
SPIRE2021

Minimal unique palindromic substrings
after single-character substitution

Mitsuru Funakoshi, Takuya Mieno*

Kyushu University, Japan
*Current affiliation: Hokkaido University, Japan

Palindrome is a string that reads the same forward and backward.

For a palindromic substring 𝑤 of a string 𝑇,
a palindrome whose center is the same as that of 𝑤 is called
・a contraction of 𝑤 if it is shorter than 𝑤, and
・an expansion of 𝑤 if it is longer than 𝑤.

Palindromes 1

𝑇 = a b b a a b b b a a b a b a b a b

𝑤

Contractions of 𝑤

Expansions of 𝑤

Palindrome is a string that reads the same forward and backward.

For a palindromic substring 𝑤 of a string 𝑇,
a palindrome whose center is the same as that of 𝑤 is called
・a contraction of 𝑤 if it is shorter than 𝑤, and
・an expansion of 𝑤 if it is longer than 𝑤.

If	there	are	no	expansions	of	𝑢,	𝑢 is	called	a	maximal	palindrome.

Palindromes 2

𝑇 = a b b a a b b b a a b a b a b a b

𝑤

Maximal palindrome

Contractions of 𝑤

Expansions of 𝑤

Minimal Unique Palindromic Substring

Definition [Inoue+, ’18]
A palindromic substring 𝑇 𝑖. . 𝑗 of a string 𝑇 is
a minimal unique palindromic substring (MUPS) of 𝑇
if 𝑇 𝑖. . 𝑗 is unique in 𝑇 and 𝑇 𝑖 + 1. . 𝑗 − 1 is repeating in 𝑇.

𝑇 = a b b a a b b b a a b a b a b a b

3

Minimal Unique Palindromic Substring

Definition [Inoue+, ’18]
A palindromic substring 𝑇 𝑖. . 𝑗 of a string 𝑇 is
a minimal unique palindromic substring (MUPS) of 𝑇
if 𝑇 𝑖. . 𝑗 is unique in 𝑇 and 𝑇 𝑖 + 1. . 𝑗 − 1 is repeating in 𝑇.

𝑇 = a b b a a b b b a a b a b a b a b

4

Minimal Unique Palindromic Substring

Definition [Inoue+, ’18]
A palindromic substring 𝑇 𝑖. . 𝑗 of a string 𝑇 is
a minimal unique palindromic substring (MUPS) of 𝑇
if 𝑇 𝑖. . 𝑗 is unique in 𝑇 and 𝑇 𝑖 + 1. . 𝑗 − 1 is repeating in 𝑇.

Theorem [Inoue+, ’18]
For any string 𝑇 of length 𝑛, MUPS 𝑇 ≤ 𝑛.
MUPS 𝑇 can be computed in 𝑂 𝑛 time.

MUPS 𝑇 : the set of MUPSs of a string 𝑇.

𝑇 = a b b a a b b b a a b a b a b a b

5

Problem (MUPS_AFTER_EDIT)
Preprocessing input: string 𝑇
Query input: single character substitution 𝑖, 𝑠
Query output: MUPS(𝑇) △ MUPS(𝑇!) (𝑇!: the edited string)

Our problem

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖
Query input: 𝑖, 𝑠 = 7, a

Query output: abba,bbb,bbaabb,bb,aababaa,abaaba
Removed Added

6

Substituting 𝑇 𝑖 with a character 𝑠.

Problem (MUPS_AFTER_EDIT)
Preprocessing input: string 𝑇
Query input: single character substitution 𝑖, 𝑠
Query output: MUPS(𝑇) △ MUPS(𝑇!) (𝑇!: the edited string)

Our problem

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b b b b a b a b a b

𝑖
Query input: 𝑖, 𝑠 = 9, b

Query output: bbb,bbaabb,babab,aa,bbbb
Removed Added

7

Substituting 𝑇 𝑖 with a character 𝑠.

