On the approximation ratio of LZ-End to LZ77

Takumi Ideue, Takuya Mieno, Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Masayuki Takeda Kyushu University, Japan

LZ77 [Ziv and Lempel, 1977] is the smallest greedy parsing allowing for left-to-right (de)compression.

LZ-End [Kreft and Navarro, 2013] is an LZ77-like parsing allowing for fast substring extraction, but the number of its phrases is larger than that of LZ77.

Theorem: [This work]
There exist binary strings S such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \rightarrow 2 \quad(|S| \rightarrow \infty) .
$$

$\mathrm{z}_{\text {End }}(S)$: \# of LZ-End phrases of S
$\mathrm{z}_{77}(S)$: \# of LZ77 phrases of S

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

$$
\mathrm{LZ}_{77}(T)=\mathrm{a} b \mathrm{a} a \mathrm{~b} \mathrm{a} b \mathrm{~b} \mathrm{a} b \mathrm{~b} \mathrm{a} b \mathrm{a} a \mathrm{~b} b
$$

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

$$
\begin{aligned}
& 12234567891011121314151617 \\
& \mathrm{LZ}_{77}(T)=\mathrm{a} \mid \mathrm{b} \text { a } \mathrm{a} b \mathrm{ab} \mathrm{~b} \text { abbabaabb}
\end{aligned}
$$

First occurrence

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

$$
L Z_{77}(T)=\begin{array}{r}
1234567891011121314151617 \\
\mathrm{a} \mid \mathrm{b} a \mathrm{a} \text { a b bababatab}
\end{array}
$$

First occurrence

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

$$
\begin{aligned}
& \text { The longest prefix of } p_{3} \cdots
\end{aligned}
$$

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
z is the number of phrases
E.g.)

$$
\begin{gathered}
\mathrm{LZ}_{77}(T)=\underset{\text { The longest prefix of } p_{4} \cdots}{\mathrm{a}|\mathrm{~b}| \mathrm{a}} \mathrm{a}|\mathrm{~b} \mathrm{a} \mathrm{~b}| \mathrm{b} \mathrm{a} \mathrm{~b} \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{a} \mathrm{~b} \mathrm{~b}
\end{gathered}
$$

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
E.g.)

Non-overlapping

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
z is the number of phrases
E.g.)

$$
\mathrm{LZ}_{77}(T)=\begin{gathered}
12344567891011121314151617 \\
\mathrm{a}|\mathrm{~b}| \mathrm{a} a|\underline{\mathrm{~b}} \mathrm{a} \operatorname{b}| \underline{\mathrm{b}} \mathrm{a} \text { b b} \mid \mathrm{a} \text { b a a b b }
\end{gathered}
$$

The longest prefix of $p_{5} \cdots$

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
z is the number of phrases
E.g.)

$$
\mathrm{LZ}_{77}(T)=\begin{gathered}
1234567891011121314151617 \\
\mathrm{a}|\mathrm{~b}| \mathrm{a} \mathrm{a} \mid \mathrm{b} \\
\mathrm{a}
\end{gathered}
$$

The longest prefix of p_{6}

LZ77 [Ziv and Lempel, 1977]

Definition:

The non-overlapping Lempel-Ziv 77 factorization (LZ77) of a string \boldsymbol{T} is the factorization $\mathrm{LZ}_{77}(\boldsymbol{T})=p_{1}, \ldots, p_{z}$ of \boldsymbol{T} such that: Each phrase $p_{i}(1 \leq i \leq z-1)$ satisfies the following condition.

