
All Instantiations of the Greedy Algorithm for the Shortest Common
Superstring Problem are Equivalent

SPIRE 2021, October 5th

Maksim Nikolaev

Shortest Common Superstring Problem

Input: A set 𝑠1, … , 𝑠𝑛 of n strings.

Output: A shortest string containing each 𝑠𝑖 as a substring.

Complexity: MAX-SNP-hard

Practical applications: data storage, data compression, genome assembly

Example

𝒮 = {aab, aaa, baa},

Solution: baaab

Known approximation algorithms

3.000 Blum, Jiang, Li, Tromp, Yannakakis 1991

2.889 Teng, Yao 1993

2.834 Czumaj, Gasieniec, Piotrow, Rytter 1994

2.794 Kosaraju, Park, Stein 1994

2.750 Armen, Stein 1994

2.725 Armen, Stein 1995

2.667 Armen, Stein 1996

2.596 Breslauer, Jiang, Jiang 1997

2.500 Sweedyk 1999

2.500 Kaplan, Lewenstein, Shafrir, Sviridenko 2005

2.500 Paluch, Elbassioni, van Zuylen 2012

2.479 Mucha 2013

Known approximation algorithms

3.000 Blum, Jiang, Li, Tromp, Yannakakis 1991

2.889 Teng, Yao 1993

2.834 Czumaj, Gasieniec, Piotrow, Rytter 1994

2.794 Kosaraju, Park, Stein 1994

2.750 Armen, Stein 1994

2.725 Armen, Stein 1995

2.667 Armen, Stein 1996

2.596 Breslauer, Jiang, Jiang 1997

2.500 Sweedyk 1999

2.500 Kaplan, Lewenstein, Shafrir, Sviridenko 2005

2.500 Paluch, Elbassioni, van Zuylen 2012

2.479 Mucha 2013

2.000 greedy? ???

Greedy Algorithm

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

aababb
aababb
aababb
aababb

1𝑠1
2𝑠2

3overlap(𝑠1, 𝑠2)
4merge(𝑠1, 𝑠2)

Greedy Algorithm

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

Greedy conjecture: the greedy algorithm is factor 2 approximation [Storer 1987].

aababb
aababb
aababb
aababb

1𝑠1
2𝑠2

3overlap(𝑠1, 𝑠2)
4merge(𝑠1, 𝑠2)

Greedy Algorithm

When there is more then one string: take two strings with the largest overlap; merge them; repeat.

Greedy conjecture: the greedy algorithm is factor 2 approximation [Storer 1987].

Known to be factor 3.5 approximation [Kaplan and Shafrir 2004].

aababb
aababb
aababb
aababb

1𝑠1
2𝑠2

3overlap(𝑠1, 𝑠2)
4merge(𝑠1, 𝑠2)

Greedy is at least factor 2 approximation!

Dataset: {𝑐 𝑎𝑏 𝑛, 𝑏𝑎 𝑛, 𝑎𝑏 𝑛𝑐}

Greedy solution: {𝑐 𝑎𝑏 𝑛, 𝑏𝑎 𝑛, 𝑎𝑏 𝑛𝑐} → {𝑐 𝑎𝑏 𝑛𝑐, 𝑏𝑎 𝑛} → {𝑐 𝑎𝑏 𝑛𝑐 𝑏𝑎 𝑛}, length = 4𝑛 + 2

Optimal solution: 𝑐𝑎 𝑏𝑎 𝑛𝑏𝑐, length = 2𝑛 + 4

Greedy is non-deterministic!

Several pairs with the longest overlap ⇒ several possible merges ⇒ several possible superstrings.

Dataset: {𝑎𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛𝑎}

Greedy solution 1: {𝑎𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛𝑎} → {𝑎𝑏𝑛+1, 𝑏𝑛𝑎} → {𝑎𝑏𝑛+1𝑎}, length = 𝑛 + 3

Greedy solution 2: {𝑎𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛𝑎} → {𝑎𝑏𝑛𝑎, 𝑏𝑛+1} → {𝑎𝑏𝑛𝑎𝑏𝑛+1}, length = 2𝑛 + 3

Maybe prove something weaker?

To prove Greedy Conjecture, one needs to show that all instantiations of the Greedy Algorithm are

factor 2 approximation.

Maybe it is easier to find at least one factor 2 approximation instantiation?

algorithm with specific tie-braking rule

=

Maybe prove something weaker?

To prove Greedy Conjecture, one needs to show that all instantiations of the Greedy Algorithm are

factor 2 approximation.

Maybe it is easier to find at least one factor 2 approximation instantiation?

Main result: all instantiations of the Greedy Algorithm have the same approximation factor.

algorithm with specific tie-braking rule

=

Idea behind the proof

Perturbing Procedure

Input: a dataset 𝒮, an instantiation 𝐴 of the Greedy Algorithm (𝐴 ∈ GA), 𝜀 > 0

Output: a dataset 𝒮′ such that:

1.
𝐴 𝒮

OPT 𝒮
− 𝜀 <

𝐴 𝒮′

OPT 𝒮′
.

2. There is only one sequence of non-trivial greedy merges ⇒ 𝐴 𝒮′ = 𝐵 𝒮′ , ∀ 𝐵 ∈ GA.

merge with non-empty overlap
=

Perturbing procedure

𝒮 = {abb, bbb, bbc}

How to make the merge {abb, bbb, bbc} → {abbc, bbb} the only greedy merge?

