Longest Common Rollercoasters

Kosuke Fujita ${ }^{1}$, Yuto Nakashima ${ }^{1}$, Shunsuke Inenaga ${ }^{1}$, Hideo Bannai ${ }^{2}$, and Masayuki Takeda ${ }^{1}$

1. Kyushu University
2. Tokyo Medical and Dental University

Background

- The Longest Common Subsequence (LCS) Problem is an important problem that appears in various fields.
- Since 2018, the study on the sequence called rollercoaster has been conducted [Biedl et al., 2018].
- Longest Common Rollercoaster is natural extension of LCS.

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.
$\begin{array}{lllllllllllll}3 & 4 & 6 & 7 & 8 & 7 & 5 & 8 & 2 & 2 & 2 & 3 & 4\end{array}$
$\longleftrightarrow \quad:+$-run
$\longleftrightarrow:-$-run
$\longleftrightarrow:$ both +-run and --run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.

$$
3<4<6<7<8>7 \quad 5 \quad 8 \quad 2 \quad 2 \quad 2 \quad 3 \quad 4
$$

$\longleftrightarrow \quad:+$ run
$\longleftrightarrow:-$-run
$\longleftrightarrow \quad:$ both +-run and --run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.

$$
\begin{array}{ccccccccc}
3 & 4 & 6 & 7<8>7>5<8 & 2 & 2 & 2 & 3 & 4
\end{array}
$$

$\longleftrightarrow \quad:+$-run
$\longleftrightarrow:-$ run
$\longleftrightarrow:$ both +-run and --run

k-rollercoaster

Definition [Biedl et al., 2018]
A string X is a \boldsymbol{k}-rollercoaster if any run in S is of length at least k.

X is 3-rollercoaster

Previous work on k-rollercoasters

Longest k-Rollercoaster problem
Input :
String X of length n and
Positive integer k.
Output :
Longest k-rollercoaster that is a subsequence of X.

- $O(n k \log n)$ time [Biedl et al., 2018]
- $O\left(\min \left\{n k^{2}, n \log ^{2} n\right\}\right)$ time [Gawrychowski et al., 2019]

Our Problem

Longest Common k-Rollercoaster problem
Input :
String S of length n,
String T of length $m(\leq n)$,
Positive integer k
Output :
Longest k-rollercoaster that is a subsequence of both S and T.

When $k=1$, then this problem is equivalent to LCS.
So, this problem is a generalization of LCS.
In the following, I talk about the case where $k \geq 2$.

Longest common k-rollercoaster

When $k=3$,

$$
\begin{array}{lllllllllllll}
S=8 & 4 & 6 & 5 & 7 & 2 & 3 & 5 & 5 & 9 & 1 \\
T & & & & & & & & & & & & \\
\hline
\end{array}
$$

Longest common 3-rollercoaster subsequence of S and T is

Our Contribution

Theorem 1.
A longest common k-rollercoaster of S and T can be computed in $O(n m k)$ time and space.

Theorem 2.
A longest common k-rollercoaster of S and T can be computed in $O\left(r k \log ^{3} m \log \log m\right)$ time and $O(r k)$ space.
r : the number of pairs (i, j) s.t. $S[i]=T[j]$
When S and T are random strings over $\{1, \ldots, \sigma\}$, then the expected value of r is $n m / \sigma$.
\rightarrow Theorem 2 is expected to be more space-efficient than Theorem 1.

Proof of Theorem 1

Theorem 1.
A longest common k-rollercoaster of S and T can be computed in $O(n m k)$ time and space.

Idea :
We use dynamic programming on S and T.

In our dynamic programming algorithm, we use $(k, h)_{\underline{w}}$-rollercoaster subsequences which are generalization of k-rollercoaster subsequences.