- $p_{i}\left[1,\left|p_{i}\right|-1\right]$ is the longest prefix of $p_{i} \cdots p_{z}$ which occurs in $p_{1} \cdots p_{i-1}$.
The last phrase p_{z} can be a suffix of \boldsymbol{T} which occurs in $p_{1} \cdots p_{i-1}$.
z is the number of phrases
E.g.)

$$
\mathrm{z}_{77}(T)=6 \quad \begin{aligned}
& \text { The number of the } \\
& \text { LZ77 phrases of } T
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5}
\end{array} p_{6}
\end{aligned}
$$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string T is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z}$, which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

$\mathrm{LZ}_{\text {End }}(T)=\mathrm{a} \mathrm{b}$ a a b a b babbaba a b b		

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z^{\prime}}$ of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)
$\mathrm{LZ}_{\mathrm{End}}(T)=\underbrace{\begin{array}{l}123 \\ \mathrm{a} \mid \mathrm{b} \text { a a b a b b a b b a b a a b b }\end{array}}_{\text {First occurrence }}$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$ of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z}$, which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

$$
\mathrm{LZ}_{\mathrm{End}}(T)=\mathrm{a}|\mathrm{~b}| \mathrm{a} \text { a babbabbabach }
$$

First occurrence

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

$$
\begin{aligned}
& 1234567891011121314151617 \\
& \mathrm{LZ}_{\text {End }}(T)=\mathrm{a}|\mathrm{~b}| \mathrm{a} a \mid \mathrm{b} \text { a b b a b b a b a a b b }
\end{aligned}
$$

Suffix of q_{1}

The longest prefix of $q_{3} \cdots$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

Suffix of $q_{1} q_{2}$
The longest prefix of $q_{4} \cdots$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

Suffix of $q_{1} q_{2} q_{3} q_{4} q_{5}$
The longest prefix of $q_{6} \cdots$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$ of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

Suffix of $q_{1} q_{2} q_{3}$
The longest prefix of $q_{7} \cdots$

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

Suffix of $q_{1} q_{2}$

The longest prefix of q_{8} and a suffix of T

LZ-End [Kreft and Navarro, 2013]

Definition:

The LZ-End factorization of a string \boldsymbol{T} is
z^{\prime} is the number of phrases the factorization $\mathrm{LZ}_{\mathrm{End}}(\boldsymbol{T})=q_{1}, \ldots, q_{z}$, of \boldsymbol{T} such that:

Each phrase $q_{i}\left(1 \leq i \leq z^{\prime}-1\right)$ satisfies the following condition.

- $q_{i}\left[1,\left|q_{i}\right|-1\right]$ is the longest prefix of $q_{i} \cdots q_{z^{\prime}}$ which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<i$.
The last phrase q_{z}, can be a suffix of \boldsymbol{T}
which occurs as a suffix of $q_{1} \cdots q_{j}$ for some $j<z^{\prime}$.
E.g.)

$$
\mathrm{LZ}_{\mathrm{End}}(T)=\mathrm{a}|\mathrm{~b}| \mathrm{a} \mathrm{a} \mid \mathrm{b} \text { a } \mid \mathrm{b} \text { b } \mid \mathrm{a} \text { b b a } \mid \mathrm{b} \text { a a } \mathrm{b}|\mathrm{~b}|
$$

$$
\begin{array}{lllllll}
q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6} & q_{7}
\end{array} q_{8}
$$

$\mathrm{z}_{\mathrm{End}}(T)=8\left\{\begin{array}{l}\text { The number of the } \\ \text { LZ-End phrases of } T\end{array}\right.$

The ratio $\mathrm{Z}_{\text {End }} / \mathrm{Z}_{77}$

It is known that $\mathrm{z}_{\mathrm{End}}(T) \geq \mathrm{z}_{77}(T)$ for any string T.
Then how much is the gap between them?
To analyze this, we consider the ratio $\mathrm{z}_{\mathrm{End}} / \mathrm{z}_{77}$.
E.g.)
$\mathrm{LZ}_{77}(T)=\mathrm{a}|\mathrm{b}| \mathrm{a} \mathrm{a\mid b} \mathrm{a} b \mid \mathrm{b}$ a b b|a b a a b b|
$\mathrm{LZ}_{\text {End }}(T)=\underbrace{\mathrm{a}|\mathrm{b}| \mathrm{a}|\mathrm{b}| \mathrm{b}|\mathrm{b} b| \mathrm{ab} \mathrm{b} a \mid \mathrm{b} \text { a ab|b|}}$
In this case,

$$
\mathrm{z}_{\mathrm{End}}(T)=8
$$

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)}=\frac{8}{6}=1.333 \cdots
$$

