
An LMS-based Grammar Self-Index with Local
Consistency Properties

Diego Díaz-Domínguez1,2 Gonzalo Navarro1 Alejandro Pacheco1

1University of Chile

2University of Helsinki

October 6, 2021

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 1 / 14

The Grammar Self-Index

A grammar self-index of a string S[1, n] (Claude et al. 2012, 2020) is
constructed on top of a grammar G that only produces S[1, n].

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 2 / 14

The Grammar Self-Index

A grammar self-index of a string S[1, n] (Claude et al. 2012, 2020) is
constructed on top of a grammar G that only produces S[1, n].

If S highly-repetitive, then the size of G is small, meaning that the
self-index is also small.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 2 / 14

The Grammar Self-Index

A grammar self-index of a string S[1, n] (Claude et al. 2012, 2020) is
constructed on top of a grammar G that only produces S[1, n].

If S highly-repetitive, then the size of G is small, meaning that the
self-index is also small.

Let us denote the size of G as g and the number of nonterminals as r .

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 2 / 14

The Grammar Self-Index

A grammar self-index of a string S[1, n] (Claude et al. 2012, 2020) is
constructed on top of a grammar G that only produces S[1, n].

If S highly-repetitive, then the size of G is small, meaning that the
self-index is also small.

Let us denote the size of G as g and the number of nonterminals as r .

Claude et al. 2020 demonstrated that there is a self-index on top of G that
requires O(g lg n + (2 + ε)g lg r) bits of space, where 0 < ε ≤ 1 is a
constant. This index can locate the occ the occurrences of a pattern
P [1,m] in O((m2 + occ) lg g) time.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 2 / 14

The Grammar Self-Index

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

D a B

C a A

E D C
S D c A E E

A g g

B t t

g|g

a|gg

att|c|gg|attagg|attagg

att|agg

t|t

a|tt

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

att|cggattaggattagg
c|ggattaggattagg

gg|attaggattagg
attagg|attaggD a B

C a A

E D C
S D c A E E

A g g

B t t

g|g

a|gg

att|c|gg|attagg|attagg

att|agg

t|t

a|tt

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

Y X

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga

tt
ag

ga
tt

ag
g

gg
at

ta
gg

at
ta

gg

at
ta

gg
at

ta
gg

at
ta

gg
ag

g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

Secondary
occurrences

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

Secondary
occurrences

Problem: We have to try out all the possible cuts of P

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14

Locally consistent grammar self-index

Christiansen et al. 2021 reduced the time complexity for the locate
operation in the grammar self-index to O((m logm + occ) lg g) time.

It is balanced.
The occurrences of a pattern P are largely compressed in the same
way.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 4 / 14

Locally consistent grammar self-index

Christiansen et al. 2021 reduced the time complexity for the locate
operation in the grammar self-index to O((m logm + occ) lg g) time.

They achieve this time complexity by building the self-index with a locally
consistent grammar.

It is balanced.
The occurrences of a pattern P are largely compressed in the same
way.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 4 / 14

Locally consistent grammar self-index

Christiansen et al. 2021 reduced the time complexity for the locate
operation in the grammar self-index to O((m logm + occ) lg g) time.

They achieve this time complexity by building the self-index with a locally
consistent grammar.

It is balanced.

The occurrences of a pattern P are largely compressed in the same
way.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 4 / 14

Locally consistent grammar self-index

Christiansen et al. 2021 reduced the time complexity for the locate
operation in the grammar self-index to O((m logm + occ) lg g) time.

They achieve this time complexity by building the self-index with a locally
consistent grammar.

It is balanced.
The occurrences of a pattern P are largely compressed in the same
way.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 4 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .

3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).

A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14

Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 6 / 14

Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.

P

Round 1
Round 2
Round 3

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 6 / 14

Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.

P

Round 1
Round 2
Round 3

The phrases below the red line are always the same, regardless of the
context of P in S.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 6 / 14

Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.

P

Round 1
Round 2
Round 3

The phrases below the red line are always the same, regardless of the
context of P in S.

Pattern matching: we parse P using the grammar algorithm, and try out
in the grid of the grammar self-index the O(logm) cuts induced by the
parsing.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 6 / 14

Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.

P

Round 1
Round 2
Round 3

P

Round 1
Round 2
Round 3

The phrases below the red line are always the same, regardless of the
context of P in S.

Pattern matching: we parse P using the grammar algorithm, and try out
in the grid of the grammar self-index the O(logm) cuts induced by the
parsing.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 6 / 14

Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.

