# Position Heaps for Cartesian-tree Matching on Strings and Tries SPIRE 2021 

Akio Nishimoto, Noriki Fujisato, Yuto Nakashima, and Shunsuke Inenaga
Kyushu University, Japan

## Background

We want to find substrings of a text that have similar structures as a pattern.


## Background

We want to find substrings of a text that have similar structures as a pattern.


## Background

We want to find substrings of a text that have similar structures as a pattern.


This similar substring can be found by order-preserving matching [Kim et al. 2013].

## Background

We want to find substrings of a text that have similar structures as a pattern.


We can find this substring for order-preserving matching.

## Background

We want to find substrings of a text that have similar structures as a pattern.


We cannot find this substring for order-preserved matching. But, we can use Cartesian-tree matching [Park et al., 2019].

## Definition : Cartesian-tree

The Cartesian-tree of a string S, denoted CT(S), is the rooted tree which is recursively defined as follows.

Each character in string $S$ corresponds to a node in $\mathrm{CT}(\mathrm{S})$.
If $S[i]$ is the leftmost minimum value of string $S$,

- $\mathrm{S}[i]$ is root node,
- the left subtree is $\mathrm{CT}(\mathrm{S}[1 . . i-1])$ and,
- the right subtree is $\mathrm{CT}(\mathrm{S}[i+1 . . n])$.


Example : Cartesian-tree
$\mathrm{S}=2513164$
The minimum value of string S is 1 . We choose the leftmost 1 .


Example : Cartesian-tree
$\mathrm{S}=2513164$
The minimum value of string S is 1 . We choose the leftmost 1 .


## Example : Cartesian-tree

$\mathrm{S}=2513164$


The minimum value of string 25 is 2 . We choose the leftmost 2 .


6


The minimum value of string 3164 is 1 . We choose the leftmost 1.

## Example : Cartesian-tree

$\mathrm{S}=2513164$



The minimum value of string 25 is 2 . We choose the leftmost 2.


The minimum value of string 3164 is 1 . We choose the leftmost 1 .

Example : Cartesian-tree
$\mathrm{S}=2513164$
We continue recursively.


6

Example : Cartesian-tree
$\mathrm{S}=2513164$
We continue recursively.


## Cartesian-tree matching [Park et al., 2019]

Cartesian-tree matching is the problem of finding all positions $i$, such that the Cartesian-tree of substring $\mathrm{T}[i, . ., i+m-1]$ and that of pattern P are isomorphic.


Output: 1


## Cartesian-tree matching [Park et al., 2019]

Cartesian-tree matching is the problem of finding all positions $i$, such that the Cartesian-tree of substring $\mathrm{T}[i, . ., i+m-1]$ and that of pattern P are isomorphic.


Output: 1


## Cartesian-tree matching [Park et al., 2019]

Cartesian-tree matching is the problem of finding all positions $i$, such that the Cartesian-tree of substring $\mathrm{T}[i, . ., i+m-1]$ and that of pattern P are isomorphic.


Output: 1,3


## Cartesian-tree matching [Park et al., 2019]

Cartesian-tree matching is the problem of finding all positions $i$, such that the Cartesian-tree of substring $\mathrm{T}[i, . ., i+m-1]$ and that of pattern P are isomorphic.


Output: 1,3


## Cartesian-tree matching [Park et al., 2019]

Cartesian-tree matching is the problem of finding all positions $i$, such that the Cartesian-tree of substring $\mathrm{T}[i, . ., i+m-1]$ and that of pattern P are isomorphic.


Output: 1,3


Existing indexing structures

| Data structure | Const. time | Pattern locating time | space |
| :--- | :--- | :--- | :--- |
| Cartesian Suffix Tree <br> [Park et al., 2020] | $O(n \log n)$ | $O(m \log n+o c c)$ | $O(n)$ <br> words |
| Succinct Index <br> [Kim and Cho, 2021] | $O(n \log n)$ | $O(m \cdot o c c)$ | $3 n+o(n)$ <br> bits |

$n$ is text length, $\sigma$ is alphabet size, $o c c$ is number of pattern occurrences, $m$ is pattern length.

