
ON EXPLOITING
PSEUDO-LOCALITY OF

INTERCHANGE DISTANCE
Avivit Levy

Shenkar College of Engineering and Design

1/23

Motivation: Studying String Metrics

String metrics in computational tasks:

❑ Similarity search and analysis

❑Text editing

❑ Pattern matching

❑Comparative genomics

2/23

Definitions: What are String Metrics?

•Set of operators:

OP={op1, op2,…}

•Distance:

𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 = 𝑚𝑖𝑛 𝑐𝑜𝑠𝑡 𝑜 𝑜 𝑜𝑣𝑒𝑟 𝑂𝑃 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝑠1 𝑡𝑜 𝑠2

𝑑𝑖𝑠𝑡𝑠𝑤𝑎𝑝 𝑎𝑏𝑐𝑎𝑎, 𝑏𝑎𝑎𝑐𝑎 =2

Example: swap distance

Remark: In this paper we assume UCM (Unit-Cost Model)

3/23

Definitions: What are String Metrics?

•Set of operators:

OP={op1, op2,…}

•Distance:

𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 = 𝑚𝑖𝑛 𝑐𝑜𝑠𝑡 𝑜 𝑜 𝑜𝑣𝑒𝑟 𝑂𝑃 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝑠1 𝑡𝑜 𝑠2

𝑑𝑖𝑠𝑡𝑖𝑛𝑡 𝑎𝑐𝑏𝑎𝑎, 𝑏𝑎𝑎𝑐𝑎 =2

Example: interchange distance

𝑑𝑖𝑠𝑡𝑖𝑛𝑡 𝑎𝑐𝑏𝑎𝑎, 𝑐𝑏𝑎𝑎𝑎 =2

4/23

Definitions: Pseudo-Locality

A string metric under UCM is pseudo-local if
there is constant 𝑐 ≥ 1 s.t. for every strings s1, s2,
if:

𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 = 𝑘

then:

𝑘 ≤ 𝐻 𝑠1, 𝑠2 ≤ 𝑐 ⋅ 𝑘

where H is Hamming distance.

𝑑𝑖𝑠𝑡𝑖𝑛𝑡 𝑎𝑏𝑐, 𝑏𝑐𝑎 = 2

Example: interchange distance (c=2)

2 ≤ 𝐻 𝑎𝑏𝑐, 𝑏𝑐𝑎 = 3 ≤ 4

First defined for
Period Recovery Problem

]AELPS, TALG 2012[

5/23

Definitions: Strong Pseudo-Locality

A string metric under UCM is strong pseudo-local
if there is constant 𝑐 ≥ 1 s.t. for every strings s1, s2,
if:

𝑑𝑖𝑠𝑡 𝑠1, 𝑠2 = 𝑘

then:

𝐻 𝑠1, 𝑠2 = 𝑐 ⋅ 𝑘

where H is Hamming distance.

𝑑𝑖𝑠𝑡𝑠𝑤𝑎𝑝 𝑎𝑏𝑎𝑎, 𝑏𝑎𝑎𝑎 =1

Example: swap distance (c=2)

𝐻 𝑎𝑏𝑎𝑎, 𝑏𝑎𝑎𝑎 = 2

6/23

Interchange Distance - Background

➢Operator of comparison-based sorting algorithms

➢Classical distance studied by Cayley in 1849

➢ NP-hard to compute on general strings even for binary
strings [AHKLP, SICOMP 2009]

➢ Linear-time to compute on permutations, where each
character appears once [AABLLPSV, JCSS 2009]

➢ 1.5-approximation in linear time [AHKLP, SICOMP 2009]

7/23

The Scope Problems

•Approximate Nearest Neighbor Search:

Given n DB d-dimensional vectors, 𝜀 > 0 and query vector q,
a 𝐶 𝜀 -ANN(q) is 𝑎 ∈ 𝐷𝐵 s.t. for every 𝑏 ∈ 𝐷𝐵

𝑑𝑖𝑠𝑡 𝑞, 𝑎 ≤ 𝐶 𝜀 ⋅ 𝑑𝑖𝑠𝑡 𝑞, 𝑏

•Approximate Pattern Matching:

Given m-length P, 𝜀 > 0 and T of length n>m, output a 𝐶 𝜀 -approx.
distance 𝑑𝑖𝑠𝑡 between P and m-length substring of T for each position i.