$(k, h)_{w}$-rollercoaster

Definition [Biedl et al., 2018]
For an integer string X, let $X_{1}, X_{2}, \ldots, X_{x}$ be the sequence of runs in X ordered by their occurrence in X. For $w \in\{+,-\}$ and integer $h \in[1, k], X$ is a $(\boldsymbol{k}, \boldsymbol{h})_{\boldsymbol{w}}$-rollercoaster if X_{1}, X_{2}, \ldots, X_{x} satisfies the following

1. The last run X_{x} is w-run.
2. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$.
3. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise.

Example of $(k, h)_{+}$-rollercoaster

$$
\begin{aligned}
& X=\begin{array}{llllllllllllll}
9 & 8 & 6 & 4 & 2 & 1 & 3 & 4 & 8 & 5 & 4 & 2 & 1 & 3
\end{array} \\
& X_{1} \stackrel{X_{2}}{\rightleftarrows} X_{3} \underset{X_{4}}{\rightleftarrows}
\end{aligned}
$$

X is $(4,2)_{+}$-rollercoaster

1. The last run X_{4} is +-run
2. $\left|X_{1}\right|,\left|X_{2}\right|,\left|X_{3}\right| \geq 4$
3. $h=2$ and $\left|X_{4}\right|=2$
4. The last run X_{x} is +-run
5. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
6. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of $(k, h)_{+}$-rollercoaster

$$
\begin{aligned}
& X=9 \begin{array}{llllllllllll}
9 & 8 & 6 & 4 & 1 & 3 & 4 & 8 & 5 & 4 & 2 & 1
\end{array} \\
& X_{2}
\end{aligned}
$$

X is $(4,2)_{+}$-rollercoaster

1. The last run X_{4} is +-run
2. $\left|X_{1}\right|,\left|X_{2}\right|,\left|X_{3}\right| \geq 4$
3. $h=2$ and $\left|X_{4}\right|=2$
4. The last run X_{x} is +-run
5. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
6. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of $(k, h)_{+}$-rollercoaster

X is (4, 2) $)_{+}$-rollercoaster

$$
\begin{aligned}
& \text { 1. The last run } X_{4} \text { is +-run. } \\
& \text { 2. }\left|\boldsymbol{X}_{\mathbf{1}}\right|,\left|\boldsymbol{X}_{\mathbf{2}}\right|,\left|\boldsymbol{X}_{\mathbf{3}}\right| \geq \mathbf{4} \\
& \text { 3. } h=2 \text { and }\left|X_{4}\right|=2
\end{aligned}
$$

1. The last run X_{x} is +-run
2. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
3. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of $(k, h)_{+}$-rollercoaster

X is (4, 2) $)_{+}$-rollercoaster

$$
\begin{aligned}
& \text { 1. The last run } X_{4} \text { is +-run } \\
& \text { 2. }\left|X_{1}\right|,\left|X_{2}\right|,\left|X_{3}\right| \geq 4 \\
& \text { 3. } \boldsymbol{h}=\mathbf{2} \text { and }\left|\boldsymbol{X}_{\mathbf{4}}\right|=\mathbf{2}
\end{aligned}
$$

1. The last run X_{x} is +-run
2. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
3. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of (k, h) _-rollercoaster

$$
\begin{aligned}
& Y=\begin{array}{lllllllllllll}
9 & 8 & 6 & 4 & 2 & 1 & 3 & 4 & 8 & 5 & 4 & 2 & 1
\end{array} \\
& Y_{1} \longleftrightarrow Y_{2} \longleftrightarrow Y_{3}
\end{aligned}
$$

Y is (4, 4)_-rollercoaster

1. The last run Y_{3} is --run
2. $\left|Y_{1}\right|,\left|Y_{2}\right| \geq 4$
3. $h=4$ and $\left|Y_{3}\right| \geq 4$
4. The last run X_{x} is --run
5. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
6. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of (k, h) _-rollercoaster

$$
\begin{aligned}
& Y=9 \begin{array}{llllllllllll}
9 & 8 & 4 & 2 & 1 & 3 & 4 & 8 & 5 & 4 & 2 & 1
\end{array} \\
& Y_{1} \underset{Y_{2}}{\longleftrightarrow} Y_{3}
\end{aligned}
$$

