
String Covers of a Tree

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

University of Warsaw, Poland

1

Overview

Introduction and definitions

Algorithm for String Covers of an Undirected Tree

Algorithm for String Covers of a Directed Tree

2

Introduction and definitions

Cover of a string

Definition
String W is a Cover of a text T if every character of T is covered by some occ. of W in T .

Example

a b a a b a b aT :

W : a b a

Observation
If W is a cover of T , then W is both a prefix and a suffix of T .

3

Cover of a string

Definition
String W is a Cover of a text T if every character of T is covered by some occ. of W in T .

Example

a b a a b a b aT :

W : a b a

Observation
If W is a cover of T , then W is both a prefix and a suffix of T .

3

Cover of an undirected path

Definition
String W is a cover of an edge labelled undirected simple path T if every edge of T can
be covered by some simple path with label W .

Example

a b a a b a b a
T :

W : a b

Observation: We can cover path T with both W and WR, so observation about prefix
and suffix does not hold anymore.

4

Cover of an undirected path

Definition
String W is a cover of an edge labelled undirected simple path T if every edge of T can
be covered by some simple path with label W .

Example

a b a a b a b a
T :

W : a b

Observation: We can cover path T with both W and WR, so observation about prefix
and suffix does not hold anymore.

4

Cover of an undirected tree

Definition
String W is a cover of an edge labelled undirected tree T if every edge of T can be
covered by some simple path with label W .

Example

W = aab

b

a

b

a

b

a

b

a

b

a

b

a

5

Cover of a directed tree

Definition
String W is a cover of an edge labelled directed tree T if every edge of T can be covered
by some simple path (with all edges directed towards the root of T) with label W .

Example
a

b

a

b

a

a

b

a

b

a

a

b

a

b

aW = aba

6

Motivation

• many results for covers in non-standard settings, for example:
• 2-dimensional,
• Abelian,
• parameterized,
• order-preserving,
• on indeterminate and weighted strings,

• continuation of work on algorithmic and combinatorial properties of:
• palindromes,
• powers
• runs

in labeled trees.

7

Algorithm for String Covers of an
Undirected Tree

Covering Tree by Paths

Problem definition

Input A set M of simple paths in an undirected tree T (given by their endpoints).
Output YES if M covers T , NO otherwise.

Example
v5

M = {(v1, v5), (v4, v7), (v6, v9)}

v3 v7

v2 v4

v1

v6 v8

v9

Lemma
Covering Tree by Paths can be solved in O(|T |+ |M |) time.

8

Covering Tree by Paths

Problem definition

Input A set M of simple paths in an undirected tree T (given by their endpoints).
Output YES if M covers T , NO otherwise.

Example
v5

M = {(v1, v5), (v4, v7), (v6, v9)}

v3 v7

v2 v4

v1

v6 v8

v9

Lemma
Covering Tree by Paths can be solved in O(|T |+ |M |) time.

8

Enumerating all paths in tree T

• there are Θ(n2) distinct paths in tree T ,

• in Θ(n2)-time we can assign to each path (u, v) its identifier id(u, v), such that two
paths share the same identifier iff they have the same label,

• each identifier id(u, v) can be an integer from range {1, . . . , n2},

• we group paths with the same identifier using lists Li = {(uj , vj) : id(uj , vj) = i}

9

O(n2) time and space algorithm

Algorithm 1: ReportAllCovers
Input: undirected labelled tree T

Output: all unique covers: {(vi, vj) : label(vi, vj) is a cover of T}
enumerate all paths in T

C = { all identifiers from T }
foreach i ∈ C do

solve problem of Covering Tree by Paths for T and paths Li

if answer is YES then
report cover corresponding to the identifier i

end
end

Unfortunately we can not afford to verify O(n2) candidates,
since this would require O(n3) time.

10

O(n2) time and space algorithm

Algorithm 2: ReportAllCovers
Input: undirected labelled tree T

Output: all unique covers: {(vi, vj) : label(vi, vj) is a cover of T}
enumerate all paths in T

C = { all identifiers from T }
foreach i ∈ C do

solve problem of Covering Tree by Paths for T and paths Li

if answer is YES then
report cover corresponding to the identifier i

end
end

Unfortunately we can not afford to verify O(n2) candidates,
since this would require O(n3) time.

10

Candidates for covers

Lemma
An undirected labeled tree with n nodes has at most 2n− 2 covers.