Related work for “after one-edit” problems 8

Static One edit Dynamic

Longest
common
substring

𝑂 𝑛 time
[Weiner, ’73]

#𝑂 𝑛 space
#𝑂 1 time

[Amir+, ’17]
[Abedin+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[Charalampopoulos+, ’20]

Longest
palindrome

𝑂 𝑛 time
[Manacher, ’75]

𝑂 𝑛 space
#𝑂 1 time

[Funakoshi+, ’21]

𝑂 𝑛 space
#𝑂 1 time

[Amir & Boneh, ’19]
Longest
Lyndon

substring

𝑂 𝑛 time
[Duval, ’83]

𝑂 𝑛 space
#𝑂 1 time

[Urabe+, ’18]

𝑂 𝑛 space
#𝑂 𝑛!/# time

[Amir+, ’19]*

MUPS 𝑂 𝑛 time
[Inoue+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[This work]
-

Related work for “after one-edit” problems

#𝑂 𝑓 𝑛 = 𝑂 𝑓 𝑛 polylog 𝑛

9

Static One edit Dynamic

Longest
common
substring

𝑂 𝑛 time
[Weiner, ’73]

#𝑂 𝑛 space
#𝑂 1 time

[Amir+, ’17]
[Abedin+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[Charalampopoulos+, ’20]

Longest
palindrome

𝑂 𝑛 time
[Manacher, ’75]

𝑂 𝑛 space
#𝑂 1 time

[Funakoshi+, ’21]

𝑂 𝑛 space
#𝑂 1 time

[Amir & Boneh, ’19]
Longest
Lyndon

substring

𝑂 𝑛 time
[Duval, ’83]

𝑂 𝑛 space
#𝑂 1 time

[Urabe+, ’18]

𝑂 𝑛 space
#𝑂 𝑛!/# time

[Amir+, ’19]*

MUPS 𝑂 𝑛 time
[Inoue+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[This work]
-

Related work for “after one-edit” problems

*Randomized algorithm#𝑂 𝑓 𝑛 = 𝑂 𝑓 𝑛 polylog 𝑛

10

Static One edit Dynamic

Longest
common
substring

𝑂 𝑛 time
[Weiner, ’73]

#𝑂 𝑛 space
#𝑂 1 time

[Amir+, ’17]
[Abedin+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[Charalampopoulos+, ’20]

Longest
palindrome

𝑂 𝑛 time
[Manacher, ’75]

𝑂 𝑛 space
#𝑂 1 time

[Funakoshi+, ’21]

𝑂 𝑛 space
#𝑂 1 time

[Amir & Boneh, ’19]
Longest
Lyndon

substring

𝑂 𝑛 time
[Duval, ’83]

𝑂 𝑛 space
#𝑂 1 time

[Urabe+, ’18]

𝑂 𝑛 space
#𝑂 𝑛!/# time

[Amir+, ’19]*

MUPS 𝑂 𝑛 time
[Inoue+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[This work]
-

Related work for “after one-edit” problems

*Randomized algorithm#𝑂 𝑓 𝑛 = 𝑂 𝑓 𝑛 polylog 𝑛

11

Static One edit Dynamic

Longest
common
substring

𝑂 𝑛 time
[Weiner, ’73]

#𝑂 𝑛 space
#𝑂 1 time

[Amir+, ’17]
[Abedin+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[Charalampopoulos+, ’20]

Longest
palindrome

𝑂 𝑛 time
[Manacher, ’75]

𝑂 𝑛 space
#𝑂 1 time

[Funakoshi+, ’21]

𝑂 𝑛 space
#𝑂 1 time

[Amir & Boneh, ’19]
Longest
Lyndon

substring

𝑂 𝑛 time
[Duval, ’83]

𝑂 𝑛 space
#𝑂 1 time

[Urabe+, ’18]

𝑂 𝑛 space
#𝑂 𝑛!/# time

[Amir+, ’19]*

MUPS 𝑂 𝑛 time
[Inoue+, ’18]

𝑂 𝑛 space
#𝑂 1 time

[This work]
-

Main results
Theorem 1

The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏
after single character substitution.

Theorem 2
MUPS_AFTER_EDIT can be solved in the following query time
after 𝑂 𝑛 time and space preprocessing:

Alphabet size 𝜎 Query time

Algorithm 1
(for large 𝜎)

𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑
𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑

Algorithm 2
(for small 𝜎)

𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

12

Main results
Theorem 1

The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏
after single character substitution.

Theorem 2
MUPS_AFTER_EDIT can be solved in the following query time
after 𝑂 𝑛 time and space preprocessing:

Alphabet size 𝜎 Query time

Algorithm 1
(for large 𝜎)

𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑
𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑

Algorithm 2
(for small 𝜎)

𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

13

Main results
Theorem 1

The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏
after single character substitution.