Y is (4, 4)_-rollercoaster

1. The last run Y_{3} is --run
2. $\left|Y_{1}\right|,\left|Y_{2}\right| \geq 4$
3. $h=4$ and $\left|Y_{3}\right| \geq 4$
4. The last run X_{x} is --run
5. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
6. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of (k, h) _-rollercoaster

$$
Y=\underset{Y_{1}}{\underset{\sim}{9}} \underset{Y_{2}}{\rightleftarrows}
$$

Y is (4, 4)_-rollercoaster

$$
\begin{array}{ll}
\text { 1. } & \text { The last run } Y_{3} \text { is --run } \\
\text { 2. } & \left|\boldsymbol{Y}_{\mathbf{1}}\right|,\left|\boldsymbol{Y}_{\mathbf{2}}\right| \geq \mathbf{4} \\
\text { 3. } & h=4 \text { and }\left|Y_{3}\right| \geq 4
\end{array}
$$

1. The last run X_{x} is --run
2. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
3. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|X_{i}\right| \geq k$ otherwise

Example of (k, h) _-rollercoaster

$$
\begin{aligned}
& Y=\begin{array}{lllllllllllll}
9 & 8 & 6 & 4 & 2 & 1 & 3 & 4 & 8 & 5 & 4 & 2 & 1
\end{array} \\
& \stackrel{Y_{1}}{\longleftrightarrow} \stackrel{Y_{2}}{\longleftrightarrow} Y_{3}
\end{aligned}
$$

Y is (4, 4)_-rollercoaster

$$
\begin{aligned}
& \text { 1. The last run } Y_{3} \text { is --run } \\
& \text { 2. }\left|Y_{1}\right|,\left|Y_{2}\right| \geq 4 \\
& \text { 3. } \boldsymbol{h}=\mathbf{4} \text { and }\left|\boldsymbol{Y}_{\mathbf{3}}\right| \geq \mathbf{4}
\end{aligned}
$$

1. The last run X_{x} is --run
2. $\left|X_{i}\right| \geq k$ for $i \in[1, x-1]$
3. If $h \in[1, k-1],\left|X_{i}\right|=h$, and $\left|\boldsymbol{X}_{i}\right| \geq \boldsymbol{k}$ otherwise

Dynamic Programming

For $w \in\{+,-\}, h \in[1, k], i \in[1, n], j \in[1, m]$,
$L_{w}{ }^{h}[i, j]=$ the length of longest common $(k, h)_{w}$-rollercoaster subsequence of $S[1 . . i]$ and $T[1 . . j]$ that ends with $T[j]$.
$k=2$

$L_{+}{ }^{1}$		j						$L_{+}{ }^{1}$	L_{-}^{1}
		1	2	3	4	5			
i	1	0	1	0	0	0			
	2	0	1	0	1	0	0 $\begin{aligned} & 0 \\ & 1 \\ & 1\end{aligned}$		
	3	0	1	1	1	0		$L_{+}{ }^{2}$	L_{-}^{2}
	4	1	1	1	1	1			
	5	1	1	1	1				

Dynamic Programming

For $w \in\{+,-\}, h \in[1, k], i \in[1, n], j \in[1, m]$,
$L_{w}{ }^{h}[i, j]=$ the length of longest common $(k, h)_{w}$-rollercoaster subsequence of $S[1 . . i]$ and $T[1 . . j]$ that ends with $T[j]$.
$k=2$

Dynamic Programming

$$
\text { For } w \in\{+,-\}, h \in[1, k], i \in[1, n], j \in[1, m]
$$

$L_{w}{ }^{h}[i, j]=$ the length of longest common $(k, h)_{w}$-rollercoaster of $S[1 . . i]$ and $T[1 . j]$ that ends with $T[j]$.