The resulting grammar can be potentially large compared to other
heuristics, like RePair.
It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14

Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.
The resulting grammar can be potentially large compared to other
heuristics, like RePair.

It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14

Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.
The resulting grammar can be potentially large compared to other
heuristics, like RePair.
It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14

Our method

We build a locally consistent grammar using LMS parsing:

SLS* L S*L S*L L S*L L
attatatacatt

43314

56
7

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 8 / 14

Our method

We build a locally consistent grammar using LMS parsing:

SLS* L S*L S*L L S*L L
attatatacatt

43314

56
7

X

Y

X

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 8 / 14

Our method

We build a locally consistent grammar using LMS parsing:

SLS* L S*L S*L L S*L L
attatatacatt

4334

7

X

Y

X

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 8 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.

We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr

We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr

We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique

slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.

g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.

r-ind: the r-index.
We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.
We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr
We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 9 / 14

Results: grammar algorithm

Dataset n σ RePair LMS LMS post LC

para 429,265,758 5 5,344,480 22,787,047 8,933,303 8,888,002
cere 461,286,644 5 4,069,450 37,426,507 6,802,801 4,069,450
influenza 154,808,555 15 1,957,370 4,259,746 3,304,035 4,477,322
einstein.en 467,626,544 139 212,903 643,338 427,142 601,755
kernel 257,961,616 162 1,374,650 3,769,839 2,870,350 3,795,801

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 10 / 14

Results: self-indexes

0

100

200

0.0 0.3 0.6 0.9 1.2

Kernel

0.0

2.5

5.0

7.5

10.0

0.0 0.5 1.0 1.5 2.0

Cere

0.0

2.5

5.0

7.5

10.0

0.000 0.025 0.050 0.075

Einstein.en

0

25

50

75

0.0 0.5 1.0 1.5 2.0

Influenza

0

5

10

15

0 1 2 3

Para

Bps

Ti
m

e
(µ

se
cs

)

0

100

200

0.0 0.3 0.6 0.9 1.2

Kernel

0.0
2.5
5.0
7.5

10.0

0.0 0.5 1.0 1.5 2.0

Cere

0.0

2.5

5.0

7.5

10.0

0.0000.0250.0500.075

Einstein.en

0

25

50

75

0.0 0.5 1.0 1.5 2.0

Influenza

0

5

10

15

0 1 2 3

Para

Index
r−ind

slp−ind4

slp−ind8

slp−ind12

g−ind−bs

g−ind−ps4

g−ind−ps16

g−ind−ps64

lz−ind

lz−end−ind

lms−ind

lms−ind−rrr

Bps

Ti
m

e
(µ

se
cs

)

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 11 / 14

Results: locate operation

0.054
0.041

0.038
0.033

0.028
0.026

0.025
0.026

0
500

1000
1500

100 200 300 400 500 600 700 800

Kernel
31.968

30.916

29.955

29.062

28.225

27.431

26.671

25.941

0.0
2.5
5.0
7.5

10.0

100 200 300 400 500 600 700 800

Cere

2.415
1.886

1.432
1.129

1.064
0.87

0.779
0.773

0
25
50
75

100 200 300 400 500 600 700 800

Einstein.en
15.126

13.755

12.586

11.587

10.732
9.987

9.324
8.728

0

5

10

15

100 200 300 400 500 600 700 800

Para

Index

r−ind

slp−ind12

g−ind−ps4

lz−ind

lms−ind−rrr

Number of occurrences

Pattern length

T
im

e
(µ

se
cs

)

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 12 / 14

Further work

Reduce the space usage of the self-index:

How can we further reduce the grammar size without losing local
consistency?
Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?
What other types of queries can we support using local consistency?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 13 / 14

Further work

Reduce the space usage of the self-index:
How can we further reduce the grammar size without losing local
consistency?

Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?
What other types of queries can we support using local consistency?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 13 / 14

Further work

Reduce the space usage of the self-index:
How can we further reduce the grammar size without losing local
consistency?
Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?
What other types of queries can we support using local consistency?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 13 / 14

Further work

Reduce the space usage of the self-index:
How can we further reduce the grammar size without losing local
consistency?
Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?

What other types of queries can we support using local consistency?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 13 / 14

Further work

Reduce the space usage of the self-index:
How can we further reduce the grammar size without losing local
consistency?
Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?
What other types of queries can we support using local consistency?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 13 / 14

Questions?

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 14 / 14

	First Section
	Subsection Example