Theorem 2
MUPS_AFTER_EDIT can be solved in the following query time
after 𝑂 𝑛 time and space preprocessing:

Alphabet size 𝜎 Query time

Algorithm 1
(for large 𝜎)

𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑
𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑

Algorithm 2
(for small 𝜎)

𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

14

Main results
Theorem 1

The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏
after single character substitution.

Theorem 2
MUPS_AFTER_EDIT can be solved in the following query time
after 𝑂 𝑛 time and space preprocessing:

Alphabet size 𝜎 Query time

Algorithm 1
(for large 𝜎)

𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑
𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑

Algorithm 2
(for small 𝜎)

𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

15

of changes of MUPSs

Theorem 1
The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏 .

We show # of MUPSs to be removed is 𝑂 log 𝑛 .
We categorize MUPSs to be removed into three types:

Type 1: covers the editing position 𝑖.
Type 2: does not cover 𝑖 and is repeating in 𝑇!.
Type 3: does not cover 𝑖 and is unique but not minimal in 𝑇!.

16

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖

Type 3
Type 1

Type 2

of changes of MUPSs

Theorem 1
The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏 .

We show # of MUPSs to be removed is 𝑂 log 𝑛 .
We categorize MUPSs to be removed into three types:

Type 1: covers the editing position 𝑖.
Type 2: does not cover 𝑖 and is repeating in 𝑇!.
Type 3: does not cover 𝑖 and is unique but not minimal in 𝑇!.

17

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖

Type 3
Type 1

Type 2

of changes of MUPSs

Theorem 1
The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏 .

We show # of MUPSs to be removed is 𝑂 log 𝑛 .
We categorize MUPSs to be removed into three types:

Type 1: covers the editing position 𝑖.
Type 2: does not cover 𝑖 and is repeating in 𝑇!.
Type 3: does not cover 𝑖 and is unique but not minimal in 𝑇!.

18

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖

Type 3
Type 1

Type 2

of MUPSs of Type 1
Type 1: covers 𝑖.

I focus on the MUPSs of Type 1 centered before 𝑖.
Such MUPS 𝑤 is an expansion of some palindromic suffix of 𝑇 1. . 𝑖 .

Seeds of MUPSs are different from each other.
Thus, # of seeds is equal to # of MUPSs of Type 1.

19

seed of MUPS 𝑤

seed(𝑤!)

𝑖
𝑇

𝑤!
seed(𝑤")

𝑤"

Claim 1
The number of seeds in each group is at most two.

of MUPSs of Type 1
Type 1: covers 𝑖.

I focus on the MUPSs of Type 1 centered before 𝑖.
Such MUPS 𝑤 is an expansion of some palindromic suffix of 𝑇 1. . 𝑖 .

Lemma 1 [Apostolico+, ’95]
The set of palindromic suffixes of 𝑇 1. . 𝑖 is divided into
𝑂 log 𝑖 groups w.r.t. their smallest period.

If Claim 1 holds, then # of MUPSs of Type 1 is 𝑶(𝐥𝐨𝐠𝒏).

20

𝑖
𝑇

𝑤!
seed(𝑤")

𝑤"

seed(𝑤!)

seed of MUPS 𝑤

Proof of Claim 1

Claim 1
The number of seeds in each group is at most two.

Now we consider the maximal expansions of palindromic suffixes,
namely, maximal palindromes.

21

𝑖

Proof of Claim 1

Claim 1
The number of seeds in each group is at most two.

Now we consider the maximal expansions of palindromic suffixes,
namely, maximal palindromes.

Due to periodicity, the expansions shape like this figure.

22

𝑖 𝑖

or

Proof of Claim 1

Claim 1
The number of seeds in each group is at most two.

23

𝑢!
𝑢#

𝑖

𝑤!
𝑤#

・Any palindrome which is an expansion of palindromic suffixes is
contained in 𝑤' or 𝑤%.
・Any expansion of palindromic suffixes excluding 𝑢' and 𝑢% is repeating.
Thus, only 𝑢' and 𝑢% can be seeds.

of MUPSs of Type 2
Type 2: does not cover 𝑖 and is repeating in 𝑇!.

MUPS 𝑤 of Type 2 has a new occurrence covering 𝑖 in 𝑻!.
Such an occ. is an expansion of a palindromic suffix of 𝑇! 1. . 𝑖 .

Similar to the proof of Type-1, we reduce
the problem of counting # of MUPSs of Type 2 to
that of counting # of the palindromic suffixes corresponding to them.

We can prove that # of MUPSs of Type 2 is 𝑶(𝐥𝐨𝐠𝒏).