Previous work

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2(|T| \rightarrow \infty)
$$

Previous work

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2 \quad(|T| \rightarrow \infty) .
$$

$$
\Sigma=\{1,2, \ldots, \sigma\}
$$

E.g.)

$$
T=112113 \quad 214325436 \ldots(\sigma-2)(\sigma-3) \sigma
$$

Previous work

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2 \quad(|T| \rightarrow \infty) .
$$

$$
\Sigma=\{1,2, \ldots, \sigma\}
$$

E.g.)

$$
T=112113 \quad 214325436 \ldots(\sigma-2)(\sigma-3) \sigma
$$

$$
\mathrm{LZ}_{77}(T)=1|12| 113|214| 325|436| \ldots((\sigma-2)(\sigma-3) \sigma
$$

2

Previous work

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2 \quad(|T| \rightarrow \infty) .
$$

$$
\Sigma=\{1,2, \ldots, \sigma\}
$$

E.g.)

$$
T=112113214325436 \ldots(\sigma-2)(\sigma-3) \sigma
$$

$$
\mathrm{z}_{77}(T)=\sigma
$$

$\mathrm{LZ}_{77}(T)=1|12| 113|214| 325|436| \ldots|(\sigma-2)(\sigma-3) \sigma|$
$\mathrm{LZ}_{\mathrm{End}}(T)=1|12| 11|3| 21|4| 32|5| 43|6| \ldots|(\sigma-2)(\sigma-3)| \sigma \mid$

$$
\mathrm{z}_{\mathrm{End}}(T)=2(\sigma-1)
$$

Previous work

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2 \quad(|T| \rightarrow \infty) .
$$

$$
\Sigma=\{1,2, \ldots, \sigma\}
$$

E.g.)

$$
T=112113214325436 \ldots(\sigma-2)(\sigma-3) \sigma
$$

$$
\begin{gathered}
\overline{\mathrm{z}_{77}(T)=\sigma} \\
\mathrm{LZ}_{77}(T)=1 \mid 1
\end{gathered}
$$

$$
\mathrm{z}_{\mathrm{End}}(T)=2(\sigma-1)
$$

$$
\frac{\mathrm{z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)}=\frac{2(\sigma-1)}{\sigma}=2(|T| \rightarrow \infty, \sigma \rightarrow \infty)
$$

Main result

Theorem 1: [Kreft and Navarro, 2013]
There exist strings T of alphabet size $\sigma=\frac{|T|}{3}+1$ such that:

$$
\frac{\mathrm{Z}_{\mathrm{End}}(T)}{\mathrm{z}_{77}(T)} \rightarrow 2(|T| \rightarrow \infty)
$$

Theorem 2: [This work]

There exist strings S of alphabet size $\sigma=2$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \rightarrow 2(|S| \rightarrow \infty)
$$

The string S in Theorem 2 is the period-doubling sequence.

Period-doubling sequence [Boston, 1980]

Definition:

The k-th period-doubling sequence S_{k} over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ is defined as follows:

- $S_{0}=\mathrm{a}$
- $S_{k}=S_{k-1} \cdot S_{k-1}\left[1, n_{k-1}-1\right] \cdot \overline{\mathrm{C}} \quad(k \geq 1)$
n_{k-1} is the length of S_{k-1}, that is $n_{k-1}=\left|S_{k-1}\right|$.
c is the last character of S_{k-1}, that is c $=S_{k-1}\left[n_{k-1}\right]$. $\overline{\mathrm{c}}$ is bit-flipped character of c .