The length of longest common k-rollercoaster of S and T is

$$
\max \left\{L_{w}{ }^{k}[n, j] \mid w \in\{+,-\}, j \in[1, m]\right\}
$$

L_{-}^{2}		j				
		1	2	3	4	5
i	1	0	0	0	0	0
	2	0	0	0	0	0
	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Recurrence for $L_{w}{ }^{h}[i, j]$

Consider the case for $w=+$.
The case for $w=-$ can be shown in a symmetric fashion.

Consider the following cases.

1. $\quad S[i] \neq T[j]$
2. $S[i]=T[j]$ and $h=1$
3. $S[i]=T[j]$ and $h \in[2, k-1]$
4. $\quad S[i]=T[j]$ and $h=k$

1. $S[i] \neq T[j]$

For any $h \in[1, k]$

$$
L_{+}{ }^{h}[i, j]=L_{+}{ }^{h}[i-1, j]
$$

$L_{+}{ }^{h}[i, j]=$ the length of longest common $(k, h)_{+}$-rollercoaster of $S[1 . . i]$ and $T[1 . . j]$ that ends with $T[j]$.

2. $S[i]=T[j]$ and $h=1$

$$
L_{+}^{1}[i, j]= \begin{cases}L_{-}^{k}[i, j] & \text { if } L_{-}^{k}[i, j] \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Any ($k, 1)_{+}$-rollercoaster is either

- a (k, k) _-rollercoaster subsequence, or
- a sequence of length 1 .

3. $S[i]=T[j]$ and $h \in[2, k-1]$

$M_{+}{ }^{h}[i, j]=$ the length of longest common $(k, h)_{+}$-rollercoaster of $S[1 . . i]$ and $T[1 . . j-1]$ that ends with an element which is less than $T[j]$

$$
k=3
$$

$$
i=4
$$

$$
\begin{aligned}
& S=\begin{array}{|llll|}
\hline 1 & 4 & 3 & 4 \\
\hline & & \\
\hline & & \\
\begin{array}{|lll|l}
2 & 1 & 3 & \mathbf{4} \\
j=4
\end{array}
\end{array}
\end{aligned}
$$

$M_{+}{ }^{2}$	j					
	1	2	3	$\mathbf{4}$	5	
i	1	0	0	1	1	1
	2	0	0	1	1	1
	3	0	0	1	2	1
	$\mathbf{4}$	0	0	1	$\mathbf{2}$	1
	0	0	1	2	1	

$$
L_{+}^{h}[i, j]= \begin{cases}M_{+}^{h^{-1}}[i, j]+1 & \text { if } M_{+}^{h^{-1}}[i, j] \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm for Case 3

$M_{+}^{h-1}[i, j]=$ the length of longest common $(k, h-1)_{+}$-rollercoaster of $S[1 . . i]$ and $T[1 . . j-1]$ that ends with an element that is less than $T[j]$
$L_{+}^{h}[i, j]= \begin{cases}M_{+}^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7	8	9	10	11	...	m
	:														
	i-1	0				5		3			7			...	
	:														

$L_{+}{ }^{h}$

| | 1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | \ldots | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \vdots | | | | | | | | | | | | | | | |
| | 0 | | | $?$ | | | | | $?$ | | | $?$ | \ldots | | |
| | 0 | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |

$$
S[i]=T[j]
$$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}^{h}[i, j]= \begin{cases}M_{+}^{h-1}[i-1, j]+1 & \text { if } M_{+}^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6		7	8	9	10	11	...	m
	:															
	i-1	0				5		3				7			...	

$S[i]>T[j]$
$L_{+}{ }^{h}$

	0	1	2	3	4	5	6	7	8	9	10	11	...	m
\vdots													\cdots	
i	0			?					?			$?$		
!														

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}{ }^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7	8	9	10	11	...	m
	:														
	i-1	0				5		3			7			...	
	!														

$S[i]>T[j]$
$L_{+}{ }^{h}$

	0	1	2	3	4	5	6	7	8	9	10	11	...	m
!													\cdots	
i	0			$?$?			$?$		

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise. }\end{cases}$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}{ }^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7	8	9	10	11	...	m
	:														
	i-1	0				5		3			7			...	
	!														