## Our Contribution 1

| Data structure | Const. time | Pattern locating time | space |
| :--- | :--- | :--- | :--- |
| Cartesian Suffix Tree <br> [Park et al., 2020] | $O(n \log n)$ | $O(m \log n+o c c)$ | $O(n)$ <br> words |
| Succinct Index <br> [Kim and Cho, 2021] | $O(n \log n)$ | $O(m \cdot o c c)$ | $3 n+o(n)$ <br> bits |
| Cartesian Position <br> Heap [This work] | $\boldsymbol{O ( n \operatorname { l o g } \sigma )}$ | $\boldsymbol{O}(\boldsymbol{m}(\boldsymbol{\sigma}+\log (\min (\boldsymbol{h}, \boldsymbol{m})))$ <br> $+\boldsymbol{o c c})$ | $\boldsymbol{O}(\boldsymbol{n})$ <br> words |

$n$ is text length, $\sigma$ is alphabet size, $o c c$ is number of pattern occurrences, $m$ is pattern length, $h$ is height of Cartesian Position Heap.

## Our Contribution 2

| Data structure | Const. time | Matching time | space |
| :--- | :--- | :--- | :--- |
| Cartesian Suffix Tree <br> [Park et al., 2020] | $O(n \log n)$ | $O(m \log n+o c c)$ | $O(n)$ <br> words |
| Succinct Index <br> [Kim and Cho, 2021] | $O(n \log n)$ | $O(m \cdot o c c)$ | $3 n+o(n)$ <br> bits |
| Cartesian Position <br> Heap [This work] | $\boldsymbol{O ( n \operatorname { l o g } \sigma )}$ | $\boldsymbol{O}(\boldsymbol{m}(\boldsymbol{\sigma}+\log (\min (\boldsymbol{h}, \boldsymbol{m})))$ <br> $+\boldsymbol{o c c})$ | $\boldsymbol{O}(\boldsymbol{n})$ <br> words |


| $\begin{array}{l}\text { Cartesian Position } \\ \text { Heap for trie }\end{array}$ | $O(N \sigma)$ | $\begin{array}{l}O\left(m\left(\sigma^{2}+\log (\min (h, m))\right)\right. \\ +o c c)\end{array}$ | $\begin{array}{l}O(N \sigma) \\ \text { words }\end{array}$ |
| :--- | :--- | :--- | :--- |
| [This work] |  |  |  |

$n$ is text string length, $\sigma$ is alphabet size, occ is number of pattern occurrences, $m$ is pattern length, $h$ is height of Cartesian Position Heap, $N$ is text trie size.

## Our Contribution 2

| Data structure | Const. time | Matching time | space |
| :--- | :--- | :--- | :--- |
| Cartesian Suffix Tree <br> [Park et al., 2020] | $O(n \log n)$ | $O(m \log n+o c c)$ | $O(n)$ <br> words |
| Succinct Index <br> [Kim and Cho, 2021] | $O(n \log n)$ | $O(m \cdot o c c)$ | $3 n+o(n)$ <br> bits |
| Cartesian Position <br> Heap [This work] | $O(n \log \boldsymbol{\sigma})$ | $\boldsymbol{O}(\boldsymbol{m}(\boldsymbol{\sigma}+\log (\min (\boldsymbol{h}, \boldsymbol{m})))$ <br> $+\boldsymbol{o c c})$ | $\boldsymbol{O}(\boldsymbol{n})$ <br> words |


| Cartesian Position | $O(N \sigma)$ | $O\left(m\left(\sigma^{2}+\log (\min (h, m))\right)\right.$ |
| :--- | :--- | :--- |
| Heap for trie | $O c c)$ |  |\(\quad \begin{aligned} \& O(N \sigma) <br>

\& words\end{aligned}\) [This work]
$n$ is text string length, $\sigma$ is alphabet size, occ is number of pattern occurrences, $m$ is pattern length, $h$ is height of Cartesian Position Heap, $N$ is text trie size.

## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.

| S | 3 | 6 | 4 | 3 | 2 | 8 | 5 | 6 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PD(S)

## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\operatorname{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\mathrm{PD}(\mathrm{S})[i]=0$.
$\begin{array}{lllllllllll}\mathrm{S} & 3 & 6 & 4 & 3 & 2 & 8 & 5 & 6 & 4 & 3\end{array}$
PD(S)


## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\operatorname{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.



## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\mathrm{PD}(\mathrm{S})[i]=0$.

| S | 3 | 6 | 4 | 3 | 2 | 8 | 5 | 6 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{PD}(\mathrm{S})$ | 0 |  |  |  |  |  |  |  |  |  |

## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.



## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.



## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.



