On the approximation ratio of LZ-End to LZ77

<u>Takumi Ideue</u>, Takuya Mieno, Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Masayuki Takeda Kyushu University, Japan

LZ77 vs LZ-End

LZ77 [Ziv and Lempel, 1977] is the smallest greedy parsing allowing for left-to-right (de)compression.

LZ-End [Kreft and Navarro, 2013] is an LZ77-like parsing allowing for fast substring extraction, but the number of its phrases is larger than that of LZ77.

Theorem: [This work]

There exist **binary** strings S such that:

$$\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \to 2 \ (|S| \to \infty).$$

 $z_{End}(S)$: # of LZ-End phrases of S $z_{77}(S)$: # of LZ77 phrases of S

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i ($1 \le i \le z - 1$) satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_r$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of Twhich occurs in $p_1 \cdots p_{i-1}$.

z is the number

of phrases

E.g.)
$$1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17$$

$$LZ_{77}(T) = a b a a b a b b a b b a b a b b a b b$$

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = a b a a b a b b a b b a b a a b b$$
First occurrence

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number

of phrases

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = a b a b a b b a b a b a a b b$$

The longest prefix of p_4 …

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = a b a b a b b a b b a b a b b$$

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = a b a b a b b a b b a b a b b$$

Non-overlapping

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = a b a b a b b a b b a b b a b b$$

The longest prefix of p_5 …

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

z is the number of phrases

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{77}(T) = \underline{a} \, \underline{b} \, \underline{a} \, \underline{a} \, \underline{b} \, \underline{a} \, \underline{b} \, \underline{b} \, \underline{a} \, \underline{b} \, \underline{b} \, \underline{b} \, \underline{a} \, \underline{b} \, \underline{b} \, \underline{b} \, \underline{a} \, \underline{b} \, \underline{b} \, \underline{b}$$

The longest prefix of p_6

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string T is the factorization $LZ_{77}(T) = p_1, ..., p_z$ of T such that: Each phrase p_i $(1 \le i \le z - 1)$ satisfies the following condition.

• $p_i[1, |p_i| - 1]$ is the longest prefix of $p_i \cdots p_z$ which occurs in $p_1 \cdots p_{i-1}$.

The last phrase p_z can be a suffix of T which occurs in $p_1 \cdots p_{i-1}$.

$$z_{77}(T) = 6$$
 The number of the LZ77 phrases of T

z is the number

of phrases

Definition:

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

z' is the number of phrases

Each phrase q_i $(1 \le i \le z' - 1)$ satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

E.g.)
$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17$$

$$LZ_{End}(T) = a b a a b a b b a b b a b a a b b b$$

Definition:

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_r$ of T such that:

z' is the number of phrases

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_j$ for some j < i.

The last phrase q_z can be a suffix of T which occurs as a suffix of $q_1 \cdots q_i$ for some j < z'.

Definition:

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

z' is the number of phrases

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Definition:

z' is the number of phrases

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$, of T such that:

Each phrase q_i $(1 \le i \le z' - 1)$ satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of q_1

The longest prefix of q_3 ···

Definition:

The LZ-End factorization of a string *T* is

z' is the number of phrases

the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

Each phrase q_i $(1 \le i \le z' - 1)$ satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of q_1q_2

The longest prefix of q_4 …

Definition:

z' is the number of phrases

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$, of T such that:

Each phrase q_i $(1 \le i \le z' - 1)$ satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of q_1q_2

The longest prefix of $q_5 \cdots$

Definition:

z' is the number of phrases

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_j$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of $q_1q_2q_3q_4q_5$

The longest prefix of $q_6 \cdots$

Definition:

z' is the number of phrases

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of $q_1q_2q_3$

The longest prefix of q_7 ...

Definition:

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

z' is the number of phrases

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be **a suffix** of T which occurs as a suffix of $q_1 \cdots q_j$ for some j < z'.

Suffix of q_1q_2

The longest prefix of q_8 and a suffix of T

Definition:

The LZ-End factorization of a string T is the factorization $LZ_{End}(T) = q_1, ..., q_z$ of T such that:

z' is the number of phrases

Each phrase q_i ($1 \le i \le z' - 1$) satisfies the following condition.

• $q_i[1, |q_i| - 1]$ is the longest prefix of $q_i \cdots q_z$, which occurs as a suffix of $q_1 \cdots q_i$ for some j < i.