Perturbing procedure

𝒮 = {abb, bbb, bbc}

How to make the merge {abb, bbb, bbc} → {abbc, bbb} the only greedy merge?

Step1: {abb, bbb, bbc} → {$10a $10b $10b, $10b $10b $10b, $10b $10b $10c}

Perturbing procedure

𝒮 = {abb, bbb, bbc}

How to make the merge {abb, bbb, bbc} → {abbc, bbb} the only greedy merge?

Step1: {abb, bbb, bbc} → {$10a $10b $10b, $10b $10b $10b, $10b $10b $10c}

Step2: {$10a $10b $10b, $10b $10b $10b, $10b $10b $10c} →

→ {$10a $10b $10b$, $9b $10b $10b, $10b $10b $10c}

overlap($10a $10b $10b$, $9b $10b $10b) = 22

overlap($9b $10b $10b, $10b $10b $10c) = 22

overlap($10a $10b $10b$, $10b $10b $10c) = 23

Perturbing procedure

For 𝒮 = {𝑠1, … , 𝑠𝑛} and 𝐴 ∈ GA let 𝑙𝐴 1 , 𝑟𝐴 1 , 𝑙𝐴 2 , 𝑟𝐴 2 ,… , 𝑙𝐴 𝑛 − 1 , 𝑟𝐴 𝑛 − 1 be the order of

merges: strings 𝑠𝑙𝐴 𝑖 and 𝑠𝑟𝐴 𝑖 are merged at step 𝑖.

If |overlap(𝑠𝑙𝐴 𝑖 , 𝑠𝑟𝐴 𝑖)| = 0 for some 𝑖, then the same holds for any 𝑖′ > 𝑖. Let 𝑇𝐴 be the first such 𝑖.

This is the first trivial merge. If there were no trivial merges, 𝑇𝐴 = 𝑛.

Perturbing procedure

Input: a dataset 𝒮, an instantiation 𝐴 of the Greedy Algorithm (𝐴 ∈ GA), 𝜀 > 0.

For every 𝑠𝑖 = 𝑐1𝑐2…𝑐 𝑠𝑖 ∈ 𝒮 define a string

𝑠𝑖
′ = $𝑚−𝛼𝑖 𝑐1 $

𝑚 𝑐2 $
𝑚 𝑐3 $

𝑚…$𝑚 𝑐 𝑠𝑖 $
𝑇𝐴−𝛽𝑖 ,

where

● $ is a sentinel — symbol which does not occur in 𝒮,

● 𝑚 is a parameter that depends on 𝜀,

● 𝛼𝑖 is the number of step such that 𝑟𝐴 𝛼𝑖 = 𝑖, if such step exists and < 𝑇𝐴, and 𝛼𝑖 = 𝑇𝐴 otherwise;

● 𝛽𝑖 is the number of step such that 𝑙𝐴 𝛽𝑖 = 𝑖, if such step exists and < 𝑇𝐴, and 𝛽𝑖 = 𝑇𝐴 otherwise.

Order: 1,5 , 3,2 , 5,4 , 2,1 , 𝑇𝐴 = 3 ⇒ 𝛽1 = 𝛼5 = 1, 𝛽3 = 𝛼2 = 2, 𝛽5 = 𝛼4 = 𝛽2 = 𝛼1 = 𝛽4 = 𝛼3 = 3.

Perturbing procedure

As 𝑚 → ∞:

1

𝑚
OPT 𝒮′ → OPT 𝒮 ,

1

𝑚
𝐴 𝒮′ → 𝐴 𝒮 ,

so we can choose 𝑚 such that 𝐴 𝒮

OPT 𝒮
− 𝜀 <

𝐴 𝒮′

OPT 𝒮′
.

Since 𝐵 𝒮′ = 𝐴 𝒮′ , ∀𝐵 ∈ GA, we have
𝐵 𝒮′

OPT 𝒮′
=

𝐴 𝒮′

OPT 𝒮′
.

Corollaries

To prove (or disprove) the Greedy Conjecture, it is sufficient to consider datasets satisfying some of

the following three properties:

1. there are no ties between non-empty overlaps, that is, datasets where all the instantiations of

the greedy algorithm work the same;

2. there are no empty overlaps: overlap(𝑠𝑖, 𝑠𝑗) ≠ 𝜀, ∀, 𝑖 ≠ 𝑗;

3. all non-empty overlaps are (pairwise) different: |overlap(𝑠𝑖, 𝑠𝑗)| ≠ |overlap(𝑠𝑘, 𝑠𝑙)|, for all 𝑖 ≠ 𝑗,

𝑘 ≠ 𝑙, 𝑖, 𝑗 ≠ 𝑘, 𝑙 .

Corollaries

To prove (or disprove) the Greedy Conjecture, it is sufficient to consider datasets satisfying some of

the following three properties:

1. there are no ties between non-empty overlaps, that is, datasets where all the instantiations of

the greedy algorithm work the same;

2. there are no empty overlaps: overlap(𝑠𝑖, 𝑠𝑗) ≠ 𝜀, ∀, 𝑖 ≠ 𝑗;

3. all non-empty overlaps are (pairwise) different: |overlap(𝑠𝑖, 𝑠𝑗)| ≠ |overlap(𝑠𝑘, 𝑠𝑙)|, for all 𝑖 ≠ 𝑗,

𝑘 ≠ 𝑙, 𝑖, 𝑗 ≠ 𝑘, 𝑙 .

Thank you for your attention!
Ask your questions: makc-nicko@yandex.ru