𝑛 ≫ 𝑑

8/23

Results: Interchange Distance

•Approximate Nearest Neighbor Search:

Known: No known ANN DS for Interchange distance

New: (2 + 𝜀)-ANN search data structure

•Approximate Pattern Matching:

Known: Θ(𝑛𝑚) algorithm giving 1.5 approximation

New: 𝑂(𝑛) randomized algorithm giving (2 + 𝜀)-approximation
෨𝑂(𝑛) determinitic algorithm giving 2-approx. for fixed-size alphabets

Main tool is
pseudo-locality

9/23

The Basic Idea

Hamming
Distance

C’(’)-Approx.
tool for

Problem X

c-Pseudo-Local Distance
C()-Approx. tool for Problem X

Input Output Output

Possibly adjustedPossibly
adjusted

C’(’)-
approx.

Possible
Pre-
process

Possible
Post-
process

Input

Transformation from C’(’)-approx. to C()-approx. due to c-pseudo-locality

C()-
approx.

10/23

This work shows how to apply
for

Interchange Distance

11/23

Approximate Nearest Neighbor Search

Hamming
Distance

(1+/2)-KOR
ANN tool

Interchange Distance 2+-ANN tool

Input Output Output

adjusted 1+/2 -
approx.

2+ -
approx.

Compute
Parikh
vector

p(Input)

Input,
p(Input)

12/23

KOR ANN Data Structure (binary vectors)

➢ KOR Test: -Test 

Randomly choose 𝐶 ⊆ 1,⋯ , 𝑑 with prob. ,

for each iC randomly pick 𝑟𝑖 ∈ 0,1 .

Define:

𝜏 𝑣 = σ𝑖∈𝐶 𝑟𝑖 ∙ 𝑣𝑖 (mod 2)

Property: For query q and a, b in DB s.t. 𝐻 𝑞, 𝑎 ≤ ℓ, 𝐻 𝑞, 𝑏 > 1 + ℰ ℓ,

𝛽 =
1

2ℓ
-test distinguishes between a and b with constant probability.

13/23

KOR ANN Data Structure (binary vectors)

➢ KOR Data Structure:

S has 𝑆1, ⋯ , 𝑆𝑑 substructures for each distance.

Each 𝑆ℓ has 𝑀 = 𝑀 𝑑, ℰ, 𝜇 = ෨𝑂 𝑑 structures 𝑇1, ⋯ , 𝑇𝑀.

Each 𝑇𝑖 has list T = T 𝑑, ℰ, 𝜇 = 𝑂 log log 𝑑
1

2ℓ
-tests 𝑡1, ⋯ , 𝑡T and

2T-size table for DB vectors results.

For a database vector v, its trace is the vector
𝑡 𝑣 = 𝑡1(𝑣),⋯ , 𝑡T(𝑣) ∈ 0,1 𝑇.

14/23

KOR ANN Data Structure (binary vectors)

➢ KOR Search Algorithm: Given query q, binary search min distance ℓ,
s.t. random 𝑇𝑖 in 𝑆ℓ has a DB point in table entry

𝑡 𝑞 = 𝑡1(𝑞),⋯ , 𝑡T(𝑞).
If exists – search smaller ℓ, if not – search larger ℓ.

Property:
1. Prob. search uses structure 𝑇𝑖 that fails at query at most 𝜇.
2. If search doesn’t fail at q , a in DB returned has 𝐻 𝑞, 𝑎 ≤ 1 + ℰ Δ𝐻,

where Δ𝐻 = min
𝑣𝜖𝐷𝐵

𝐻 𝑞, 𝑣 .

15/23

Adjusting KOR ANN Data Structure (take 𝜀′ = 𝜀

𝑐
)

Pseudo-local Query Condition:

Let q be a query s.t. ∀𝑣𝜖𝐷𝐵,𝑑𝑖𝑠𝑡 𝑞, 𝑣 < ∞.
If search doesn’t fail at q ,

a in DB returned has 𝑑𝑖𝑠𝑡 𝑞, 𝑎 ≤ 𝑐 + ℰ Δ,
where Δ = min

𝑣𝜖𝐷𝐵
𝑑𝑖𝑠𝑡 𝑞, 𝑣 .