The last phrase q_z can be a suffix of T which occurs as a suffix of $q_1 \cdots q_i$ for some i < z.

$$z_{End}(T) = 8$$
 The number of the LZ-End phrases of T

The ratio z_{End} / z_{77}

It is known that $z_{End}(T) \ge z_{77}(T)$ for any string T. Then how much is the gap between them? To analyze this, we consider the ratio z_{End}/z_{77} .

In this case,

$$\frac{z_{\text{End}}(T)}{z_{77}(T)} = \frac{8}{6} = 1.333 \cdots.$$

There exist strings
$$T$$
 of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that: $\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$

Theorem 1: [Kreft and Navarro, 2013]

There exist strings T of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that: $\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$ $\Sigma = \{1, 2, ..., \sigma\}$

E.g.)
$$T = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

$$LZ_{77}(T) = 1 \ 12 \ 1113 \ 2114 \ 325 \ 436 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

 $LZ_{End}(T) = 1 \ 12 \ 113 \ 214 \ 325 \ 436 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$

There exist strings
$$T$$
 of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that:
$$\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$$

$$\Sigma = \{1, 2, ..., \sigma\}$$

E.g.)
$$T = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

$$LZ_{77}(T) = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

$$LZ_{End}(T) = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

There exist strings
$$T$$
 of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that:
$$\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$$
 $\Sigma = \{1, 2, ..., \sigma\}$

E.g.)
$$T = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$
 $z_{77}(T) = \sigma$

$$LZ_{77}(T) = 1 \ 12 \ 113 \ 214 \ 325 \ 436 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

 $LZ_{End}(T) = 1 \ 12 \ 113 \ 214 \ 325 \ 436 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$

$$z_{End}(T) = 2(\sigma - 1)$$

There exist strings
$$T$$
 of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that:
$$\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$$

$$\Sigma = \{1, 2, ..., \sigma\}$$

E.g.)
$$T = 1 \ 1 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \ 4 \ 3 \ 2 \ 5 \ 4 \ 3 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

$$z_{77}(T) = \sigma$$

$$LZ_{77}(T) = 1 \ 12 \ 1113 \ 2114 \ 325 \ 436 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$$

 $LZ_{End}(T) = 1 \ 12 \ 11 \ 3 \ 21 \ 4 \ 32 \ 5 \ 43 \ 6 \ \dots \ (\sigma - 2)(\sigma - 3)\sigma$

$$z_{\rm End}(T) = 2(\sigma - 1)$$

$$\frac{z_{\text{End}}(T)}{z_{77}(T)} = \frac{2(\sigma - 1)}{\sigma} = 2 (|T| \to \infty, \sigma \to \infty)$$

Main result

Theorem 1: [Kreft and Navarro, 2013]

There exist strings T of alphabet size $\sigma = \frac{|T|}{3} + 1$ such that: $\frac{z_{\rm End}(T)}{z_{77}(T)} \to 2 \ (|T| \to \infty).$

Theorem 2: [This work]

There exist strings S of alphabet size $\sigma = 2$ such that:

$$\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \to 2 \ (|S| \to \infty).$$

The string *S* in Theorem 2 is the period-doubling sequence.

Definition:

The k-th period-doubling sequence S_k over $\Sigma = \{a, b\}$ is defined as follows:

- $S_0 = a$
- $S_k = S_{k-1} \cdot S_{k-1}[1, n_{k-1}-1] \cdot \overline{c} \quad (k \ge 1)$

 n_{k-1} is the length of S_{k-1} , that is $n_{k-1} = |S_{k-1}|$.

c is the last character of S_{k-1} , that is $c = S_{k-1}[n_{k-1}]$.

 \overline{c} is bit-flipped character of c.

Intuition:

$$S_0 = a$$

Intuition:

$$S_0 = \boxed{\mathbf{a}}$$

$$S_1 = \mathbf{a} \mathbf{b}$$

Intuition:

$$S_0 = a$$

$$S_1 = a b$$

$$S_2 = a b a a$$

Intuition:

$$S_0 = a$$

$$S_1 = a b$$

$$S_2 = a b a a$$

$$S_3 = abaaabab$$

Intuition:

Copy the first half and flip the last character.

