ON EXPLOITING PSEUDO-LOCALITY OF INTERCHANGE DISTANCE

Avivit Levy

Shenkar College of Engineering and Design

Motivation: Studying String Metrics

String metrics in computational tasks:

- Similarity search and analysis
- Text editing
- Pattern matching
- Comparative genomics

Definitions: What are String Metrics?

• Set of operators:

Distance:

Example: swap distance

 $dist_{swap}(abcaa, baaca) = 2$

 $dist(s_1, s_2) = min\{cost(o)|o \ over \ OP \ converts \ s_1 \ to \ s_2\}$

Remark: In this paper we assume UCM (Unit-Cost Model)

Definitions: What are String Metrics?

• Set of operators:

Distance:

 $dist(s_1, s_2) = min\{cost(o)|o \ over \ OP \ converts \ s_1 \ to \ s_2\}$

```
Example: interchange distance
dist_{int}(acbaa, baaca) = 2
dist_{int}(acbaa, cbaaa) = 2
```

Definitions: Pseudo-Locality

First defined for Period Recovery Problem [AELPS, TALG 2012]

A string metric under UCM is **pseudo-local** if there is constant $c \ge 1$ s.t. for every strings s1, s2, if:

 $dist(s_1, s_2) = k$

then:

 $k \le H(s_1, s_2) \le c \cdot k$

where H is Hamming distance.

Example: interchange distance (c=2

$$dist_{int}(abc,bca) = 2$$

$$2 \le H(abc, bca) = 3 \le 4$$

Definitions: Strong Pseudo-Locality

A string metric under UCM is **strong pseudo-local** if there is constant $c \ge 1$ s.t. for every strings s1, s2, if:

$$dist(s_1, s_2) = k$$

then:

$$H(s_1, s_2) = c \cdot k$$

where H is Hamming distance.

Example: swap distance (c=2)

 $dist_{swap}(abaa,baaa) = 1$

H(abaa, baaa) = 2

Interchange Distance - Background

- > Operator of comparison-based sorting algorithms
- Classical distance studied by Cayley in 1849
- > NP-hard to compute on general strings even for binary strings [AHKLP, SICOMP 2009]
- Linear-time to compute on permutations, where each character appears once [AABLLPSV, JCSS 2009]
- > 1.5-approximation in linear time [AHKLP, SICOMP 2009]

The Scope Problems

Approximate Nearest Neighbor Search:

Given n DB d-dimensional vectors, $\varepsilon > 0$ and query vector q, a $C(\varepsilon)$ -ANN(q) is $a \in DB$ s.t. for every $b \in DB$ $dist(q,a) \leq C(\varepsilon) \cdot dist(q,b)$

Approximate Pattern Matching:

Given m-length P, $\varepsilon > 0$ and T of length n > m, output a $C(\varepsilon)$ -approx. distance dist between P and m-length substring of T for each position i.

Results: Interchange Distance

Approximate Nearest Neighbor Search:

Main tool is *pseudo-locality*

Known: No known ANN DS for Interchange distance

New: $(2 + \varepsilon)$ -ANN search data structure

Approximate Pattern Matching:

Known: $\Theta(nm)$ algorithm giving 1.5 approximation

New: O(n) randomized algorithm giving $(2 + \varepsilon)$ -approximation

 $\tilde{O}(n)$ determinitic algorithm giving 2-approx. for fixed-size alphabets

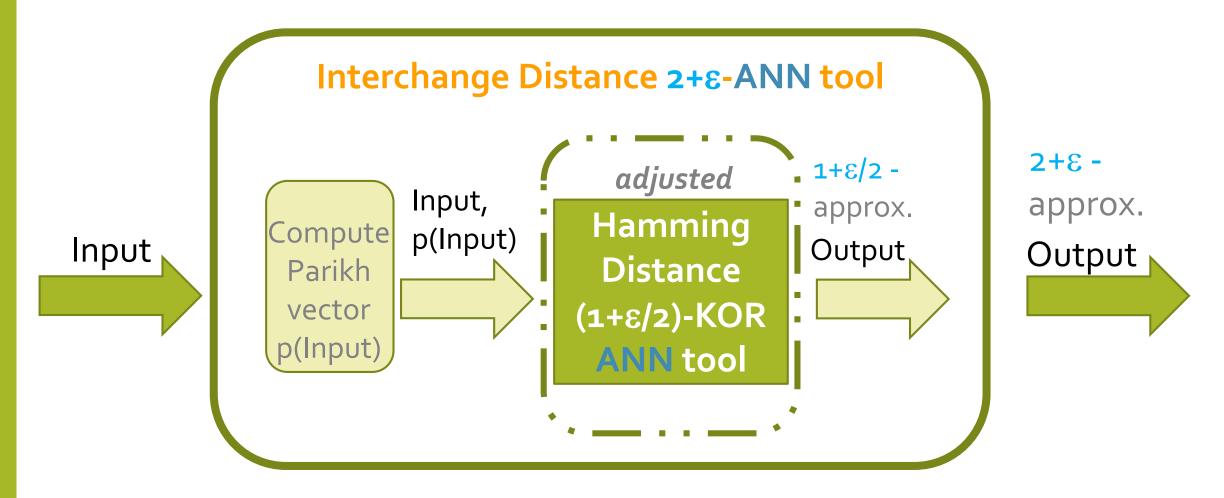
The Basic Idea



Transformation from $C'(\varepsilon')$ -approx. to $C(\varepsilon)$ -approx. due to *c-pseudo-locality*

This work shows how to apply for Interchange Distance

Approximate Nearest Neighbor Search



KOR ANN Data Structure (binary vectors)

 \triangleright **KOR Test:** β-Test τ

Randomly choose $C \subseteq \{1, \dots, d\}$ with prob. β ,

for each $i \in C$ randomly pick $r_i \in \{0,1\}$.

Define:

$$\tau(v) = \sum_{i \in C} r_i \cdot v_i \qquad (\text{mod 2})$$

Property: For query q and a, b in DB s.t. $H(q, a) \le \ell$, $H(q, b) > (1 + \mathcal{E})\ell$, $\beta = \frac{1}{2\ell}$ -test distinguishes between a and b with constant probability.

KOR ANN Data Structure (binary vectors)

> KOR Data Structure:

S has S_1, \dots, S_d substructures for each distance.

Each S_{ℓ} has $M = M(d, \mathcal{E}, \mu) = \tilde{O}(d)$ structures T_1, \dots, T_M .

Each T_i has list $T = T(d, \mathcal{E}, \mu) = O(\log \log d) \frac{1}{2\ell}$ -tests t_1, \dots, t_T and 2^T -size table for DB vectors results.

For a database vector v, its trace is the vector

$$t(v) = t_1(v), \dots, t_T(v) \in \{0,1\}^T$$
.

KOR ANN Data Structure (binary vectors)

KOR Search Algorithm: Given query q, binary search min distance ℓ , s.t. random T_i in S_ℓ has a DB point in table entry $t(q) = t_1(q), \dots, t_T(q)$.

If exists – search smaller ℓ , if not – search larger ℓ .

Property:

- 1. Prob. search uses structure T_i that fails at query at most μ .
- 2. If search doesn't fail at q, a in DB returned has $H(q,a) \leq (1+\mathcal{E})\Delta_H$, where $\Delta_H = \min_{v \in DB} H(q,v)$.

Pseudo-local Query Condition:

```
Let q be a query s.t. \forall v \in DB, dist(q, v) < \infty.

If search doesn't fail at q,
a \text{ in } DB \text{ returned has } dist(q, a) \leq (c + \mathcal{E})\Delta,
\text{where } \Delta = \min_{v \in DB} dist(q, v).
```

Pseudo-local Query Condition proof:

```
Since \forall v \in DB, dist(q, v) < \infty,
                  then by pseudo-locality \Delta \leq \Delta_H \leq c \cdot \Delta.
If \ell < \Delta/(1+\varepsilon) then \ell < \Delta/(1+\varepsilon') \le \Delta_H/(1+\varepsilon')
                  \Rightarrow No DB point \Rightarrow search on \ell fails.
On the other hand, if \ell \geq \Delta_H then search step on \ell succeeds.
Thus, search ends with \Delta_H/(1+\varepsilon') \leq \ell \leq \Delta_H.
By KOR-property, a in DB returned has H(q,a) \leq (1+\mathcal{E}')\Delta_H
Thus, by pseudo-locality
                            dist(q, a) \le c(1 + \mathcal{E}')\Delta \le (c + \mathcal{E})\Delta.
```

Infinite distances:

The condition - q is a query s.t. $\forall v \in DB, dist(q, v) < \infty$ is crucial!

Example: Let $DB = \{a,b,c\}$, a = (0,1,0,1,0,0), b = (0,0,0,1,0,1), c = (0,0,0,0,1,0), and let q = (0,0,1,0,1,0).