𝑤!

𝑖
𝑻$

𝑤#

24

𝑤"

𝑤#

of changes of MUPSs

Similarly, we can also prove that # of MUPSs of Type 3 is 𝑶(𝐥𝐨𝐠𝒏).

From the above, # of MUPSs to be removed is 𝑂 log 𝑛 .
By symmetry, # of MUPSs to be added is also 𝑂 log 𝑛 .
Then we obtain Theorem 1.

Theorem 1
The number 𝒅 of changes of MUPSs is 𝑶 𝐥𝐨𝐠𝒏 .

We have shown this upper bound is tight after submission.

25

Main results
Theorem 1

The number 𝑑 of changes of MUPSs is 𝑂 log 𝑛
after single character substitution.

Theorem 2
MUPS_AFTER_EDIT can be solved in the following query time
after 𝑂 𝑛 time and space preprocessing:

Alphabet size 𝜎 Query time
𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑

𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑
𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

26

Using path-tree
LCE query
on EERTREE

Using NCA query
on Suffix Tree

Algorithm for 𝜎 ∈ 𝑂 1
We separately compute MUPSs to be removed or added.
I will show how to compute MUPSs to be removed.

We use same categorizations of MUPSs to be removed:
Type 1: covers 𝑖.
Type 2: does not cover 𝑖 and is repeating in 𝑇!.
Type 3: does not cover 𝑖 and is unique but not minimal in 𝑇!.

27

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖

Type 3
Type 1

Type 2

Algorithm for 𝜎 ∈ 𝑂 1
We separately compute MUPSs to be removed or added.
I will show how to compute MUPSs to be removed.

We use same categorizations of MUPSs to be removed:
Type 1: covers 𝑖.
Type 2: does not cover 𝑖 and is repeating in 𝑇!.
Type 3: does not cover 𝑖 and is unique but not minimal in 𝑇!.

28

𝑇 = a b b a a b b b a a b a b a b

𝑇! = a b b a a b a b a a b a b a b

𝑖

Type 3
Type 1

Type 2

Computing MUPSs of Type 2
Type 2: does not cover 𝑖 and is repeating in 𝑇!.

MUPS 𝑤 of Type 2 satisfies the following properties in 𝑻!:
・# of occurrences of 𝑤 that covers 𝑖 is at least 1.
・# of occurrences of 𝑤 that does not cover 𝑖 is 1.

Further, we categorize MUPSs of Type 2 into two sub-types:
2-1: at least one occurrence of 𝑤 covers 𝑖 by its arm.
2-2: the only occurrence of 𝑤 covering 𝑖 is centered at 𝑖.

29

Type 2-1
Type 2-2

𝑇 = a b a a b a a b c a b a a c a a b c

𝑇! = a b a a b a a b c a b a a b a a b c

𝑖

Observation for MUPSs of Type 2-1
Type 2-1: at least one occurrence of 𝑤 covers 𝑖 by its arm.

Let 𝑗 be the starting position of an occurrence of 𝑤
such that its right-arm covers 𝑖 in 𝑻’.

𝑻! = a b a a b a a b c a b a a b a a b c
𝑖𝑗

30

𝑤 𝑤

Observation for MUPSs of Type 2-1
Type 2-1: at least one occurrence of 𝑤 covers 𝑖 by its arm.

Let 𝑗 be the starting position of an occurrence of 𝑤
such that its right-arm covers 𝑖 in 𝑻’.

The substring of length 𝑤 starting at 𝑗 is a
1-mismatch palindrome whose left-arm matches that of 𝑤 in 𝑻.

31

𝑇 = a b a a b a a b c a b a a c a a b c

𝑇! = a b a a b a a b c a b a a b a a b c

𝑤

𝑖𝑗

𝑤 𝑤

Preprocessing for MUPSs of Type 2-1
Enumerate all 1-mismatch palindromes whose left- or right-arm
matches that of some MUPS.

For each of the 1-mismatch palindromes, store the corresponding
MUPS 𝑤 with the key 𝑞, 𝑇 𝑝 , where 𝑞 is the mismatched position
and 𝑝 is the position on 𝑤 corresponding to 𝑞.

The total time complexity is proportional to
the total sum of occurrences of arms of all MUPSs.

Thus, the above operations can be processed in 𝑂 𝑛 time and space.

Lemma 2
The total sum of occurrences of arms of all MUPSs is 𝑂 𝑛 .

