Position Heaps for Cartesian-tree Matching on Strings and Tries

SPIRE 2021

Akio Nishimoto, Noriki Fujisato, Yuto Nakashima, and Shunsuke Inenaga

Kyushu University, Japan

We want to find substrings of a text that have similar structures as a pattern.

We want to find substrings of a text that have similar structures as a pattern.

We want to find substrings of a text that have similar structures as a pattern.

This similar substring can be found by order-preserving matching [Kim et al. 2013].

We want to find substrings of a text that have similar structures as a pattern.

We can find this substring for order-preserving matching.

We want to find substrings of a text that have similar structures as a pattern.

We cannot find this substring for order-preserved matching. But, we can use Cartesian-tree matching [Park et al., 2019].

Definition: Cartesian-tree

The Cartesian-tree of a string S, denoted CT(S), is the rooted tree which is recursively defined as follows.

Each character in string S corresponds to a node in CT(S).

If S[i] is the leftmost minimum value of string S,

- S[i] is root node,
- the left subtree is CT(S[1..i-1]) and,
- the right subtree is CT(S[i+1..n]).

S = 2513164

The minimum value of string S is 1. We choose the leftmost 1.

S = 2513164

The minimum value of string S is 1. We choose the leftmost 1.

root 1

[2] [5] [3] [1] [6] [4

S = 2513164

root 1

2 | 5

3

1

6

4

The minimum value of string 25 is 2. We choose the leftmost 2.

The minimum value of string 3164 is 1. We choose the leftmost 1.

$$S = 2513164$$

The minimum value of string 25 is 2.
We choose the leftmost 2.

The minimum value of string 3164 is 1. We choose the leftmost 1.

$$S = 2513164$$

We continue recursively.

$$S = 2513164$$

We continue recursively.

Cartesian-tree matching is the problem of finding all positions i, such that the Cartesian-tree of substring T[i,...,i+m-1] and that of pattern P are isomorphic.

Output: 1

Cartesian-tree matching is the problem of finding all positions i, such that the Cartesian-tree of substring T[i,...,i+m-1] and that of pattern P are isomorphic.

Cartesian-tree matching is the problem of finding all positions i, such that the Cartesian-tree of substring T[i,...,i+m-1] and that of pattern P are isomorphic.

Output: 1,3

Cartesian-tree matching is the problem of finding all positions i, such that the Cartesian-tree of substring T[i,...,i+m-1] and that of pattern P are isomorphic.

Output: 1,3

Cartesian-tree matching is the problem of finding all positions i, such that the Cartesian-tree of substring T[i,...,i+m-1] and that of pattern P are isomorphic.

Output: 1,3

Existing indexing structures

Data structure	Const. time	Pattern locating time	space
Cartesian Suffix Tree [Park et al., 2020]	$O(n \log n)$	$O(m \log n + occ)$	O(n) words
Succinct Index [Kim and Cho, 2021]	$O(n \log n)$	$O(m \cdot occ)$	3n + o(n) bits

n is text length, σ is alphabet size, occ is number of pattern occurrences, m is pattern length.

Our Contribution 1

Data structure	Const. time	Pattern locating time	space
Cartesian Suffix Tree [Park et al., 2020]	$O(n \log n)$	$O(m \log n + occ)$	O(n) words
Succinct Index [Kim and Cho, 2021]	$O(n \log n)$	$O(m \cdot occ)$	3n + o(n) bits
Cartesian Position Heap [This work]	$O(n \log \sigma)$	$O(m(\sigma + \log(\min(h, m))) + occ)$	O(n) words

n is text length, σ is alphabet size, occ is number of pattern occurrences, m is pattern length, h is height of Cartesian Position Heap.

Our Contribution 2

Data structure	Const. time	Matching time	space
Cartesian Suffix Tree [Park et al., 2020]	$O(n \log n)$	$O(m \log n + occ)$	O(n) words
Succinct Index [Kim and Cho, 2021]	$O(n \log n)$	$O(m \cdot occ)$	3n + o(n) bits
Cartesian Position Heap [This work]	$O(n \log \sigma)$	$O(m(\sigma + \log(\min(h, m))) + occ)$	O(n) words

Cartesian Position	$O(N\sigma)$	$O(m (\sigma^2 + \log(\min(h,m))))$	$O(N\sigma)$
Heap for trie		+ <i>occ</i>)	words
[This work]			

n is text string length, σ is alphabet size, occ is number of pattern occurrences, m is pattern length, h is height of Cartesian Position Heap, N is text trie size.

