
Position Heaps for Cartesian-tree
Matching on Strings and Tries

SPIRE 2021
Akio Nishimoto, Noriki Fujisato, Yuto Nakashima,

and Shunsuke Inenaga
Kyushu University, Japan

1

Background
We want to find substrings of a text that have similar
structures as a pattern.

0
2
4
6
8

10
12

text pattern

2

Background
We want to find substrings of a text that have similar
structures as a pattern.

0
2
4
6
8

10
12

text patternnot similar

3

Background
We want to find substrings of a text that have similar
structures as a pattern.

0
2
4
6
8

10
12

text patternsimilar

This similar substring can be found by
order-preserving matching [Kim et al. 2013].

4

Background
We want to find substrings of a text that have similar
structures as a pattern.

0
2
4
6
8

10
12

text pattern

not similar

We can find this substring for order-preserving matching.

5

Background
We want to find substrings of a text that have similar
structures as a pattern.

0
2
4
6
8

10
12

text pattern similar

We cannot find this substring for order-preserved matching.
But, we can use Cartesian-tree matching [Park et al., 2019].

6

Definition : Cartesian-tree
The Cartesian-tree of a string S, denoted CT(S), is the rooted tree
which is recursively defined as follows.
Each character in string S corresponds to a node in CT(S).
If S[i] is the leftmost minimum value of string S,
・S[i] is root node,
・the left subtree is CT(S[1..i–1]) and,
・the right subtree is CT(S[i+1..n]).

7

S[1..i–1] S[i+1..n]S[i]

root

CT(S[1..i–1]) CT(S[i+1..n])
S

Leftmost minimum value

Example : Cartesian-tree
S = 2513164

8

2 5 1 413 6

The minimum value of string S is 1.
We choose the leftmost 1.

Example : Cartesian-tree
S = 2513164

9

2 5

1

413 6

root

The minimum value of string S is 1.
We choose the leftmost 1.

Example : Cartesian-tree
S = 2513164

10

2 5

1

413 6

The minimum value
of string 3164 is 1.
We choose the leftmost 1.

The minimum value
of string 25 is 2.
We choose the leftmost 2.

root

Example : Cartesian-tree
S = 2513164

11

2

5

1

4

1

3 6

root

The minimum value
of string 3164 is 1.
We choose the leftmost 1.

The minimum value
of string 25 is 2.
We choose the leftmost 2.

Example : Cartesian-tree
S = 2513164

12

2

5

1

4

1

3

6

We continue recursively.

root

Example : Cartesian-tree
S = 2513164

13

2

5

1

4

1

3

6

We continue recursively.

root

Cartesian-tree matching [Park et al., 2019]
Cartesian-tree matching is the problem of finding all positions i,
such that the Cartesian-tree of substring T[i,..,i + m – 1] and that of
pattern P are isomorphic.

13 7 12 9 14

3 1 6 4 8 6 7 4 9

13
7

12
9

14

T

P

3
1

6
4

8

Output : 1

14

Cartesian-tree matching [Park et al., 2019]
Cartesian-tree matching is the problem of finding all positions i,
such that the Cartesian-tree of substring T[i,..,i + m – 1] and that of
pattern P are isomorphic.

13 7 12 9 14

3 1 6 4 8 6 7 4 9

13
7

12
9

14

T

P

1

6
4

8
6

Output : 1

15

Cartesian-tree matching [Park et al., 2019]
Cartesian-tree matching is the problem of finding all positions i,
such that the Cartesian-tree of substring T[i,..,i + m – 1] and that of
pattern P are isomorphic.

13 7 12 9 14

3 1 6 4 8 6 7 4 9

13
7

12
9

14

T

P

6
4

8
6

7

Output : 1,3

16

Cartesian-tree matching [Park et al., 2019]
Cartesian-tree matching is the problem of finding all positions i,
such that the Cartesian-tree of substring T[i,..,i + m – 1] and that of
pattern P are isomorphic.

13 7 12 9 14

13
7

12
9

14

P

3 1 6 4 8 6 7 4 9T

Output : 1,3

4

8
6

7

4

17

Cartesian-tree matching [Park et al., 2019]
Cartesian-tree matching is the problem of finding all positions i,
such that the Cartesian-tree of substring T[i,..,i + m – 1] and that of
pattern P are isomorphic.

13 7 12 9 14

13
7

12
9

14

P

3 1 6 4 8 6 7 4 9T

Output : 1,3

8
6

7

4
9

18

Existing indexing structures
19

n is text length, σ is alphabet size, occ is number of pattern occurrences,
m is pattern length.

