String Covers of a Tree

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

University of Warsaw, Poland

Overview

Introduction and definitions

Algorithm for String Covers of an Undirected Tree

Algorithm for String Covers of a Directed Tree

Introduction and definitions

Cover of a string

Definition

String W is a **Cover** of a text T if every character of T is covered by some occ. of W in T.

Example

$$W: \quad a \quad b \quad a$$

3

Cover of a string

Definition

String W is a **Cover** of a text T if every character of T is covered by some occ. of W in T.

Example

$$T: \quad \underline{a \quad b \quad a} \quad a \quad b \quad \underline{a \quad b \quad a}$$

Observation

If W is a cover of T, then W is both a prefix and a suffix of T.

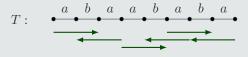
3

Cover of an undirected path

Definition

String W is a **cover** of an edge labelled undirected simple path T if every edge of T can be covered by some simple path with label W.

Example



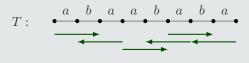
W: a b

Cover of an undirected path

Definition

String W is a **cover** of an edge labelled undirected simple path T if every edge of T can be covered by some simple path with label W.

Example



W: a b

Observation: We can cover path T with both W and W^R , so observation about prefix and suffix does not hold anymore.

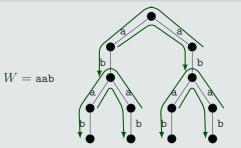
4

Cover of an undirected tree

Definition

String W is a **cover** of an edge labelled undirected tree T if every edge of T can be covered by some simple path with label W.

Example

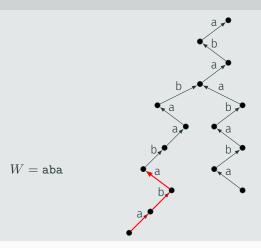


Cover of a directed tree

Definition

String W is a **cover** of an edge labelled directed tree T if every edge of T can be covered by some simple path (with all edges directed towards the root of T) with label W.

Example



Motivation

- · many results for covers in non-standard settings, for example:
 - · 2-dimensional,
 - · Abelian,
 - · parameterized,
 - · order-preserving,
 - · on indeterminate and weighted strings,
- · continuation of work on algorithmic and combinatorial properties of:
 - · palindromes,
 - powers
 - · runs

in labeled trees.

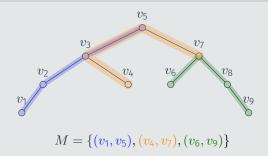
Algorithm for String Covers of an Undirected Tree

Covering Tree by Paths

Problem definition

Input A set M of simple paths in an undirected tree T (given by their endpoints). Output YES if M covers T, NO otherwise.

Example

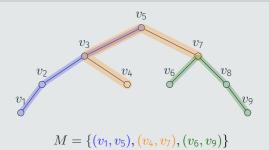


Covering Tree by Paths

Problem definition

Input A set M of simple paths in an undirected tree T (given by their endpoints). Output YES if M covers T, NO otherwise.

Example



Lemma

Covering Tree by Paths can be solved in O(|T| + |M|) time.

۶

Enumerating all paths in tree T

- there are $\Theta(n^2)$ distinct paths in tree T,
- in $\Theta(n^2)$ -time we can assign to each path (u,v) its identifier id(u,v), such that two paths share the same identifier iff they have the same label,
- each identifier id(u,v) can be an integer from range $\{1,\ldots,n^2\}$,
- we group paths with the same identifier using lists $L_i = \{(u_j, v_j) : id(u_j, v_j) = i\}$

$O(n^2)$ time and space algorithm

```
Algorithm 1: ReportAllCovers
Input: undirected labelled tree T
Output: all unique covers: \{(v_i, v_j) : label(v_i, v_j) \text{ is a cover of } T\}
enumerate all paths in T
C = \{ \text{ all identifiers from } T \}
foreach i \in C do
   solve problem of Covering Tree by Paths for T and paths L_i
   if answer is YES then
       report cover corresponding to the identifier i
   end
end
```

$O(n^2)$ time and space algorithm

```
Algorithm 2: ReportAllCovers
Input: undirected labelled tree T
Output: all unique covers: \{(v_i, v_j) : label(v_i, v_j) \text{ is a cover of } T\}
enumerate all paths in T
C = \{ \text{ all identifiers from } T \}
foreach i \in C do
   solve problem of Covering Tree by Paths for T and paths L_i
   if answer is YES then
       report cover corresponding to the identifier i
   end
end
```

Unfortunately we can not afford to verify $O(n^2)$ candidates, since this would require $O(n^3)$ time.

Candidates for covers

Lemma

An undirected labeled tree with n nodes has at most 2n-2 covers.

Proof

If we select any arbitrary leaf node w, then edge outgoing from w needs to be matched by some occurrence of cover that starts (or ends) in w.