$S[i]>T[j]$
$L_{+}{ }^{h}$

	0	1	2	3	4	5	6	7	8	9	10	11	...	m
\vdots													\cdots	
i	0			0					$?$			$?$		
\vdots														

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}{ }^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7	8	9	10	11	...	m
	:														
	i-1	0				5		3			7			...	
	!														

$S[i]>T[j]$
$L_{+}{ }^{h}$

	0	1	2	3	4	5	6	7	8	9	10	11	...	m
\vdots													\cdots	
i	0			0					$?$			$?$		
\vdots														

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise. }\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3		4	5	6	7	8	9	10	11	...	m
	:															
	i-1	0					5		3			7			...	
							\checkmark									

$S[i]>T[j]$
$L_{+}{ }^{h}$

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}{ }^{h}[i, j]= \begin{cases}M_{+}{ }^{h-1}[i-1, j]+1 & \text { if } M_{+}{ }^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7			9	10	11	...	m
	:															
	i-1	0				5		3				7			...	

$S[i]>T[j]$
$L_{+}{ }^{h}$

	1		1	2	3	4	5	6	7	8	9	10	11	\ldots	m
\vdots															
	0			0					6			$?$	\ldots		
	0														

$S[i]=T[j]$

Algorithm for Case 3

$M_{+}{ }^{h-1}[i, j]=\left\{\begin{array}{l}\text { maximum of the blue cells in row } i-1 \text { and columns } 1,2, \ldots, j-1 \text { in } L_{+}{ }^{h-1} \\ 0 \text { if there are no blue cells in row } i-1 \text { and columns } 1,2, \ldots, \mathrm{j}-1 \text { in } L_{+}{ }^{h-1}\end{array}\right.$
$L_{+}^{h}[i, j]= \begin{cases}M_{+}^{h-1}[i-1, j]+1 & \text { if } M_{+}^{h-1}[i-1, j] \neq 0, \\ 0 & \text { otherwise } .\end{cases}$

$L_{+}{ }^{h-1}$		0	1	2	3	4	5	6	7	8	9	10	11	...	m
	!														
	i-1	0				5		3			7			...	
											1				

$S[i]>T[j]$
$L_{+}{ }^{h}$

$$
S[i]=T[j]
$$

4. $S[i]=T[j]$ and $h=k$

In a similar way to Case 3, we obtain the following:

$$
L_{+}^{k}[i, j]= \begin{cases}\max \left\{M_{+}{ }^{k-1}[i, j], M_{+}^{k}[i, j]\right\}+1 \\ & \text { if } \max \left\{M_{+}^{k-1}[i, j], M_{+}{ }^{k}[i, j]\right\} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Recurrence for $L_{+}{ }^{h}[i, j]$

$\begin{aligned} & \text { When } h=1, \\ & L_{+}{ }^{1}[i, j]=\left\{\begin{array}{l}L_{-}{ }^{k}[i, j] \\ 1 \\ L_{+}{ }^{1}[i-1, j]\end{array}\right.\end{aligned}$
When $2 \leq h \leq k-1$,

$$
L_{+}^{h}[i, j]= \begin{cases}M_{+}^{h-1}[i, j]+1 & \text { if } S[i]=T[j] \text { and } M_{+}^{h-1}[i, j] \neq 0, \\ 0 & \text { if } S[i]=T[j] \text { and } M_{+}^{h-1}[i, j]=0, \\ L_{+}{ }^{h}[i-1, j] & \text { otherwise. }\end{cases}
$$

When $h=k$,

$$
L_{+}^{k}[i, j]= \begin{cases}\max \left\{M_{+}{ }^{k-1}[i, j],\right. & \left.M_{+}{ }^{k}[i, j]\right\}+1 \\ & \text { if } S[i]=T[j] \text { and } \max \left\{M_{+}^{k-1}[i, j], M_{+}{ }^{k}[i, j]\right\} \neq 0, \\ 0 & \text { if } S[i]=T[j] \text { and } \max \left\{M_{+}^{k-1}[i, j], M_{+}{ }^{k}[i, j]\right\}=0, \\ L_{+}^{k}[i-1, j] & \text { otherwise. }\end{cases}
$$