## PD encoding [Park et al., 2019]

Definition of PD encoding

- $\mathrm{PD}(\mathrm{S})[i]$ is the distance to the largest position in $\mathrm{S}[1 . . i-1]$ which has a value less than or equal to $\mathrm{S}[i]$.
- If such a position does not exist, then $\operatorname{PD}(\mathrm{S})[i]=0$.



## Relation between CT and PD

Lemma [Park et al., 2019]
For any strings $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$, $\mathrm{CT}\left(\mathrm{S}_{1}\right)=\mathrm{CT}\left(\mathrm{S}_{2}\right) \Leftrightarrow \mathrm{PD}\left(\mathrm{S}_{1}\right)=\operatorname{PD}\left(\mathrm{S}_{2}\right)$


## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{w}_{1}$ | 0 |
| $\mathrm{w}_{2}$ | 00 |
| $\mathrm{w}_{3}$ | 000 |
| $\mathrm{w}_{4}$ | 0100 |
| $\mathrm{w}_{5}$ | 00100 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{7}$ | 0012140 |
| $\mathrm{w}_{8}$ | 00012140 |
| $\mathrm{w}_{9}$ | 010012140 |
| $\mathrm{w}_{10}$ | 0010012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.

$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{w}_{1}$ | 0 |
| $\mathrm{w}_{2}$ | 00 |
| $\mathrm{w}_{3}$ | 000 |
| $\mathrm{w}_{4}$ | 0100 |
| $\mathrm{w}_{5}$ | 00100 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{7}$ | 0012140 |
| $\mathrm{w}_{8}$ | 00012140 |
| $\mathrm{w}_{9}$ | 010012140 |
| $\mathrm{w}_{10}$ | 0010012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{w}_{1}$ | 0 |
| $\mathrm{w}_{2}$ | 00 |
| $\mathrm{w}_{3}$ | 000 |
| $\mathrm{w}_{4}$ | 0100 |
| $\mathrm{w}_{5}$ | 00100 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{7}$ | 0012140 |
| $\mathrm{w}_{8}$ | 00012140 |
| $\mathrm{w}_{9}$ | 010012140 |
| $\mathrm{w}_{10}$ | 0010012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | 0 |
| $\mathrm{~W}_{2}$ | 00 |
| $\mathrm{~W}_{3}$ | 000 |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\rightarrow$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{w}_{1}$ | 0 |
| $\mathrm{w}_{2}$ | $\underline{0}$ |
| $\mathrm{w}_{3}$ | 000 |
| $\mathrm{w}_{4}$ | 0100 |
| $\mathrm{w}_{5}$ | 00100 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{7}$ | 0012140 |
| $\mathrm{w}_{8}$ | 00012140 |
| $\mathrm{w}_{9}$ | 010012140 |
| $\mathrm{w}_{10}$ | 0010012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | 0 |
| $\mathrm{~W}_{2}$ | $\underline{00}$ |
| $\mathrm{~W}_{3}$ | 000 |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{00}$ |
| $\mathrm{~W}_{3}$ | 000 |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{00}$ |
| $\mathrm{~W}_{3}$ | $\underline{000}$ |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{w}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{00}$ |
| $\mathrm{~W}_{3}$ | $\underline{000}$ |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{0}$ |
| $\mathrm{~W}_{3}$ | $\underline{000}$ |
| $\mathrm{~W}_{4}$ | 0100 |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{0}$ |
| $\mathrm{~W}_{3}$ | $\underline{000}$ |
| $\mathrm{~W}_{4}$ | $\underline{0100}$ |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{1}$ | $\underline{0}$ |
| $\mathrm{~W}_{2}$ | $\underline{00}$ |
| $\mathrm{~W}_{3}$ | $\underline{000}$ |
| $\mathrm{~W}_{4}$ | $\underline{0100}$ |
| $\mathrm{~W}_{5}$ | 00100 |
| $\mathrm{~W}_{6}$ | 012140 |
| $\mathrm{~W}_{7}$ | 0012140 |
| $\mathrm{~W}_{8}$ | 00012140 |
| $\mathrm{~W}_{9}$ | 010012140 |
| $\mathrm{~W}_{10}$ | 0010012140 |
| $\mathrm{~W}_{11}$ | 01214512140 |