Intuition:
Copy the first half and flip the last character.

Period-doubling sequence [Boston, 1980]

$$
S_{0}=\mathrm{a}
$$

Intuition:
Copy the first half and flip the last character.

Period-doubling sequence [Boston, 1980]

$$
\begin{aligned}
& S_{0}=\mathrm{a} \\
& S_{1}=\mathrm{ab}
\end{aligned}
$$

Intuition:
Copy the first half and flip the last character.

Period-doubling sequence [Boston, 1980]

$$
\begin{aligned}
& S_{0}=\mathrm{a} \\
& S_{1}=\mathrm{ab} \\
& S_{2}=\mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{a}
\end{aligned}
$$

Intuition:
Copy the first half and flip the last character.

Period-doubling sequence [Boston, 1980]

Intuition:

$$
\begin{aligned}
& S_{0}=\mathrm{a} \\
& S_{1}=\mathrm{a} \mathrm{~b} \\
& S_{2}=\mathrm{a} \mathrm{ba} \mathrm{a} \\
& S_{3}=\mathrm{abaa} \mathrm{abab}
\end{aligned}
$$

Period-doubling sequence [Boston, 1980]

$S_{0}=\mathrm{a}$
Intuition:
$S_{1}=\mathrm{ab}$
$S_{2}=\mathrm{abaa}$
$S_{3}=\mathrm{abaambab}$

LZ77 of period-doubling sequences S_{k}

$\mathrm{LZ}_{77}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{77}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{77}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}|$

LZ77 Phrase =
Non-overlapping longest previous occurrence

Single character
$\mathrm{LZ}_{77}\left(S_{4}\right)=$ ab|aalabab|abaaabaa|
$\mathrm{LZ}_{77}\left(S_{5}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}| a b a \mathrm{a} a \mathrm{a} a \mathrm{a} \mid \mathrm{abaaabababaabab\mid}$

From definition of period-doubling sequence and LZ77,
$\mathrm{z}_{77}\left(S_{k}\right)=k+1$.

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{ab} \mid$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{2}\right)=\mathrm{ab}|\mathrm{ba} \mathrm{a}|$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{ababab}| \mathrm{a} a \mathrm{abaa} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=$ abaaabababaaabaaabaaabababaaabab

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{2}\right)=\mathrm{ab}|\mathrm{ba} \mathrm{a}|$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{ababab}| \mathrm{aa} a \mathrm{aa} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=\mathrm{abaaabababaaabaabaaabababaabab}$
First occurrence

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{2}\right)=\mathrm{ab}|\mathrm{ba} \mathrm{a}|$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{ababab}| \mathrm{a} a \mathrm{abaa} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=\mathrm{ab\mid aabababaaabaabaabababaabab}$
First occurrence

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{ab}|\mathrm{ba}|$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{ab}|\mathrm{ba}| \mathrm{abab} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{ab}|\mathrm{ba}| \mathrm{ababab}|a \mathrm{aabaa}|$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=\mathrm{ab|a|abababaabaaabaabababaabab}$

Ends with the 1st phrase

The longest prefix of the suffix at position 3

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{ab} \mid$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{2}\right)=\mathrm{ab}|\mathrm{ba}|$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{ab}|\mathrm{ba}| \mathrm{abab} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{ab}|\mathrm{b}| a|a b a| b a b|a a \mathrm{abaa}|$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=\mathrm{abbaabababaaabaabaaabababaabab}$

Ends with
the 2nd phrase
The longest prefix of the suffix at position 5

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{abab}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba|bab|a} \mathrm{a} a \mathrm{baa}|$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{5}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{bab} \mid \mathrm{a} a \mathrm{ab} a \mathrm{a} a \mathrm{~b} a \mathrm{a} a \mathrm{~b} a \mathrm{~b} a \mathrm{~b} a \mathrm{a} a \mathrm{bab}$

