

Maksim Nikolaev

All Instantiations of the Greedy Algorithm for the Shortest Common Superstring Problem are Equivalent

SPIRE 2021, October 5th

Shortest Common Superstring Problem

Input: A set $\{s_1, ..., s_n\}$ of n strings.

Output: A shortest string containing each s_i as a substring.

Complexity: MAX-SNP-hard

Practical applications: data storage, data compression, genome assembly

Example

 $S = \{aab, aaa, baa\},\$

Solution: baaab

Known approximation algorithms

3.000	Blum, Jiang, Li, Tromp, Yannakakis	1991
2.889	Teng, Yao	1993
2.834	Czumaj, Gasieniec, Piotrow, Rytter	1994
2.794	Kosaraju, Park, Stein	1994
2.750	Armen, Stein	1994
2.725	Armen, Stein	1995
2.667	Armen, Stein	1996
2.596	Breslauer, Jiang, Jiang	1997
2.500	Sweedyk	1999
2.500	Kaplan, Lewenstein, Shafrir, Sviridenko	2005
2.500	Paluch, Elbassioni, van Zuylen	2012
2.479	Mucha	2013

Known approximation algorithms

3.000	Blum, Jiang, Li, Tromp, Yannakakis	1991
2.889	Teng, Yao	1993
2.834	Czumaj, Gasieniec, Piotrow, Rytter	1994
2.794	Kosaraju, Park, Stein	1994
2.750	Armen, Stein	1994
2.725	Armen, Stein	1995
2.667	Armen, Stein	1996
2.596	Breslauer, Jiang, Jiang	1997
2.500	Sweedyk	1999
2.500	Kaplan, Lewenstein, Shafrir, Sviridenko	2005
2.500	Paluch, Elbassioni, van Zuylen	2012
2.479	Mucha	2013
2.000	greedy?	???

Greedy Algorithm

```
s_1 aabab s_2 ababb overlap(s_1, s_2) abab merge(s_1, s_2) aababb
```

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

Greedy Algorithm

```
s_1 aabab s_2 ababb overlap(s_1, s_2) abab merge(s_1, s_2) aababb
```

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

Greedy conjecture: the greedy algorithm is factor 2 approximation [Storer 1987].

Greedy Algorithm

```
s_1 aabab

s_2 ababb

overlap(s_1, s_2) abab

merge(s_1, s_2) aababb
```

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

Greedy conjecture: the greedy algorithm is factor 2 approximation [Storer 1987].

Known to be factor 3.5 approximation [Kaplan and Shafrir 2004].

Greedy is at least factor 2 approximation!

```
Dataset: \{c(ab)^n, (ba)^n, (ab)^nc\}
```

Greedy solution: $\{c(ab)^n, (ba)^n, (ab)^nc\} \to \{c(ab)^nc, (ba)^n\} \to \{c(ab)^nc(ba)^n\}, \text{ length} = 4n + 2$

Optimal solution: $ca(ba)^nbc$, length = 2n + 4

Greedy is non-deterministic!

Several pairs with the longest overlap \Rightarrow several possible merges \Rightarrow several possible superstrings.

Dataset: $\{ab^n, b^{n+1}, b^na\}$

Greedy solution 1: $\{ab^n, b^{n+1}, b^na\} \rightarrow \{ab^{n+1}, b^na\} \rightarrow \{ab^{n+1}a\}$, length = n+3

Greedy solution 2: $\{ab^n, b^{n+1}, b^na\} \rightarrow \{ab^na, b^{n+1}\} \rightarrow \{ab^nab^{n+1}\}$, length = 2n + 3

Maybe prove something weaker?

algorithm with specific tie-braking rule

Ш

To prove Greedy Conjecture, one needs to show that all <u>instantiations</u> of the Greedy Algorithm are factor 2 approximation.

Maybe it is easier to find at least one factor 2 approximation instantiation?

Maybe prove something weaker?

algorithm with specific tie-braking rule

To prove Greedy Conjecture, one needs to show that all <u>instantiations</u> of the Greedy Algorithm are factor 2 approximation.

Maybe it is easier to find at least one factor 2 approximation instantiation?

Main result: all instantiations of the Greedy Algorithm have the same approximation factor.

Idea behind the proof

Perturbing Procedure

Input: a dataset S, an instantiation A of the Greedy Algorithm ($\overline{A} \in GA$), $\varepsilon > 0$

Output: a dataset S' such that:

1.
$$\frac{|A(\mathcal{S})|}{|\mathrm{OPT}(\mathcal{S})|} - \varepsilon < \frac{|A(\mathcal{S}')|}{|\mathrm{OPT}(\mathcal{S}')|}.$$

```
S = \{abb, bbb, bbc\}
```

How to make the merge {abb, bbb, bbc} → {abbc, bbb} the only greedy merge?

```
S = \{abb, bbb, bbc\}
How to make the merge \{abb, bbb, bbc\} \rightarrow \{abbc, bbb\} the only greedy merge?
```