## Cartesian Position Heap (CPH)

For increasing $k=1, \ldots, n$, traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ with $\mathrm{w}_{k}=\mathrm{PD}\left(\mathrm{T}_{k}\right)$ and insert the next character after the traversal, where $\mathrm{T}_{k}$ is the suffix of T of length $k$.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{w}_{1}$ | $\underline{0}$ |
| $\mathrm{w}_{2}$ | $\underline{00}$ |
| $\mathrm{w}_{3}$ | $\underline{000}$ |
| $\mathrm{w}_{4}$ | $\underline{0100}$ |
| $\mathrm{w}_{5}$ | $\underline{00100}$ |
| $\mathrm{w}_{6}$ | $\underline{012140}$ |
| $\mathrm{w}_{7}$ | $\underline{0012} 140$ |
| $\mathrm{w}_{8}$ | $\underline{00012140}$ |
| $\mathrm{w}_{9}$ | $\underline{010012140}$ |
| $\mathrm{w}_{10}$ | $\underline{0010}$ |
| $\mathrm{w}_{11}$ | $\underline{01214512140}$ |

## Construction of CPH on string

We use reverse suffix link (rsl) instead of naïve traversal.
Example : insert $\mathrm{PD}\left(\mathrm{T}_{k}\right)$

## Our algorithm



Total $O\left(n^{2}\right)$ time

## reverse suffix link on CPH

Let $u$ be a node of CPH, and let $a$ be the number of the pointers representing the PD encoding which point to $u[1]$.
Then, there exists a node $v$ such that $v$ is obtained by removing $u[1]$ from $u$ and chaining the first a 0 's in $u[2 . .|u|]$.
We set rsl from $v$ to $u$ with label $a$.

Example: $a=3$


## reverse suffix link on CPH

Let $u$ be a node of CPH, and let $a$ be the number of the pointers representing the PD encoding which point to $u[1]$.
Then, there exists a node $v$ such that $v$ is obtained by removing $u[1]$ from $u$ and chaining the first a 0 's in $u[2 . .|u|]$.
We set rsl from $v$ to $u$ with label $a$.

Example: $a=3$


CPH

## Constructing CPH for string $(k \geq 2)$

We traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ from node $k-1$ towards the root and find the deepest node which has rsl with appropriate label $a$.


# Constructing CPH for string $(k \geq 2)$ 

We traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ from node $k-1$ towards the root and find the deepest node which has rsl with appropriate label $a$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{10}$ | $\underline{0010012140}$ |
| $\mathrm{~W}_{11}$ | 01214512140 |

The number of changed positions is 2 .

# Constructing CPH for string $(k \geq 2)$ 

We traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ from node $k-1$ towards the root and find the deepest node which has rsl with appropriate label $a$.


$\checkmark$| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{10}$ | $\underline{0010012140}$ |
| $\mathrm{~W}_{11}$ | 01214512140 |

The number of changed positions is 2 .

# Constructing CPH for string $(k \geq 2)$ 

We traverse $\mathrm{CPH}\left(\mathrm{T}_{k-1}\right)$ from node $k-1$ towards the root and find the deepest node which has rsl with appropriate label $a$.


# Constructing CPH for string $(k \geq 2)$ 

We traverse the rsl and insert next character and a new rsl, after traversal.


# Constructing CPH for string $(k \geq 2)$ 

We traverse the rsl and insert next character with new rsl.


| T | 27584365741 |
| :---: | ---: |
| $\mathrm{~W}_{5}$ | $\underline{00100}$ |
| $\mathrm{~W}_{11}$ | $\underline{01214512140}$ |

$$
\begin{array}{c|l|l|l|}
\mathrm{w}_{5}[1 . .3] & 0 & 0 & 1 \\
\mathrm{w}_{11}[1 . .4] & 0 & 1 & 2 \\
1
\end{array}
$$

## Number of rsl's from each node

## Lemma

The number of rsl's from each node in CPH is at most $\sigma+1$.

By the definition of PD, the number of 0 's in PD is at most $\sigma$. So, the range of label of rsl is $[0, \ldots, \sigma]$. The number of rsl which any nodes have is at most $\sigma+1$.


## Number of rsl's from each node

Lemma
The number of rsl's from each node in CPH is at most $\sigma+1$.

By the definition of PD , the number of 0 's in PD is at most $\sigma$. So, the range of label of rsl is $[0, \ldots, \sigma]$. The number of rsl which any nodes have is at most $\sigma+1$.


## Construction time for CPH

- By using a standard amortization analysis, we can show that the total number of traversed nodes for all steps is $O(n)$.
- Since there are at most $\sigma+1$ reversed suffix links at each node, searching for the objective rsl at each node takes $O(\log \sigma)$ time.
$\rightarrow$ We can construct CPH in $O(n \log \sigma)$ total time.