Data structure Const. time Pattern locating time space
Cartesian Suffix Tree
[Park et al., 2020]

O(n log n) O(m log n + occ) O(n)
words

Succinct Index
[Kim and Cho, 2021]

O(n log n) O(m�occ) 3n + o(n)
bits

Our Contribution 1

n is text length, σ is alphabet size, occ is number of pattern occurrences,
m is pattern length , h is height of Cartesian Position Heap.

Data structure Const. time Pattern locating time space
Cartesian Suffix Tree
[Park et al., 2020]

O(n log n) O(m log n + occ) O(n)
words

Succinct Index
[Kim and Cho, 2021]

O(n log n) O(m�occ) 3n + o(n)
bits

Cartesian Position
Heap [This work]

O(n log σ) O(m(σ + log(min(h, m)))
+ occ)

O(n)
words

20

Our Contribution 2
Data structure Const. time Matching time space
Cartesian Suffix Tree
[Park et al., 2020]

O(n log n) O(m log n + occ) O(n)
words

Succinct Index
[Kim and Cho, 2021]

O(n log n) O(m�occ) 3n + o(n)
bits

Cartesian Position
Heap [This work]

O(n log σ) O(m(σ + log(min(h, m)))
+ occ)

O(n)
words

21

n is text string length, σ is alphabet size, occ is number of pattern occurrences,
m is pattern length, h is height of Cartesian Position Heap, N is text trie size.

Cartesian Position
Heap for trie
[This work]

O(Nσ) O(m (σ2 + log(min(h,m)))
+ occ)

O(Nσ)
words

Our Contribution 2

n is text string length, σ is alphabet size, occ is number of pattern occurrences,
m is pattern length, h is height of Cartesian Position Heap, N is text trie size.

Data structure Const. time Matching time space
Cartesian Suffix Tree
[Park et al., 2020]

O(n log n) O(m log n + occ) O(n)
words

Succinct Index
[Kim and Cho, 2021]

O(n log n) O(m�occ) 3n + o(n)
bits

Cartesian Position
Heap [This work]

O(n log σ) O(m(σ + log(min(h, m)))
+ occ)

O(n)
words

Cartesian Position
Heap for trie
[This work]

O(Nσ) O(m (σ2 + log(min(h,m)))
+ occ)

O(Nσ)
words

22

PD encoding [Park et al., 2019]
23

Definition of PD encoding

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

3 6 4 3 2 8 5 6 4 3S
PD(S)

PD encoding [Park et al., 2019]
24

3 6 4 3 2 8 5 6 4 3S
PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
25

0
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
26

0
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
27

0 1
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
28

0 1 2
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
29

0 1 2 3
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

PD encoding [Park et al., 2019]
30

0 1 2 3 0 1 2 1 4 5
3 6 4 3 2 8 5 6 4 3S

PD(S)

• PD(S)[i] is the distance to the largest position in S[1..i–1]
which has a value less than or equal to S[i].

• If such a position does not exist, then PD(S)[i] = 0.

Definition of PD encoding

Relation between CT and PD

root

S1 3 1 6 4 8 6 7 5 9
PD(S1) 0 0 1 2 1 2 1 4 1

S2 7 1 3 2 8 6 9 4 5
PD(S2) 0 0 1 2 1 2 1 4 1

root

Lemma [Park et al., 2019]

=

=

For any strings S1 and S2 ,
CT(S1) = CT(S2) ⇔PD(S1) = PD(S2)

31

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

root

32

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

root

33

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

root

34

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

root

35

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

root

36

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

2

0

root

37

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

2

0

root

38

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

1
0

2

0

root

39

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

3

1
0

2

0

0

root

40

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

3

1
0

2

0

0

root

41

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

3

1
0

2

0

0

root

42

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

4

3

1
0

2

0

0

1

root

43

Cartesian Position Heap (CPH)
For increasing k = 1, …, n, traverse CPH(Tk–1) with
wk = PD(Tk) and insert the next character after the traversal,
where Tk is the suffix of T of length k.

T 27584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140

4

53

1

6

0

2

8 10 11

9

7

0

0 0

01

1

1

12

2

root

44

Construction of CPH on string
We use reverse suffix link (rsl) instead of naïve traversal.