Ends with the 4th phrase

The longest prefix of the suffix at position 8

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{3}\right)=\mathrm{ab}|\mathrm{ba}| \mathrm{aba}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{bab}|\mathrm{aa} \mathrm{abaa}|$

Ends with the 4th phrase

The longest prefix of the suffix at position 11
$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{3}\right)=\mathrm{ab}|\mathrm{ba}| \mathrm{aba}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{bab}|\mathrm{aa} \mathrm{abaa}|$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=$ ab|aalabababaaabaababaabababalaabab

Ends with the 5th phrase

The longest prefix of the suffix at position 17

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{b} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{bab}|\mathrm{aa} \mathrm{abaa}|$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa\mid abab} \mathrm{bab}|\mathrm{aa} a b a \mathrm{a}| \mathrm{ab} a \mathrm{a} a \mathrm{~b} a \mathrm{~b} a \mathrm{ba|aabab|}$

Ends with the 4th phrase

The longest prefix of the suffix at position 28
$\mathrm{LZ}_{\text {End }}\left(S_{1}\right)=\mathrm{a}|\mathrm{b}|$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{3}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{b} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=\mathrm{a}|\mathrm{b}| \mathrm{aa}|\mathrm{aba}| \mathrm{bab}|\mathrm{a} \mathrm{a} \mathrm{abaa}|$

The last phrase of $\mathrm{LZ}_{\text {End }}\left(S_{k}\right)$ is not always $\mathrm{LZ}_{\text {End }}\left(S_{k+1}\right)$ phrase.

LZ-End of period-doubling sequences S_{k}

$\mathrm{LZ}_{\mathrm{End}}\left(S_{1}\right)=\mathrm{ab} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{2}\right)=\mathrm{ab}|\mathrm{aa}|$
$\mathrm{LZ}_{\mathrm{End}}\left(S_{3}\right)=\mathrm{ab\mid}|\mathrm{aa}| \mathrm{abab\mid} \mid$
$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)=$ abbaalababab|aabaa|
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)=$ ablaalababab|aabaalabaaabababalabab|
$\mathrm{LZ}_{\text {End }}\left(S_{6}\right)=$ ab|aalababab|aabaalabaabababalaabababaala ...

From definition of period-doubling sequence and LZ-End, $\mathrm{Z}_{\mathrm{End}}\left(S_{k}\right)=2 k-\mathrm{O}\left(\log ^{*} k\right)$.

LZ-End of period-doubling sequences S_{k}

Observation 1:

$\mathrm{LZ}_{\mathrm{End}}\left(S_{4}\right)$
abblaalababablaaabaal

$\mathrm{LZ}_{\mathrm{End}}\left(S_{5}\right)$

ablaalababab|aaabaalabaaabababalabab|
$\mathrm{LZ}_{\mathrm{End}}\left(S_{6}\right)$
ablaalabalbablaaabaalabaaabababalaabababaalabababaaabaaabaaabababaalabaal

LZ-End of period-doubling sequences S_{k}

Observation 1:

$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)$

ablaalababablaaabaa

$\mathrm{LZ}_{\mathrm{End}}\left(S_{5}\right)$

abbaalababab|aaabaalabaaabababalabab

$\mathrm{LZ}_{\text {End }}\left(S_{6}\right)$

ablaalabalbablaaabaalabaaabababalaabababaalabababaaabaaabaaabababaalabaal

LZ-End of period-doubling sequences S_{k}

Observation 1:

$\mathrm{LZ}_{\text {End }}\left(S_{4}\right)$

abblaalababablaaabaal $\frac{6}{6}$
$\mathrm{LZ}_{\text {End }}\left(S_{5}\right)$
ablaalababab|aaabaalabaaabababalaabab|
$\mathrm{LZ}_{\text {End }}\left(S_{6}\right)$
ablaalabalbablaaabaalabaaabababalaabababaalabababaaabaaabaaabababaalabaal

The length of the last LZ-End phrase decreases by $\mathbf{1}$ until the length of the last phrase becomes 1.