Step1: {abb, bbb, bbc} \rightarrow {\$\$^{10}a \$\$^{10}b \$\$^{10}b, \$\$^{10}b \$\$^{10}b, \$\$^{10}b, \$\$^{10}b \$\$^{10}b

```
S = \{abb, bbb, bbc\}
How to make the merge \{abb, bbb, bbc\} \rightarrow \{abbc, bbb\} the only greedy merge?
Step1: {abb, bbb, bbc} \rightarrow {$\frac{10}{3}}a $\frac{10}{3}b $\frac
Step2: \{\$^{10}a \$^{10}b \$^{10}b, \$^{10}b \$^{10}b, \$^{10}b \$^{10}b \$^{10}b \$^{10}b
                                                                                                                                                                                                                                                                                                                                    \rightarrow {$\$^{10}}a $\$^{10}b $\$^{10}b$$, $\$^{9}b $\$^{10}b $\$^{10}b, $\$^{10}b $\$^{10}b $\$^{10}c}
overlap(\$^{10}a \$^{10}b \$^{10}b$, \$^{9}b \$^{10}b \$^{10}b) = 22
overlap($^9b $^{10}b $^{10}b, $^{10}b $^{10}b $^{10}c) = 22
overlap(\$^{10}a \$^{10}b \$^{10}b\$, \$^{10}b \$^{10}b \$^{10}c) = 23
```

For $S = \{s_1, ..., s_n\}$ and $A \in GA$ let $(l_A(1), r_A(1)), (l_A(2), r_A(2)), ..., (l_A(n-1), r_A(n-1))$ be the order of merges: strings $s_{l_A(i)}$ and $s_{r_A(i)}$ are merged at step i.

If $|\text{overlap}(s_{l_A(i)}, s_{r_A(i)})| = 0$ for some i, then the same holds for any i' > i. Let T_A be the first such i. This is the first trivial merge. If there were no trivial merges, $T_A = n$.

Input: a dataset S, an instantiation A of the Greedy Algorithm (A \in GA), $\varepsilon > 0$.

For every $s_i = c_1 c_2 \dots c_{|S_i|} \in \mathcal{S}$ define a string

$$s_i' = \$^{m-\alpha_i} c_1 \$^m c_2 \$^m c_3 \$^m ... \$^m c_{|s_i|} \$^{T_A-\beta_i},$$

where

- \$ is a sentinel symbol which does not occur in S,
- m is a parameter that depends on ε ,
- α_i is the number of step such that $r_A(\alpha_i) = i$, if such step exists and $< T_A$, and $\alpha_i = T_A$ otherwise;
- β_i is the number of step such that $l_A(\beta_i) = i$, if such step exists and $\langle T_A \rangle$, and $\beta_i = T_A$ otherwise.

Order: (1,5), (3,2), (5,4), (2,1), $T_A = 3 \Rightarrow \beta_1 = \alpha_5 = 1$, $\beta_3 = \alpha_2 = 2$, $\beta_5 = \alpha_4 = \beta_2 = \alpha_1 = \beta_4 = \alpha_3 = 3$.

As $m \to \infty$:

$$\frac{1}{m}|\mathsf{OPT}(\mathcal{S}')| \to |\mathsf{OPT}(\mathcal{S})|,$$

$$\frac{1}{m}|A(\mathcal{S}')| \to |A(\mathcal{S})|,$$

so we can choose m such that $\frac{|A(\mathcal{S})|}{|\mathrm{OPT}(\mathcal{S})|} - \varepsilon < \frac{|A(\mathcal{S}')|}{|\mathrm{OPT}(\mathcal{S}')|}$.

Since $|B(\mathcal{S}')| = |A(\mathcal{S}')|$, $\forall B \in GA$, we have $\frac{|B(\mathcal{S}')|}{|OPT(\mathcal{S}')|} = \frac{|A(\mathcal{S}')|}{|OPT(\mathcal{S}')|}$.

Corollaries

To prove (or disprove) the Greedy Conjecture, it is sufficient to consider datasets satisfying some of the following three properties:

- there are no ties between non-empty overlaps, that is, datasets where all the instantiations of the greedy algorithm work the same;
- there are no empty overlaps: overlap $(s_i, s_j) \neq \varepsilon, \forall, i \neq j$;
- all non-empty overlaps are (pairwise) different: $|\text{overlap}(s_i, s_j)| \neq |\text{overlap}(s_k, s_l)|$, for all $i \neq j$, $k \neq l$, $(i, j) \neq (k, l)$.

Corollaries

To prove (or disprove) the Greedy Conjecture, it is sufficient to consider datasets satisfying some of the following three properties:

- there are no ties between non-empty overlaps, that is, datasets where all the instantiations of the greedy algorithm work the same;
- there are no empty overlaps: overlap $(s_i, s_j) \neq \varepsilon, \forall, i \neq j$;
- all non-empty overlaps are (pairwise) different: $|\text{overlap}(s_i, s_j)| \neq |\text{overlap}(s_k, s_l)|$, for all $i \neq j$, $k \neq l$, $(i, j) \neq (k, l)$.

Thank you for your attention!

Ask your questions: makc-nicko@yandex.ru