Example : insert PD(Tk)

k–1 k

Naïve

root

k–1 k

root

Our algorithm

O(n) nodes

Total O(n2) time Total O(n) time

Amortized O(1) nodes rsl

45

reverse suffix link on CPH
Let u be a node of CPH, and let a be the number of the pointers
representing the PD encoding which point to u[1].
Then, there exists a node v such that v is obtained by removing
u[1] from u and chaining the first a 0’s in u[2..|u|].
We set rsl from v to u with label a. root

v

u

001010

0121410

46

v 0 0 1 0 1 0

u 1 2 1 4 1 00

CPH

Example : a = 3

a = 3

reverse suffix link on CPH
Let u be a node of CPH, and let a be the number of the pointers
representing the PD encoding which point to u[1].
Then, there exists a node v such that v is obtained by removing
u[1] from u and chaining the first a 0’s in u[2..|u|].
We set rsl from v to u with label a. root

v

u

001010

0121410

47

v 0 0 1 0 1 0

u’ 0 0 1 0 1 0

CPH

Example : a = 3

a = 3

Constructing CPH for string (k ≥ 2)
We traverse CPH(Tk–1) from node k–1 towards the root and
find the deepest node which has rsl with appropriate label a.

T 27584365741
w10 0010012140
w11 01214512140

4

53

1

6

0

2

8 10

9

7

0

0 0

01

1

1

2

2

k = 11
root

The number of
changed positions is 3.

To find rsl having
label 3

48

Constructing CPH for string (k ≥ 2)

4

53

1

6

0

2

8 10

9

7

0

0 0

01

1

1

2

2

0

To find rsl having
label 2

root T 27584365741
w10 0010012140
w11 01214512140

The number of
changed positions is 2.

We traverse CPH(Tk–1) from node k–1 towards the root and
find the deepest node which has rsl with appropriate label a.

49

Constructing CPH for string (k ≥ 2)
We traverse CPH(Tk–1) from node k–1 towards the root and
find the deepest node which has rsl with appropriate label a.

4

53

1

6

0

2

8 10

9

7

0

0 0

01

1

1

2

22

1

0

root
To find rsl having

label 2

T 27584365741
w10 0010012140
w11 01214512140

The number of
changed positions is 2.

50

Constructing CPH for string (k ≥ 2)
We traverse CPH(Tk–1) from node k–1 towards the root and
find the deepest node which has rsl with appropriate label a.

4

53

1

6

0

2

8 10

9

7

0

0 0

01

1

1

2

22

root
Traverse this rsl

T 27584365741
w10 0010012140
w11 01214512140

51

Constructing CPH for string (k ≥ 2)
We traverse the rsl and insert next character and a new rsl,
after traversal.

4

53

1

6

0

2

8 10 11

9

7

0

0 0

01

1

1

12

22

root T 27584365741
w10 0010012140
w11 01214512140

Insert new node

52

Constructing CPH for string (k ≥ 2)
We traverse the rsl and insert next character with new rsl.

4

53

1

6

0

2

8 10 11

9

7

0

0 0

01

1

1

12

2

2

2

root T 27584365741
w5 00100
w11 01214512140

Insert new rsl

w5[1..3] 0 0 1
w11[1..4] 0 1 2 1

53

Number of rsl’s from each node
Lemma
The number of rsl’s from each node in CPH is at most σ+1.

By the definition of PD, the number of 0’s in PD is at most σ.
So, the range of label of rsl is [0, …, σ].
The number of rsl which any nodes have is at most σ+1.

0 0 1 0PD(T)

4 3 2T > >

root

v

u4

0010

01214

CPH
u1 u2 u3

01210

01010

00010

0 1 2 3

54

Number of rsl’s from each node
Lemma
The number of rsl’s from each node in CPH is at most σ+1.

By the definition of PD, the number of 0’s in PD is at most σ.
So, the range of label of rsl is [0, …, σ].
The number of rsl which any nodes have is at most σ+1.

0 0 1 0

0 0 1 00
1 0 1 00
1 2 1 00
1 2 1 40

root

v

u4

0010

01214

CPH
u1 u2 u3

01210

01010

00010

0 1 2 3

a = 0
a = 1
a = 2
a = 3

55

Construction time for CPH
• By using a standard amortization analysis, we can show that the

total number of traversed nodes for all steps is O(n).
• Since there are at most σ+1 reversed suffix links at each node,

searching for the objective rsl at each node takes O(log σ) time.
We can construct CPH in O(n log σ) total time.

