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A grammar self-index of a string S[1, n] (Claude et al. 2012, 2020) is
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constructed on top of a grammar G that only produces S[1, n].

If S highly-repetitive, then the size of G is small, meaning that the
self-index is also small.

Let us denote the size of G as g and the number of nonterminals as r .

Claude et al. 2020 demonstrated that there is a self-index on top of G that
requires O(g lg n + (2 + ε)g lg r) bits of space, where 0 < ε ≤ 1 is a
constant. This index can locate the occ the occurrences of a pattern
P [1,m] in O((m2 + occ) lg g) time.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 2 / 14



The Grammar Self-Index

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

D a B

C a A

E D C
S D c A E E

A g g

B t t

g|g

a|gg

att|c|gg|attagg|attagg

att|agg

t|t

a|tt

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

att|cggattaggattagg
c|ggattaggattagg

gg|attaggattagg
attagg|attaggD a B

C a A

E D C
S D c A E E

A g g

B t t

g|g

a|gg

att|c|gg|attagg|attagg

att|agg

t|t

a|tt

A
gt aa tt tc ag gg gtg a ta

A AB B B
C CD D D

EE

S

S =

Y X

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga

tt
ag

ga
tt

ag
g

gg
at

ta
gg

at
ta

gg

at
ta

gg
at

ta
gg

at
ta

gg
ag

g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

Secondary
occurrences

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 3 / 14



The Grammar Self-Index

B

S

C

S

S

E S

A

att

agg

attagg
attcggattaggattagg

gg

tt

a

g

t

c

g ggcg
ga
tt
ag
ga
tt
ag
g

gg
at
ta
gg
at
ta
gg

at
ta
gg
at
ta
gg

at
ta
gg

ag
g

t tt

A

ta t

c

gg

a AB
CD D

EE

SD

P = a t t

Primary
occurrence

Secondary
occurrences

Problem: We have to try out all the possible cuts of P
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Locally consistent grammar self-index

Christiansen et al. 2021 reduced the time complexity for the locate
operation in the grammar self-index to O((m logm + occ) lg g) time.

It is balanced.
The occurrences of a pattern P are largely compressed in the same
way.
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Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:

1 Create a new string Ŝi by replacing the equal-symbol runs of Si with
new nonterminal symbols.

2 Select a random permutation π for the symbols in Ŝi .
3 Partition Ŝi using π.

A local minima is a position Ŝi [a] such that
π(Ŝi [a − 1]) > π(Ŝi [a]) < π(Ŝi [a + 1]).
A phrase in the partition is every substring Ŝi [a, b] where Ŝi [a] and
Ŝi [b + 1] are local minima.

4 Create a new string Si+1[1, ni+1], with ni+1 < bni/2c, by replacing
the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1
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the phrases in Ŝi with new nonterminal symbols.

5 Repeat the same parsing algorithm with Si+1

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 5 / 14



Locally consistent grammar

The algorithm of Christiansen et al. 2020 has several rounds of parsing. In
the first round i = 1, we set Si = S and apply the following procedure:
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Locally consistent grammar and pattern matching

Let us assume the pattern P appears several times in S.
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Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.

The resulting grammar can be potentially large compared to other
heuristics, like RePair.
It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14



Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.
The resulting grammar can be potentially large compared to other
heuristics, like RePair.

It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14



Locally consistent grammar and pattern matching

Disadvantages in the method of Christiansen et al. 2020:

Building the grammar self-index requires storing the permutations to
replicate the parsing procedure on any input pattern.
The resulting grammar can be potentially large compared to other
heuristics, like RePair.
It increases the size of the grammar index considerably.

D. Díaz-Domínguez et al. A LMS-based self-index October 6, 2021 7 / 14



Our method

We build a locally consistent grammar using LMS parsing:

SLS* L S*L S*L L S*L L
attatatacatt
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Experiments

We implemented the grammar algorithm of Christiansen et al. 2020
and compared it with our LMS-based locally consistent algorithm.

We use the grammar resulted from our algorithm to build the
self-index of Claude et al. 2020.

We implemented two variations; lms-ind and lms-ind-rrr

We compared our version of the grammar self-index against the
state-of-the-art dictionary-based self-indexes:

lz-ind: a self-index based on the Lempel-Ziv parsing technique
slp-ind: original version of the grammar index that works on
straight-line program.
g-ind: most recent version of the grammar index that works on any
type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.
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type of grammar.
r-ind: the r-index.

We assessed the space usage and the time for answering the locate
operation.
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Results: grammar algorithm

Dataset n σ RePair LMS LMS post LC

para 429,265,758 5 5,344,480 22,787,047 8,933,303 8,888,002
cere 461,286,644 5 4,069,450 37,426,507 6,802,801 4,069,450
influenza 154,808,555 15 1,957,370 4,259,746 3,304,035 4,477,322
einstein.en 467,626,544 139 212,903 643,338 427,142 601,755
kernel 257,961,616 162 1,374,650 3,769,839 2,870,350 3,795,801
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Results: self-indexes
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Results: locate operation
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Further work

Reduce the space usage of the self-index:

How can we further reduce the grammar size without losing local
consistency?
Is it possible to use the Wheeler graph framework to create a
grammar-based self-index?

Can we use the concept of locally consistent parsing to support
inexact locate queries?
What other types of queries can we support using local consistency?
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Questions?
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