Our Contribution 2

Data structure	Const. time	Matching time	space
Cartesian Suffix Tree [Park et al., 2020]	$O(n \log n)$	$O(m \log n + occ)$	O(n) words
Succinct Index [Kim and Cho, 2021]	$O(n \log n)$	$O(m \cdot occ)$	3n + o(n) bits
Cartesian Position Heap [This work]	$O(n \log \sigma)$	$O(m(\sigma + \log(\min(h, m))) + occ)$	O(n) words

Cartesian Position	$O(N\sigma)$	$O(m (\sigma^2 + \log(\min(h,m))))$	$O(N\sigma)$
Heap for trie		+ <i>occ</i>)	words
[This work]			

n is text string length, σ is alphabet size, occ is number of pattern occurrences, m is pattern length, h is height of Cartesian Position Heap, N is text trie size.

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

```
S 3 6 4 3 2 8 5 6 4 3 PD(S)
```

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

```
S 3 6 4 3 2 8 5 6 4 3 PD(S)
```

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

```
S 3 6 4 3 2 8 5 6 4 3 PD(S) 0
```

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

```
S 3 6 4 3 2 8 5 6 4 3 PD(S) 0
```

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value **less than** or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value **less than** or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or **equal to** S[i].
- If such a position does not exist, then PD(S)[i] = 0.

- PD(S)[i] is the distance to the largest position in S[1..i-1] which has a value less than or equal to S[i].
- If such a position does not exist, then PD(S)[i] = 0.

Relation between CT and PD

Lemma [Park et al., 2019]

For any strings
$$S_1$$
 and S_2 ,
 $CT(S_1) = CT(S_2) \Leftrightarrow PD(S_1) = PD(S_2)$

T	27584365741
\mathbf{W}_1	0
\mathbf{W}_2	00
W ₃	000
W_4	0100
W5	00100
W_6	012140
\mathbf{W}_7	0012140
\mathbf{W}_{8}	00012140
W9	010012140
\mathbf{W}_{10}	0010012140
W ₁₁	01214512140

T	27584365741
\mathbf{W}_1	<u>0</u>
\mathbf{W}_2	00
W ₃	000
W_4	0100
W5	00100
\mathbf{W}_{6}	012140
W_7	0012140
\mathbf{W}_{8}	00012140
W 9	010012140
\mathbf{W}_{10}	0010012140
W ₁₁	01214512140

T	27584365741
\mathbf{w}_1	<u>0</u>
W_2	<u>0</u> 0
W ₃	000
W_4	0100
W5	00100
\mathbf{W}_{6}	012140
W_7	0012140
\mathbf{W}_{8}	00012140
W 9	010012140
\mathbf{W}_{10}	0010012140
\mathbf{w}_{11}	01214512140

For increasing k = 1, ..., n, traverse CPH(T_{k-1}) with $w_k = PD(T_k)$ and insert the next character after the traversal, where T_k is the suffix of T of length k.

 W_{11}

27584365741

01214512140

T	27584365741
\mathbf{w}_1	<u>0</u>
W_2	<u>00</u>
W_3	000
W_4	0100
W5	00100
W_6	012140
W_7	0012140
\mathbf{W}_{8}	00012140
W 9	010012140
\mathbf{W}_{10}	0010012140
\mathbf{w}_{11}	01214512140

T	27584365741
\mathbf{W}_1	<u>0</u>
\mathbf{W}_2	<u>00</u>
W3	000
W_4	0100
W5	00100
W_6	012140
W_7	0012140
\mathbf{W}_{8}	00012140
W 9	010012140
\mathbf{W}_{10}	0010012140
\mathbf{w}_{11}	01214512140

	T	27584365741
	\mathbf{W}_1	<u>0</u>
	W_2	<u>00</u>
	W3	<u>000</u>
>	W_4	<u>01</u> 00
	W_5	00100
	W_6	012140
	W7	0012140
	\mathbf{W}_{8}	00012140
	W 9	010012140
	W_{10}	0010012140
	\mathbf{w}_{11}	01214512140

T	27584365741
\mathbf{w}_1	<u>0</u>
\mathbf{W}_2	<u>00</u>
W ₃	000
W ₄	<u>01</u> 00
W_5	<u>001</u> 00
W ₆	<u>012</u> 140
W ₇	<u>0012</u> 140
\mathbf{W}_{8}	<u>0001</u> 2140
W9	<u>010</u> 012140
W ₁₀	<u>0010</u> 012140
W ₁₁	<u>0121</u> 4512140

Construction of CPH on string

We use reverse suffix link (rsl) instead of naïve traversal.

reverse suffix link on CPH

Let u be a node of CPH, and let a be the number of the pointers representing the PD encoding which point to u[1].

Then, there exists a node v such that v is obtained by removing u[1] from u and chaining the first a 0's in u[2..|u|].

We set rsl from v to u with label a.

Example : a = 3

 ν

0 0 1 0 1 0

reverse suffix link on CPH

Let u be a node of CPH, and let a be the number of the pointers representing the PD encoding which point to u[1].

Then, there exists a node v such that v is obtained by removing u[1] from u and chaining the first a 0's in u[2..|u|].

We set rsl from v to u with label a.

Example : a = 3

 ν

0 0 1 0 1 0

u'

We traverse CPH(T_{k-1}) from node k-1 towards the root and find the deepest node which has rsl with appropriate label a.