Increase of LZ-End phrases

Observation 2:

S_{4}
LZ77: a|b|aalabab|abaaabaa|
LZ-End: ab|a|aba|bab|aaabaa|
S_{5}
LZ77:a|b|aalabab|abaaabaalabaaabababaabab|
LZ-End: ab|aa|aba|bab|aaabaalabaaabababa|aabab|
S_{6}
LZ77: ab|aalabab|abaaabaalabaaabababaaabab|abaaabababaaabaaabaaabababaabaa|
LZ-End: a|b|aalababab|aabaalabaaabababa|aabababaalabababaaabaaabaaabababaalabaa|

Increase of LZ-End phrases

Observation 2:

$S_{4} \quad \mathrm{z}_{77}\left(S_{4}\right)=5, \mathrm{z}_{\mathrm{End}}\left(S_{4}\right)=6$
LZ77:ab|aalabab|abaaabaa|
LZ-End: ab|aa|aba|bab|aaabaa|
$S_{5} \quad \mathrm{z}_{77}\left(S_{5}\right)=6, \mathrm{z}_{\mathrm{End}}\left(S_{5}\right)=8$
LZ77:a|b|aaabab|abaaabaa|abaaabababaabab|
LZ-End: ab|aa|aba|bab|aaabaalabaaabababa|aabab|

$$
S_{6} \quad \mathrm{z}_{77}\left(S_{6}\right)=7, \mathrm{z}_{\text {End }}\left(S_{6}\right)=10
$$

LZ77: ab|aalabab|abaaabaalabaaabababaaabab|abaaabababaaabaaabaaabababaabaa|
LZ-End: a|b|aalababab|aabaalabaaabababa|aabababaalabababaaabaaabaaabababaalabaa|

Increase of LZ-End phrases

Observation 2:

$S_{4} \quad \mathrm{z}_{77}\left(S_{4}\right)=5, \mathrm{z}_{\text {End }}\left(S_{4}\right)=6$
LZ77:ab|aalabab|abaaabaa|
LZ-End: ab|a|aba|bab|aaabaa|
$S_{5} \quad \mathrm{z}_{77}\left(S_{5}\right)=6, \mathrm{z}_{\mathrm{End}}\left(S_{5}\right)=8$
LZ77: ab|aa|abab|abaaabaalabaaabababaaabab| LZ-End: a|b|aa|ababab|aaabaalabaaabababa|aabab|

Increasing number of phrases:

- LZ77: 1 (for any k)
- LZ-End: 2 (for almost all k)
$S_{6} \quad \mathrm{z}_{77}\left(S_{6}\right)=7, \mathrm{z}_{\text {End }}\left(S_{6}\right)=10$
LZ77: ab|aa|abab|abaaabaalabaaabababaaabab|abaaabababaaabaaabaaabababaaabaa| LZ-End: a|b|aalababab|aabaalabaaabababa|aabababaalabababaaabaaabaaabababaalabaa|

Table of LZ77 and LZ-End phrases

k	$\mathrm{z}_{\text {End }}$	z_{77}	$\mathrm{z}_{\text {End }} / \mathrm{z}_{77}$	$\begin{array}{c}\text { Length of the last } \\ \text { LZ-End phrase }\end{array}$	$\begin{array}{c}\mathrm{z}_{\text {End }}\left(S_{k-1}\right) \\ \hline \ldots\end{array}$
diff					