Intuition:

$$S_0 = a$$

$$S_1 = a b$$

$$S_2 = a b a a$$

$$S_3 = a b a a a b a b$$

$$S_4 = \underline{a b a a a b a b a b a a a b a a}$$

•

$$S_k[1,2^k-1] \qquad S_k[2^k] \qquad S_k[1,2^k-1] \qquad \overline{S_k[2^k]}$$

$$S_{k+1}$$

LZ77 of period-doubling sequences S_k

$$LZ_{77}(S_1) = ab$$

 $LZ_{77}(S_{k+1})$

$$LZ_{77}(S_2) = abaa$$

$$LZ_{77}(S_2) = \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} |$$

$$LZ_{77}(S_3) = \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} |$$

$$LZ_{77}(S_4) = \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} |$$

$$LZ_{77}(S_4) = \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} | \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} |$$

$$LZ_{77}(S_5) = \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} | \mathbf{a} | \mathbf{b} | \mathbf{a} | \mathbf{a} | \mathbf{a} | \mathbf{b} |$$

$$S_k[1, 2^k - 1] \qquad S_k[2^k] \qquad S_k[1, 2^k - 1] \qquad \overline{S_k[2^k]}$$

LZ77 Phrase =

Non-overlapping

From definition of period-doubling sequence and LZ77, $z_{77}(S_k) = k + 1.$

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = abaaabaabaabaabaa$$

Ends with the 1st phrase

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = abaaabaabaabaabaa$$

$$LZ_{End}(S_5) = \underline{ab}$$
aa \underline{ab} ababaaabaaabaaababababaabb

Ends with the 2nd phrase

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = abaabaabaabaabaa$$

Ends with the 4th phrase

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = abaaabaabaabaabaa$$

Ends with the 4th phrase

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = abaaabaabaabaabaa$$

Ends with the 5th phrase

$$LZ_{End}(S_1) = ab$$

$$LZ_{End}(S_2) = abaa$$

$$LZ_{End}(S_3) = abaabab$$

$$LZ_{End}(S_4) = a b a a a b a b a b a a a b a a$$

Ends with the 4th phrase

The last phrase of $LZ_{End}(S_k)$ is not always $LZ_{End}(S_{k+1})$ phrase.

From definition of period-doubling sequence and LZ-End, $z_{\text{End}}(S_k) = 2k - O(\log^* k)$.

Observation 1:

$$LZ_{End}(S_4)$$
abaababaabaa

 $LZ_{End}(S_6)$

abaa ababaa abaa abaa abababaa abababaa abababaa ababaa abaa abaa

Observation 1:

$$LZ_{End}(S_4)$$
 abaababaabaa

Observation 1:

$$LZ_{End}(S_4)$$
abaababaabaa
6

The length of the last LZ-End phrase decreases by 1 until the length of the last phrase becomes 1.

Increase of LZ-End phrases

Observation 2:

 S_4

LZ77: abaaabababaaabaa

LZ-End: abaaabababaaabaa

 S_5

LZ77: abaaabababaaabaabababaaabab

 S_6

Increase of LZ-End phrases

Observation 2:

$$S_4$$
 $z_{77}(S_4) = 5$, $z_{End}(S_4) = 6$

LZ77:a<mark>b</mark>aa<mark>abab</mark>abaaabaa

LZ-End: abaaabababaaabaa

$$S_5$$
 $z_{77}(S_5) = 6$, $z_{End}(S_5) = 8$

LZ77: abaaabababaaabaaabababaaabab

$$S_6$$
 $z_{77}(S_6) = 7$, $z_{End}(S_6) = 10$

Increase of LZ-End phrases

Observation 2:

$$S_4$$
 $z_{77}(S_4) = 5$, $z_{End}(S_4) = 6$

LZ77: abaaabababaaabaa

LZ-End: abaaabababaaabaa

$$S_5$$
 $z_{77}(S_5) = 6$, $z_{End}(S_5) = 8$

Increasing number of phrases:

- LZ77: **1** (for any *k*)
- LZ-End: 2 (for almost all k)

$$LZ77: +1$$

$$LZ$$
-End: $+2$

$$LZ77: +1$$

53

$$LZ$$
-End: $+2$

$$S_6$$
 $z_{77}(S_6) = 7$, $z_{End}(S_6) = 10$

k	$\mathbf{z}_{ ext{End}}$	Z ₇₇	$ m z_{End}$ / $ m z_{77}$	Length of the last LZ-End phrase	z _{End} diff
				•••	
6	10	7	1.428	4	2
7	12	8	1.5	3	2
8	14	9	1.555	2	2
9	16	10	1.6	1	2
10	17	11	1.545	384	1
11	19	12	1.583	383	2
	•••	•••			
393	783	394	1.987	1	2
394	784	395	1.984	3*2 ³⁹¹	1
395	786	396	1.984	3*2 ³⁹¹ - 1	2
	•••				
3*2 ³⁹¹ + 394			1.999	3*2 ^(3*2³⁹¹ + 391)	1