Then, $\Delta_{swap} = d_{swap}(q, a) = d_{swap}(q, b) = 2$ and H(q, a) = H(q, b) = 4. However, $\Delta_H = H(q, c) = 1$ and $d_{swap}(q, c) = \infty$.

Solution: Monitor infinite distances!

Problem: No guarantee on returned point!

Parikh Vector of a word (string or vector) over $\Sigma = \{a_1, \cdots, a_k\}$ is $p(w) = (|w_{a_1}|, |w_{a_2}|, \cdots, |w_{a_k}|),$ where $|w_{a_i}|$ is the number of occurrences of the letter a_i in the word w.

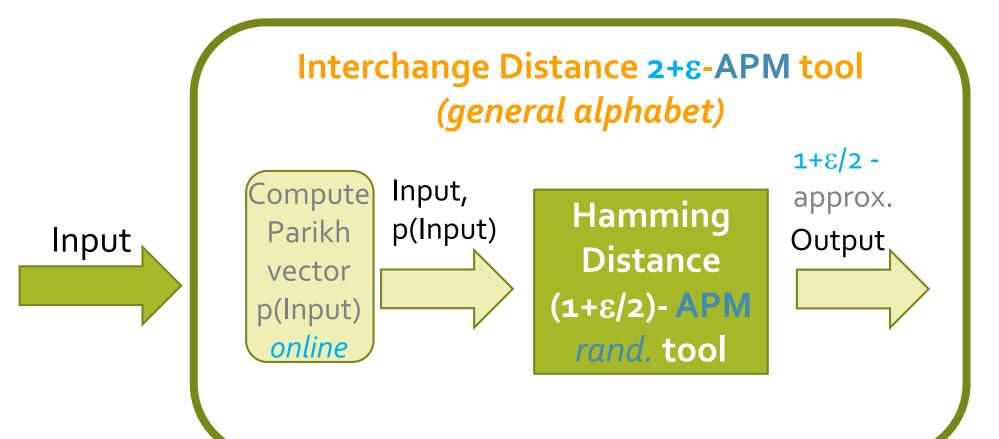
Infinity Check for Interchange Distance:

$$d_{int}(a,b) < \infty$$
 if and only if $p(a) = p(b)$.

Monitoring infinite distances:

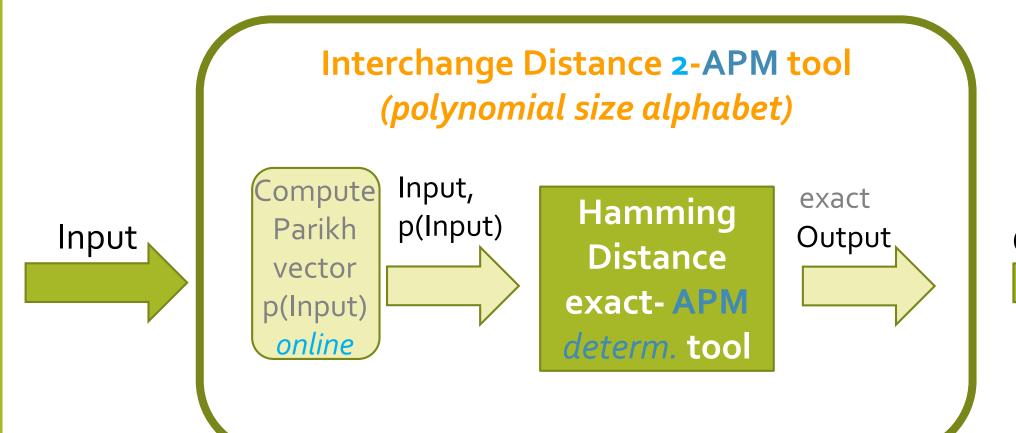
Idea – Split *DB* points by *Parikh vector* value and search only within *DB* points with the same Parikh vector value!

Approximate Pattern Matching



2+e approx.
Output

Approximate Pattern Matching



2-approx.
Output

Space Efficient Histogram Online Computation

Easy: online computation of histogram in $\tilde{O}(m)$ additional space.

Impossible: online (rand.) comp. of histogram in $\tilde{o}(m)$ add. space.

New: online comp. of *highly accurate* histogram in $\tilde{O}(m^{2/3})$ add. space.

Open Problems

- ☐ Can LSH-based ANN for Hamming distance be exploited to improve our ANN result?
- Can an infinite-distance check for swap / parallelinterchange be achieved to allow ANN DS?
- Can pseudo-locality be exploited for deriving new solutions in *other problems*?

Thank You!