32

𝑇 = a b a a b a a b c a b a a c a a b c
𝑤

𝑞𝑗𝑝

Observation for MUPS of Type 2-2
Type 2-2: the only occurrence of 𝑤 covering 𝑖 is centered at 𝑖.

There exists at most one MUPS of Type 2-2 for a query 𝑖, 𝑠 .
Also, such a MUPS 𝑤 is an odd-palindrome.

If there exists such MUPS 𝑤 for a query 𝑖, 𝑠 ,
then there is a palindrome 𝑤! centered 𝑖 such that 𝑤 = 𝑤! in 𝑇.
They differ only in the center character.
→ The right-arm of 𝑤 occurs at position 𝑖 + 1 in both 𝑇 and 𝑇!.

We design our algorithm by focusing on
occurrences of the right-arm of each MUPS in 𝑇.

33

𝑇 = b a a b a a b c a b a a c a a b c

𝑇$ = b a a b a a b c a b a a b a a b c

𝑤

𝑖

𝑤$

𝑤 𝑤

Preprocessing for MUPS of Type 2-2 34

STree 𝑇$

We first construct the suffix tree STree 𝑇$.

For each odd MUPS in 𝑇, we make the locus of the right-arm explicit
on STree 𝑇$ and label the node with the center character.

𝑇 = b a a b a a b c a b a a c a a b c

𝑤

b

Preprocessing for MUPS of Type 2-2

The above operations can be processed in 𝑂 𝑛 time and space
by using weighted ancestor queries, Manacher’s algorithms, and so on.

35

STree 𝑇$

We first construct the suffix tree STree 𝑇$.

For each odd MUPS in 𝑇, we make the locus of the right-arm explicit
on STree 𝑇$ and label the node with the center character.
Also, for each odd maximal palindrome,
we make the locus of the right-arm explicit on STree 𝑇$.

𝑇 = b a a b a a b c a b a a c a a b c

𝑤

odd maximal palindrome
b

Query for MUPS of Type 2-2
Given a substitution 𝑖, 𝑠 ,
we compute the nearest ancestor 𝑈 labeled by 𝑠 of the node 𝑉
corresponding to the right-arm of the maximal palindrome centered at 𝑖.

If such 𝑈 exists, str 𝑈 - ⋅ 𝑠 ⋅ str 𝑈 is a MUPS of Type 2-2.

STree 𝑇$

36

𝑉

𝑈

𝑇 = b a a b a a b c a b a a c a a b c

𝑇$ = b a a b a a b c a b a a b a a b c

𝑤

𝑖

𝑤 𝑤
b

Given a substitution 𝑖, 𝑠 ,
we compute the nearest ancestor 𝑈 labeled by 𝑠 of the node 𝑉
corresponding to the right-arm of the maximal palindrome centered at 𝑖.

If such 𝑈 exists, str 𝑈 - ⋅ 𝑠 ⋅ str 𝑈 is a MUPS of Type 2-2.

If # of colors is 𝑂 log 𝑛 , any NCA query can be answered in 𝑂 1 time
after 𝑂 𝑛 -time preprocessing [Bille+, ’15][Charalampopoulos+, ’21].
Thus, the MUPS of Type 2-2 can be computed in 𝑂 1 query time.

Query for MUPS of Type 2-2

NCA()

STree 𝑇$

37

Nearest Colored Ancestor (NCA)

𝑉

𝑈

𝑇 = b a a b a a b c a b a a c a a b c

𝑇$ = b a a b a a b c a b a a b a a b c

𝑤

𝑖

𝑤 𝑤
b

b

Summary and future work

Alphabet size 𝜎 Query time

Algorithm 1
(for large 𝜎)

𝑂 poly 𝑛 𝑂 log 𝜎 + log log 𝑛 % + 𝑑
𝑂 𝑛 𝑂 log log 𝑛 % + 𝑑

Algorithm 2
(for small 𝜎)

𝑂 log 𝑛 𝑂 log log 𝑛 + 𝑑
𝑂 1 𝑂 1 + 𝑑

Future work
･ Insertions and deletions?
･ Fully dynamic algorithm?

- Can the techniques in [Amir and Boneh, ’19] be utilized?

Our results
･ The number 𝑑 of changes of MUPSs is 𝑂 log 𝑛 .
･ MUPS_AFTER_EDIT can be solved in the following query time

after 𝑂 𝑛 time and space preprocessing:

38