This gives us set of 2(n-1) candidates for cover:

$$\{label(w,u):u\in T\}\cup\{label(u,w):u\in T\}$$

$O(n^2)$ time and space algorithm

```
Algorithm 3: ReportAllCovers
Input: undirected labelled tree T
Output: all unique covers: \{(v_i, v_i) : label(v_i, v_i) \text{ is a cover of } T\}
enumerate all paths in T
select arbitrary leaf w \in T
C = \{ id(u, w) : u \in T \} \cup \{ id(w, u) : u \in T \}
foreach i \in C do
   solve problem of Covering Tree by Paths for T and paths L_i
   if answer is YES then
       report cover corresponding to the identifier i
   end
end
```

Results

Theorem

All covers of an undirected tree with n nodes can be computed in $\mathcal{O}(n^2)$ time and space.

13

Results

Theorem

All covers of an undirected tree with n nodes can be computed in $O(n^2)$ time and space.

Theorem

All covers of an undirected tree can be computed in $O(n^2 \log n)$ time and O(n) space.

Proof outline

We introduce a new problem Anchored Covering Problem (covers need to pass through root node) and use Centroid Decomposition of a tree.

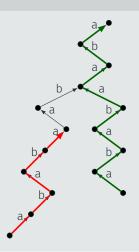
13

Algorithm for String Covers of a Directed Tree

Observations

If w is a cover of directed tree T:

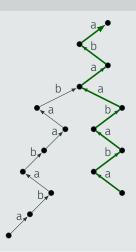
- w is a cover of at least one leaf-to-root label (i.e. ababa is a cover of ababaababa),
- it might happen that w is not a cover of some leaf-to-root labels (i.e. ababa is not a cover of ababaaba).



Observations

If w is a cover of directed tree T:

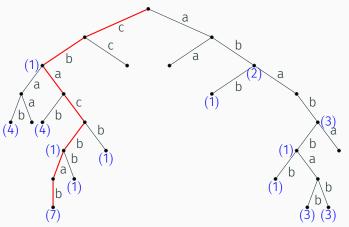
- \cdot w is a prefix of all leaf-to-root labels,
- w is a prefix of longest common prefix of all leaf-to-root paths (S[1..m]),
- here S[1..m] = ababaaba.



TREEPREF array

 $\mathsf{TREEPREF}_S[v] = \mathsf{length} \ \mathsf{of} \ \mathsf{longest} \ \mathsf{common} \ \mathsf{prefix} \ \mathsf{of} \ S \ \mathsf{and} \ label(v,r)$

Example of TREEPREF $_S$ for S=babcabc (marked with red color):



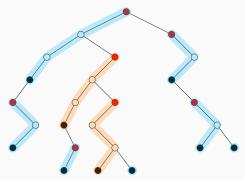
Chain decomposition

We decompose all nodes of *T* into chains.

Black (marked) nodes represent start of an occurrence of S[1..d], **Red** nodes represent top-node of the chain.

Length of a chain is a number of its non-root nodes (orange chains have length 4).

Objective: organize chains to minimize the maximal length of chains (each node is assigned to closest marked node).



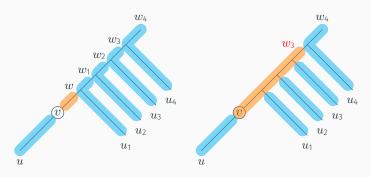
Covers in Directed Trees - Algorithm outline

```
Algorithm 4: ReportAllCovers
Input: directed labelled tree T
Output: all unique covers of T
S \leftarrow \text{label of } label(leaf, r) \text{ (for any arbitrary leaf)}
calculate TREEPREFS
m := \min\{TreePref_S[v] : v \text{ is leaf } \in T\}
for d \leftarrow m downto 1 do
    maintain partition of nodes of T into chains M,
      each chain corresponds to the occurrence of S[1..d]
   if maximal length of a chain from M < d then
       report S[1..d] as a cover of T
   end
end
```

Chain updates

What happens, when we observe new occurrence of S[1..d] starting in node v?

- \cdot node v is marked as black node,
- \cdot existing chain is split creating new chain starting in v,
- · some nodes are re-assigned to new chain.



Some details

- \cdot to calculate TreePref $_S$ array we use Suffix Tree of a Tree data structure (+LCA queries),
- · we need to prove that chain updates amortize to O(n) time,
- to keep track of top-nodes of chains, we use Dynamic Marked Ancestor Problem, each such query requires $O(\log n/\log\log n)$ -time.

Summary

Summary of Algorithms for String Covers of a Tree

Variant	Time	Space
undirected	$O(n^2)$	$O(n^2)$
undirected	$O(n^2 \log n)$	O(n)
directed	$O(n\log n/\log\log n)$	O(n)

Thank you for your attention!