t(q)=t_{1}(q), \cdots, t_{\mathrm{T}}(q)
$$

If exists - search smaller ℓ, if not - search larger ℓ.

Property:

1. Prob. search uses structure T_{i} that fails at query at most μ.

Adjusting KOR ANN Data Structure $\left(\operatorname{take} \varepsilon^{\prime}=\frac{\varepsilon}{c}\right)$

Pseudo-local Query Condition:

Let q be a query s.t. $\forall v \in D B, \operatorname{dist}(q, v)<\infty$.
If search doesn't fail at q,
a in $D B$ returned has $\operatorname{dist}(q, a) \leq(c+\mathcal{E}) \Delta_{,}$ where $\Delta=\min _{v \in D B} \operatorname{dist}(q, v)$.

Adjusting KOR ANN Data Structure $\left(\operatorname{take} \varepsilon^{\prime}=\frac{\varepsilon}{c}\right)$

Pseudo-local Query Condition proof:

Since $\forall v \in D B, \operatorname{dist}(q, v)<\infty$, then by pseudo-locality $\Delta \leq \Delta_{H} \leq c \cdot \Delta$.
If $\ell<\Delta /(1+\varepsilon)$ then $\ell<\Delta /\left(1+\varepsilon^{\prime}\right) \leq \Delta_{H} /\left(1+\varepsilon^{\prime}\right)$
\Rightarrow No $D B$ point \Rightarrow search on ℓ fails.
On the other hand, if $\ell \geq \Delta_{H}$ then search step on ℓ succeeds.
Thus, search ends with $\Delta_{H} /\left(1+\varepsilon^{\prime}\right) \leq \ell \leq \Delta_{H}$.
By KOR-property, a in DB returned has $H(q, a) \leq\left(1+\mathcal{E}^{\prime}\right) \Delta_{H}$
Thus, by pseudo-locality

$$
\operatorname{dist}(q, a) \leq c\left(1+\mathcal{E}^{\prime}\right) \Delta \leq(c+\mathcal{E}) \Delta
$$

Adjusting KOR ANN Data Structure $\left(\operatorname{take} \varepsilon^{\prime}=\frac{\varepsilon}{c}\right)$

Infinite distances:

The condition $-q$ is a query s.t. $\forall v \in D B, \operatorname{dist}(q, v)<\infty$ is crucial!
Example: Let $D B=\{a, b, c\}, a=(0,1,0,1,0,0), b=(0,0,0,1,0,1), c=(0,0,0,0,1,0)$, and let $q=(0,0,1,0,1,0)$.
Then, $\Delta_{\text {swap }}=d_{\text {swap }}(q, a)=d_{\text {swap }}(q, b)=2$ and $H(q, a)=H(q, b)=4$.
However, $\Delta_{H}=H(q, c)=1$ and $d_{\text {swap }}(q, c)=\infty$.

Solution: Monitor infinite distances!

Adjusting KOR ANN Data Structure $\left(\operatorname{take} \varepsilon^{\prime}=\frac{\varepsilon}{c}\right)$

Parikh Vector of a word (string or vector) over $\Sigma=\left\{a_{1}, \cdots, a_{k}\right\}$ is

$$
p(w)=\left(\left|w_{a_{1}}\right|,\left|w_{a_{2}}\right|, \cdots,\left|w_{a_{k}}\right|\right)
$$

where $\left|w_{a_{i}}\right|$ is the number of occurrences of the letter a_{i} in the word w.
Infinity Check for Interchange Distance:

$$
d_{\text {int }}(a, b)<\infty \text { if and only if } p(a)=p(b)
$$

Monitoring infinite distances:

Idea - Split DB points by Parikh vector value and search only within $D B$ points with the same Parikh vector value!

Approximate Pattern Matching

Approximate Pattern Matching

Space Efficient Histogram Online Computation

Easy: online computation of histogram in $\widetilde{O}(m)$ additional space.

Impossible: online (rand.) comp. of histogram in $\tilde{o}(m)$ add. space.

New: online comp. of highly accurate histogram in $\tilde{O}\left(\mathrm{~m}^{2 / 3}\right)$ add. space.

Open Problems

\square Can $L S H$-based ANN for Hamming distance be exploited to improve our ANN result?
\square Can an infinite-distance check for swap / parallelinterchange be achieved to allow ANN DS?
\square Can pseudo-locality be exploited for deriving new solutions in other problems?

Thank You!