We use binary search to find rsl.

root

56

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

CPH

57

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

CPH

58

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

PD(P’)

CPH

59

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

PD(P’)

CPH

60

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

PD(P’)

PD(P’’)

CPH

61

Pattern Matching with CPH
1. Traverse CPH(T) with PD(P).
2. Split P after the traversal.
3. Continue traversing CPH(T) with remainder of PD(P),

and go to 2. If the remainder is nil, go to 4.
4. Verify the pattern.

PD(P)

PD(P’)

PD(P’’)

verification

CPH

verification

62

Examples for verification
P 23145

PD(P) 01011
010 01

T 27584365741
PD(T9) 010012140

w6 012140
w9 010012140

53

2

1

69

4
0

8 710 11

0

0 0

01

1

1

12

2

root

63

Examples for verification
P’ 154532

PD(P’) 012145
0121 00

T 27584365741
PD(T11) 01214512140

w7 0012140
w11 01214512140

53

2

1

69

4
0

8 710 11

0

0 0

01

1

1

12

2

root

P 23145
PD(P) 01011

010 01

T 27584365741
PD(T9) 010012140

w6 012140
w9 010012140

53

2

1

69

4
0

8 710 11

0

0 0

01

1

1

12

2

root

64

Pattern Matching Time
Pattern matching with CPH takes
O(m(σ+log(min(h,m)))+occ) time, where h is the height of
CPH.

When pattern P spilt P=P1P2…Pk ,let mi is length of Pi .
• The traversal take O(mi log(min(h,m))) time.
• Verification take O(miσ) time.

For length mi, Σi=1
kmi = m ,

matching takes O(m(σ+log(min(h,m)))+occ) time
using maximal reach pointers (details omitted).

root

m

h
Lemma
The number of edges from each node in
CPH is at most the node depth.

65

Number of edges from each node
Lemma
The number of edges from each node in CPH is at most the node
depth.

By the definition of PD, the maximum value in PD of length l is l–1.
So, the number of edge which any nodes have in CPH is at most the
node depth.

0 1 1 0PD(T)

0 1 1 3PD(T)

Example : l = 4
CPH

root

011

0 1 2 3
height is 4

66

Our Contributions
67

Data structure Const. time Matching time space
Cartesian Suffix Tree
[Park et al., 2020]

O(n log n) O(m log n + occ) O(n)
words

Succinct Index
[Kim and Cho, 2021]

O(n log n) O(m�occ) 3n + o(n)
bits

Cartesian Position
Heap [This work]

O(n log σ) O(m(σ + log(min(h, m)))
+ occ)

O(n)
words

n is text string length, σ is alphabet size, occ is number of pattern occurrences,
m is pattern length, h is height of Cartesian Position Heap, N is text trie size.

Cartesian Position
Heap for trie
[This work]

O(Nσ) O(m (σ2 + log(min(h,m)))
+ occ)

O(Nσ)
words

	Position Heaps for Cartesian-tree Matching on Strings and Tries
	Background
	Background
	Background
	Background
	Background
	Definition : Cartesian-tree
	Example : Cartesian-tree
	Example : Cartesian-tree
	Example : Cartesian-tree
	Example : Cartesian-tree
	Example : Cartesian-tree
	Example : Cartesian-tree
	Cartesian-tree matching [Park et al., 2019]
	Cartesian-tree matching [Park et al., 2019]
	Cartesian-tree matching [Park et al., 2019]
	Cartesian-tree matching [Park et al., 2019]
	Cartesian-tree matching [Park et al., 2019]
	Existing indexing structures
	Our Contribution 1
	Our Contribution 2
	Our Contribution 2
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	PD encoding [Park et al., 2019]
	Relation between CT and PD
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Cartesian Position Heap (CPH)
	Construction of CPH on string
	reverse suffix link on CPH
	reverse suffix link on CPH
	Constructing CPH for string (k ≥ 2)
	Constructing CPH for string (k ≥ 2)
	Constructing CPH for string (k ≥ 2)
	Constructing CPH for string (k ≥ 2)
	Constructing CPH for string (k ≥ 2)
	Constructing CPH for string (k ≥ 2)
	Number of rsl’s from each node
	Number of rsl’s from each node
	Construction time for CPH
	Pattern Matching with CPH
	Pattern Matching with CPH
	Pattern Matching with CPH
	Pattern Matching with CPH
	Pattern Matching with CPH
	Pattern Matching with CPH
	Examples for verification
	Examples for verification
	Pattern Matching Time
	Number of edges from each node
	Our Contributions