We use binary search to find rsl.


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.

PD(P) $\square$


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.


## Pattern Matching with CPH

1. Traverse $\mathrm{CPH}(\mathrm{T})$ with $\mathrm{PD}(\mathrm{P})$.
2. Split P after the traversal.
3. Continue traversing $\mathrm{CPH}(\mathrm{T})$ with remainder of $\mathrm{PD}(\mathrm{P})$, and go to 2 . If the remainder is nil, go to 4 .
4. Verify the pattern.


## Examples for verification

| P | 23145 |
| :---: | :---: |
| $\mathrm{PD}(\mathrm{P})$ | 01011 |
|  | 010 |




| T | 27584365741 |
| :---: | ---: |
| $\mathrm{PD}\left(\mathrm{T}_{9}\right)$ | 010012140 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{9}$ | 010012140 |

## Examples for verification

| P | 23145 |
| :---: | :---: |
| $\mathrm{PD}(\mathrm{P})$ | 01011 |
|  | 010 |



| T | 27584365741 |
| :---: | ---: |
| $\operatorname{PD}\left(\mathrm{~T}_{9}\right)$ | 010012140 |
| $\mathrm{w}_{6}$ | 012140 |
| $\mathrm{w}_{9}$ | 010012140 |


| $\mathrm{P}^{\prime}$ | 154532 |
| :---: | :---: |
| $\mathrm{PD}\left(\mathrm{P}^{\prime}\right)$ | 012145 |
|  | 0121 |



| T | 27584365741 |
| :---: | ---: |
| $\operatorname{PD}\left(\mathrm{~T}_{11}\right)$ | 01214512140 |
| $\mathrm{w}_{7}$ | 0012140 |
| $\mathrm{w}_{11}$ | 01214512140 |

## Pattern Matching Time

Pattern matching with CPH takes
$O(m(\sigma+\log (\min (h, m)))+o c c)$ time, where $h$ is the height of CPH.

When pattern P spilt $\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{\mathrm{k}}$, let $m_{i}$ is length of $\mathrm{P}_{i}$.

- The traversal take $O\left(m_{i} \log (\min (h, m))\right)$ time.
- Verification take $O\left(m_{i} \sigma\right)$ time.

For length $m_{i}, \Sigma_{i=1}{ }^{\mathrm{k}} m_{i}=m$, matching takes $O(m(\sigma+\log (\min (h, m)))+o c c)$ time using maximal reach pointers (details omitted).

## Lemma

The number of edges from each node in
CPH is at most the node depth.


## Number of edges from each node

Lemma
The number of edges from each node in CPH is at most the node depth.

By the definition of PD , the maximum value in PD of length $l$ is $l-1$. So, the number of edge which any nodes have in CPH is at most the node depth.
Example : $l=4$


## Our Contributions

| Data structure | Const. time | Matching time | space |
| :--- | :--- | :--- | :--- |
| Cartesian Suffix Tree <br> [Park et al., 2020] | $O(n \log n)$ | $O(m \log n+o c c)$ | $O(n)$ <br> words |
| Succinct Index <br> [Kim and Cho, 2021] | $O(n \log n)$ | $O(m \cdot o c c)$ | $3 n+o(n)$ <br> bits |
| Cartesian Position <br> Heap [This work] | $\boldsymbol{O ( n \operatorname { l o g } \boldsymbol { \sigma } )}$ | $\boldsymbol{O}(\boldsymbol{m}(\boldsymbol{\sigma}+\log (\min (\boldsymbol{h}, \boldsymbol{m}))))$ <br> $+\boldsymbol{o c c})$ | $\boldsymbol{O}(\boldsymbol{n})$ <br> words |


| $\begin{array}{l}\text { Cartesian Position } \\ \text { Heap for trie }\end{array}$ | $O(N \sigma)$ | $\begin{array}{l}O\left(m\left(\sigma^{2}+\log (\min (h, m))\right)\right. \\ +o c c)\end{array}$ | $\begin{array}{l}O(N \sigma) \\ \text { words }\end{array}$ |
| :--- | :--- | :--- | :--- |
| This work] |  |  |  |

$n$ is text string length, $\sigma$ is alphabet size, occ is number of pattern occurrences, $m$ is pattern length, $h$ is height of Cartesian Position Heap, $N$ is text trie size.