_		
	T	27584365741
	\mathbf{w}_{10}	<u>0010</u> 012140
	W11	01214512140

k = 11

The number of changed positions is 3.

We traverse $CPH(T_{k-1})$ from node k-1 towards the root and find the deepest node which has rsl with appropriate label a.

T	27584365741
W_{10}	<u>001</u> 0012140
\mathbf{w}_{11}	012 14512140

The number of changed positions is 2.

We traverse CPH(T_{k-1}) from node k-1 towards the root and find the deepest node which has rsl with appropriate label a.

T	27584365741
\mathbf{W}_{10}	<u>0010</u> 012140
\mathbf{W}_{11}	012 14512140

The number of changed positions is 2.

We traverse CPH(T_{k-1}) from node k-1 towards the root and find the deepest node which has rsl with appropriate label a.

T	27584365741	
\mathbf{W}_{10}	<u>0010</u> 012140	
W ₁₁	<u>012</u> 14512140	

We traverse the rsl and insert next character and a new rsl, after traversal.

We traverse the rsl and insert next character with new rsl.

T	27584365741
W5	<u>001</u> 00
\mathbf{w}_{11}	<u>0121</u> 4512140

Number of rsl's from each node

Lemma

The number of rsl's from each node in CPH is at most $\sigma+1$.

By the definition of PD, the number of 0's in PD is at most σ .

So, the range of label of rsl is $[0, ..., \sigma]$.

The number of rsl which any nodes have is at most $\sigma+1$.

root

Number of rsl's from each node

Lemma

The number of rsl's from each node in CPH is at most $\sigma+1$.

By the definition of PD, the number of 0's in PD is at most σ .

So, the range of label of rsl is $[0, ..., \sigma]$.

The number of rsl which any nodes have is at most $\sigma+1$.

root

Construction time for CPH

- By using a standard amortization analysis, we can show that the total number of traversed nodes for all steps is O(n).
- Since there are at most $\sigma+1$ reversed suffix links at each node, searching for the objective rsl at each node takes $O(\log \sigma)$ time.
- \rightarrow We can construct CPH in $O(n \log \sigma)$ total time.

We use binary search to find rsl.

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.
- 4. Verify the pattern.

PD(P)

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.
- 4. Verify the pattern.

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.
- 4. Verify the pattern.

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.
- 4. Verify the pattern.

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.
- 4. Verify the pattern.

- 1. Traverse CPH(T) with PD(P).
- 2. Split P after the traversal.
- 3. Continue traversing CPH(T) with remainder of PD(P), and go to 2. If the remainder is nil, go to 4.

Examples for verification

P	231	45
PD(P)	010	11
	010	01

T	27584365741
PD(T ₉)	010012140
W ₆	012140
W9	<mark>010</mark> 012140

Examples for verification

P	23145
PD(P)	01011
	010 01

T	27584365741
PD(T ₉)	010012140
W ₆	012140
W9	010 012140

P'	154532	
PD(P')	012145	
	0121	00

T	27584365741
$PD(T_{11})$	01214512140
W7	0012140
\mathbf{W}_{11}	0121 4512140

Pattern Matching Time

Pattern matching with CPH takes $O(m(\sigma + \log(\min(h, m))) + occ)$ time, where h is the height of CPH.

When pattern P spilt $P=P_1P_2...P_k$, let m_i is length of P_i .

- The traversal take $O(m_i \log(\min(h, m)))$ time.
- Verification take $O(m_i \sigma)$ time.

For length m_i , $\Sigma_{i=1}{}^k m_i = m$, matching takes $O(m(\sigma + \log(\min(h, m))) + occ)$ time using maximal reach pointers (details omitted).

Lemma

The number of edges from each node in CPH is at most the node depth.

Number of edges from each node

Lemma

The number of edges from each node in CPH is at most the node depth.

By the definition of PD, the maximum value in PD of length l is l–1. So, the number of edge which any nodes have in CPH is at most the node depth.

Example : l = 4

PD(T) 0 1 1 0

Our Contributions

Data structure	Const. time	Matching time	space
Cartesian Suffix Tree [Park et al., 2020]	$O(n \log n)$	$O(m \log n + occ)$	O(n) words
Succinct Index [Kim and Cho, 2021]	$O(n \log n)$	$O(m \cdot occ)$	3n + o(n) bits
Cartesian Position Heap [This work]	$O(n \log \sigma)$	$O(m(\sigma + \log(\min(h, m))) + occ)$	O(n) words

Cartesian Position	$O(N\sigma)$	$O(m (\sigma^2 + \log(\min(h, m)))$	$O(N\sigma)$
Heap for trie		+ <i>occ</i>)	words
[This work]			

n is text string length, σ is alphabet size, occ is number of pattern occurrences, m is pattern length, h is height of Cartesian Position Heap, N is text trie size.