Proof
If we select any arbitrary leaf node w, then edge outgoing from w needs to be matched
by some occurrence of cover that starts (or ends) in w.

This gives us set of 2(n− 1) candidates for cover:

{label(w, u) : u ∈ T} ∪ {label(u,w) : u ∈ T}

11

O(n2) time and space algorithm

Algorithm 3: ReportAllCovers
Input: undirected labelled tree T

Output: all unique covers: {(vi, vj) : label(vi, vj) is a cover of T}
enumerate all paths in T

select arbitrary leaf w ∈ T

C = {id(u,w) : u ∈ T} ∪ {id(w, u) : u ∈ T}
foreach i ∈ C do

solve problem of Covering Tree by Paths for T and paths Li

if answer is YES then
report cover corresponding to the identifier i

end
end

12

Results

Theorem
All covers of an undirected tree with n nodes can be computed in O(n2) time and space.

Theorem
All covers of an undirected tree can be computed in O(n2 log n) time and O(n) space.

Proof outline
We introduce a new problem Anchored Covering Problem (covers need to pass through
root node) and use Centroid Decomposition of a tree.

13

Results

Theorem
All covers of an undirected tree with n nodes can be computed in O(n2) time and space.

Theorem
All covers of an undirected tree can be computed in O(n2 log n) time and O(n) space.

Proof outline
We introduce a new problem Anchored Covering Problem (covers need to pass through
root node) and use Centroid Decomposition of a tree.

13

Algorithm for String Covers of a
Directed Tree

Observations

If w is a cover of directed tree T :
• w is a cover of at least one leaf-to-root
label (i.e. ababa is a cover of
ababaababa),

• it might happen that w is not a cover of
some leaf-to-root labels (i.e. ababa is
not a cover of ababaaba).

a

b

a

b

a

a

b

a

b

a

a

b

a

b

a

14

Observations

If w is a cover of directed tree T :
• w is a prefix of all leaf-to-root labels,
• w is a prefix of longest common prefix
of all leaf-to-root paths (S[1..m]),

• here S[1..m] = ababaaba.

a

b

a

b

a

a

b

a

b

a

a

b

a

b

a

15

TREEPREF array

TREEPREFS [v] = length of longest common prefix of S and label(v, r)

Example of TREEPREFS for S = babcabc (marked with red color):

c
a

a
b

b
a

b

b
a

b
a

b
b

b
c

a
a

b
a

b
c

b
b

a
b

b

(2)(1)

(1)
(3)

(1)

(1)

(3) (3)

(4) (4)
(1)

(7)

(1)

(1)

16

Chain decomposition

We decompose all nodes of T into chains.

Black (marked) nodes represent start of an occurrence of S[1..d],
Red nodes represent top-node of the chain.

Length of a chain is a number of its non-root nodes (orange chains have length 4).

Objective: organize chains to minimize the maximal length of chains (each node is
assigned to closest marked node).

17

Covers in Directed Trees - Algorithm outline

Algorithm 4: ReportAllCovers
Input: directed labelled tree T

Output: all unique covers of T
S ← label of label(leaf, r) (for any arbitrary leaf)
calculate TREEPREFS
m := min{TreePrefS [v] : v is leaf ∈ T}
for d← m downto 1 do

maintain partition of nodes of T into chains M ,
each chain corresponds to the occurrence of S[1..d]

if maximal length of a chain from M ≤ d then
report S[1..d] as a cover of T

end
end

18

Chain updates

What happens, when we observe new occurrence of S[1..d] starting in node v?

• node v is marked as black node,
• existing chain is split creating new chain starting in v,
• some nodes are re-assigned to new chain.

v

u

w

w1

w2

w3

w4

u1

u2

u3

u4
v

u

w3

w4

u1

u2

u3

u4

19

Some details

• to calculate TREEPREFS array we use Suffix Tree of a Tree data structure (+LCA queries),

• we need to prove that chain updates amortize to O(n) time,

• to keep track of top-nodes of chains, we use Dynamic Marked Ancestor Problem,
each such query requires O(log n/ log log n)-time.

20

Summary

Summary of Algorithms for String Covers of a Tree

Variant Time Space

undirected O(n2) O(n2)

undirected O(n2 log n) O(n)

directed O(n log n/ log log n) O(n)

21

Thank you for your attention!

	Introduction and definitions
	Algorithm for String Covers of an Undirected Tree
	Algorithm for String Covers of a Directed Tree
	Summary
	Thank you for your attention!