16/23

Adjusting KOR ANN Data Structure (take 𝜀′ = 𝜀

𝑐
)

Pseudo-local Query Condition proof:
Since ∀𝑣𝜖𝐷𝐵, 𝑑𝑖𝑠𝑡 𝑞, 𝑣 < ∞,

then by pseudo-locality Δ ≤ Δ𝐻 ≤ 𝑐 ∙ Δ.
If ℓ < ΤΔ (1 + 𝜀) then ℓ < ΤΔ (1 + 𝜀′) ≤ ΤΔ𝐻 (1 + 𝜀′)

No DB point  search on ℓ fails.
On the other hand, if ℓ ≥ Δ𝐻 then search step on ℓ succeeds.
Thus, search ends with ΤΔ𝐻 (1 + 𝜀′) ≤ ℓ ≤Δ𝐻 .
By KOR-property, a in DB returned has 𝐻 𝑞, 𝑎 ≤ 1 + ℰ′ Δ𝐻
Thus, by pseudo-locality

𝑑𝑖𝑠𝑡 𝑞, 𝑎 ≤ 𝑐 1 + ℰ′ ∆≤ 𝑐 + ℰ ∆.

17/23

Adjusting KOR ANN Data Structure (take 𝜀′ = 𝜀

𝑐
)

Infinite distances:
The condition - q is a query s.t. ∀𝑣𝜖𝐷𝐵,𝑑𝑖𝑠𝑡 𝑞, 𝑣 < ∞ is crucial!

Example: Let DB = {a,b,c}, a = (0,1,0,1,0,0), b = (0,0,0,1,0,1), c = (0,0,0,0,1,0),
and let q = (0,0,1,0,1,0).
Then, Δ𝑠𝑤𝑎𝑝 = 𝑑𝑠𝑤𝑎𝑝 𝑞, 𝑎 = 𝑑𝑠𝑤𝑎𝑝 𝑞, 𝑏 = 2 and H(q,a) = H(q,b) = 4.

However, Δ𝐻 = 𝐻 𝑞, 𝑐 = 1 and 𝑑𝑠𝑤𝑎𝑝 𝑞, 𝑐 = ∞.

Problem: No guarantee
on returned point!

Solution: Monitor
infinite distances!

18/23

Adjusting KOR ANN Data Structure (take 𝜀′ = 𝜀

𝑐
)

Parikh Vector of a word (string or vector) over Σ = 𝑎1, ⋯ , 𝑎𝑘 is

𝑝 𝑤 = 𝑤𝑎1 , 𝑤𝑎2 , ⋯ , 𝑤𝑎𝑘 ,

where 𝑤𝑎𝑖
is the number of occurrences of the letter 𝑎𝑖 in the word w.

Infinity Check for Interchange Distance:
𝑑𝑖𝑛𝑡 𝑎, 𝑏 < ∞ if and only if 𝑝 𝑎 = 𝑝(𝑏).

Monitoring infinite distances:
Idea – Split DB points by Parikh vector value and search only within DB
points with the same Parikh vector value!

19/23

Approximate Pattern Matching

Hamming
Distance

(1+/2)- APM
rand. tool

Interchange Distance 2+-APM tool
(general alphabet)

Input Output Output

1+/2 -
approx.

2+ -
approx.Compute

Parikh
vector

p(Input)
online

Input,
p(Input)

20/23

Approximate Pattern Matching

Hamming
Distance

exact- APM
determ. tool

Interchange Distance 2-APM tool
(polynomial size alphabet)

Input Output Output
exact 2-approx.Compute

Parikh
vector

p(Input)
online

Input,
p(Input)

21/23

Space Efficient Histogram Online Computation

Easy: online computation of histogram in ෨𝑂 𝑚 additional space.

New: online comp. of highly accurate histogram in ෨𝑂 𝑚 Τ2 3 add. space.

Impossible: online (rand.) comp. of histogram in ෤𝑜 𝑚 add. space.

22/23

Open Problems

❑ Can LSH-based ANN for Hamming distance be exploited to
improve our ANN result?

❑ Can an infinite-distance check for swap / parallel-
interchange be achieved to allow ANN DS?

❑ Can pseudo-locality be exploited for deriving new solutions
in other problems?

Thank You !
23/23