k	$\mathbf{z}_{ ext{End}}$	Z ₇₇	$ m z_{End}$ / $ m z_{77}$	Length of the last LZ-End phrase	z _{End} diff
6	10	7	1.428	4	2
7	12	8	1.5	3	2
8	14	9	1.555	2	2
9	16	10	1.6	1	2
10	17	11	1.545	384	1
11	19	12	1.583	383	2
	•••	•••			
393	783	394	1.987	1	2
394	784	395	1.984	3*2 ³⁹¹	1
395	786	396	1.984	3*2 ³⁹¹ – 1	2
	•••				
3*2 ³⁹¹ + 394	•••		1.999	3*2 ^(3*2³⁹¹ + 391)	1

k	z _{End}	Z ₇₇	$ m z_{End}$ / $ m z_{77}$	Length of the last LZ-End phrase	z _{End} diff
	•••	•••			
6	10	7	1.428	4	2
7	12	8	1.5	3	2
8	14	9	1.555	2	2
9	16	10	1.6	1	2
10	17	11	1.545	384	1
11	19	12	1.583	383	2
	•••	•••	•••		
393	783	394	1.987	1	2
394	784	395	1.984	3*2 ³⁹¹	1
395	786	396	1.984	3*2 ³⁹¹ – 1	2
•••	•••	•••	•••		
3*2 ³⁹¹ + 394			1.999	3*2 ^(3*2³⁹¹ + 391)	1

k	z _{End}	Z ₇₇	$ m z_{End}$ / $ m z_{77}$	Length of the last LZ-End phrase	z _{End} diff
•••	•••	•••	•••		
6	10	7	1.428	4	2
7	17				2
8	Lemma 1: The number of 1's is $O(\log^* k)$. Thus, $z_{End}(S_k) = 2k - O(\log^* k)$.				2
9					2
10					1
11	19	12	1.583	383	2
•••	•••	•••	•••		
393	783	394	1.987	1	2
394	784	395	1.984	3*2 ³⁹¹	1
395	786	396	1.984	3*2 ³⁹¹ – 1	2
	•••		•••		
3*2 ³⁹¹ + 394			1.999	3*2 ^(3*2³⁹¹ + 391)	1

Why $O(\log^* k)$?

$$k_m = O\left(2^{2^{\cdot \cdot \cdot 2^k}}\right) \Leftrightarrow m = O(\log^* k)$$

Lemma 2:

The maximal length of the last LZ-End phrase is $\frac{3}{8} \cdot 2^k$.

The ratio z_{End} / z_{77}

We obtain the following result.

$$z_{77}(S_k) = k + 1$$
$$z_{End}(S_k) = 2k - O(\log^* k)$$

$$\frac{z_{\text{End}}(S_k)}{z_{77}(S_k)} = \frac{2k - O(\log^* k)}{k+1} \to 2 \quad (k \to \infty).$$

Theorem 2:

Period-doubling sequence

There exist strings S of alphabet size $\sigma = 2$ such that:

$$\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \to 2 \ (|S| \to \infty).$$

Summary and future work

Summary:

- We proved that period-doubling sequence S satisfies that $z_{End}(S) / z_{77}(S)$ asymptotically approaches 2 when the limit as the length of S tends to infinity.
- There also exist other binary sequences S' such that $z_{End}(S') / z_{77}(S')$ asymptotically approaches 2.

Conjecture: [Kreft and Navarro, 2013]

 $z_{End}(T) / z_{77}(T) \le 2$ holds for any string T.

Preliminary experimental result

The ratio seems to asymptotically approach 2.

Summary and future work

Summary:

- We proved that period-doubling sequence S satisfies that $z_{End}(S) / z_{77}(S)$ asymptotically approaches 2 when the limit as the length of S tends to infinity.
- There also exist other binary sequences S' such that $z_{End}(S') / z_{77}(S')$ asymptotically approaches 2.

Future work:

• Prove or disprove the conjecture for upper bound.

Conjecture: [Kreft and Navarro, 2013]

 $z_{\text{End}}(T) / z_{77}(T) \le 2 \text{ holds for any string } T.$