Retrieve

$$
\begin{aligned}
& k=3 \\
& \begin{array}{l}
S=\begin{array}{r}
84627 \\
T
\end{array}=18672
\end{array}
\end{aligned}
$$

Calculate $L_{+}{ }^{1}[5,5]$
$S[5] \neq T[5]$, so we adapt case 1
$L_{+}{ }^{1}[5,5]=L_{+}{ }^{1}[4,5]=3$

$L_{+}{ }^{1}$		j				
		1	2	3	4	5
i	1	0	1	0	0	0
	2	0	1	0	0	0
	3	0	1	1	0	0
	4	0	1	1	0	3
	5	0	1	1	1	3

L_{-}^{3}	j					
	1	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Retrieve

$$
\begin{aligned}
& k=3 \\
& S
\end{aligned} \begin{array}{|lllll|}
\hline 8 & 4 & 6 & 2 & 7 \\
\hline & & & \\
T & =\begin{array}{|llll}
1 & 8 & 6 & 7
\end{array} \\
\hline
\end{array}
$$

Calculate $L_{+}{ }^{1}[5,5]$
$S[5] \neq T[5]$, so we adapt case 1
$L_{+}^{1}[5,5]=L_{+}^{1}[4,5]=3$

$L_{+}{ }^{1}$	j					
	1	2	3	4	5	
i	1	0	1	0	0	0
	2	0	1	0	0	0
	3	0	1	1	0	0
	4	0	1	1	0	3
	5	0	1	1	1	3

L_{-}^{3}	j					
	1	2	3	4	5	
	1	0	0	0	0	0
	2	0	0	0	0	0
	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Retrieve

$$
\begin{aligned}
& k=3 \\
& S=\begin{array}{lllll}
\hline & 4 & 6 & 2 & 7 \\
\hline & & & \\
\hline
\end{array} \\
& T=\begin{array}{lllll}
1 & 8 & 6 & 7 & 2 \\
\hline
\end{array}
\end{aligned}
$$

Calculate $L_{+}{ }^{1}[4,5]$

$$
\begin{aligned}
& S[5]=T[5], \text { so we adapt case } 2 \\
& L_{+}{ }^{1}[4,5]=L_{-}^{3}[4,5]=3
\end{aligned}
$$

$L_{+}{ }^{1}$	j					
	1	2	3	4	5	
	1	0	1	0	0	0
i	2	0	1	0	0	0
	3	0	1	1	0	0
	4	0	1	1	0	3
5	0	1	1	1	3	

L_{-}^{3}	j				
	1	2	3	4	5
	1	0	0	0	0

Complexity of our algorithm

1. Initialize $L_{+}{ }^{1}, \ldots, L_{+}{ }^{k}, L_{-}{ }^{1}, \ldots, L_{-}{ }^{k}$ to 0
$O(n m k)$ time and space
2. For $i=1, \ldots, n$,
a. For $h=2, \ldots, k$, compute $L_{+}{ }^{h}, L_{-}{ }^{h}$
b. Compute $L_{+}{ }^{k}, L_{-}{ }^{k}$
c. Compute $L_{+}{ }^{1}, L_{-}{ }^{1}$
$O(n m k)$ time
3. Compute $\max \left\{L_{w}{ }^{k}[n, j] \mid w \in\{+,-\}, j \in[1, m]\right\}$ $O(m)$ time
4. Retrieve longest common k-rollercoaster
$O(m)$ time and space

Conclusions

Theorem 1.
A longest common k-rollercoaster of S and T can be computed in $O(n m k)$ time and space.

Theorem 2.
A longest common k-rollercoaster of S and T can be computed in $O\left(r k \log ^{3} m \log \log m\right)$ time and $\mathrm{O}(r k)$ space.
r : the number of pairs (i, j) s.t. $S[i]=T[j]$