Table of LZ77 and LZ-End phrases

k	$\mathrm{z}_{\text {End }}$	z_{77}	$\mathrm{z}_{\text {End }} / \mathrm{z}_{77}$	Length of the last LZ-End phrase	$\mathrm{z}_{\mathrm{End}}$ diff
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
6	10	7	$1.428 \ldots$	4	2
7	12	8	1.5	$\left.\mathrm{z}_{\text {End }}\right)$	
8	14	9	$1.555 \ldots$	2	2
9	16	10	1.6	2	2
10	17	11	$1.545 \ldots$	1	2
11	19	12	$1.583 \ldots$	384	1
\ldots	\ldots	\ldots	\ldots	\ldots	2
393	783	394	$1.987 \ldots$	1	\ldots
394	784	395	$1.984 \ldots$	$3^{*} 2^{391}$	2
395	786	396	$1.984 \ldots$	$3^{*} 2^{391}-1$	2
\ldots	\ldots	\ldots	\ldots	\ldots	1
$3^{* 2391}+394$	\ldots	\ldots	$1.999 \ldots$	$3^{*} 2^{\left(3^{*} 2^{391}+391\right)}$	1

Table of LZ77 and LZ-End phrases

Table of LZ77 and LZ-End phrases

Why $\mathrm{O}\left(\log ^{*} k\right)$?

Lemma 2:

$$
k_{m}=0\left(2^{2 \cdot 2^{2}}\right) \Leftrightarrow m=0\left(\log ^{*} k\right)
$$

The maximal length of the last LZ-End phrase is $\frac{3}{8} \cdot 2^{k}$.

The ratio $\mathrm{z}_{\mathrm{End}} / \mathrm{z}_{77}$

We obtain the following result.

$$
\begin{aligned}
\mathrm{z}_{77}\left(S_{k}\right) & =k+1 \\
\mathrm{z}_{\mathrm{End}}\left(S_{k}\right) & =2 k-\mathrm{O}\left(\log ^{*} k\right)
\end{aligned}
$$

$$
\frac{\mathrm{z}_{\mathrm{End}}\left(S_{k}\right)}{\mathrm{z}_{77}\left(S_{k}\right)}=\frac{2 k-\mathrm{O}\left(\log ^{*} k\right)}{k+1} \rightarrow 2 \quad(k \rightarrow \infty)
$$

Theorem 2:

Period-doubling sequence

There exist strings S of alphabet size $\sigma=2$ such that:

$$
\frac{\mathrm{z}_{\mathrm{End}}(S)}{\mathrm{z}_{77}(S)} \rightarrow 2(|S| \rightarrow \infty)
$$

Summary and future work

Summary:

- We proved that period-doubling sequence S satisfies that $\mathrm{z}_{\mathrm{End}}(S) / \mathrm{z}_{77}(S)$ asymptotically approaches 2 when the limit as the length of S tends to infinity.
- There also exist other binary sequences S^{\prime} such that $\mathrm{z}_{\text {End }}\left(S^{\prime}\right) / \mathrm{z}_{77}\left(S^{\prime}\right)$ asymptotically approaches 2 .

Conjecture: [Kreft and Navarro, 2013]
$\mathrm{z}_{\mathrm{End}}(T) / \mathrm{z}_{77}(T) \leq 2$ holds for any string T.

Preliminary experimental result

the ratio: (Iz_end / Iz_77)

The ratio seems to asymptotically approach 2 .

Summary and future work

Summary:

- We proved that period-doubling sequence S satisfies that $\mathrm{z}_{\mathrm{End}}(S) / \mathrm{z}_{77}(S)$ asymptotically approaches 2 when the limit as the length of S tends to infinity.
- There also exist other binary sequences S^{\prime} such that $\mathrm{z}_{\text {End }}\left(S^{\prime}\right) / \mathrm{z}_{77}\left(S^{\prime}\right)$ asymptotically approaches 2 .

Future work:

- Prove or disprove the conjecture for upper bound.

Conjecture: [Kreft and Navarro, 2013]
$\mathrm{z}_{\mathrm{End}}(T) / \mathrm{z}_{77}(T) \leq 2$ holds for any string T.

