
Longest Common Rollercoasters
Kosuke Fujita1, Yuto Nakashima1, Shunsuke Inenaga1,

Hideo Bannai2, and Masayuki Takeda1

1. Kyushu University

2. Tokyo Medical and Dental University

Background

• The Longest Common Subsequence (LCS) Problem is an
important problem that appears in various fields.

• Since 2018, the study on the sequence called rollercoaster
has been conducted [Biedl et al., 2018].

• Longest Common Rollercoaster is natural extension of LCS.

2

3 4 6 7 8 7 5 8 2 2 2 3 4

：+-run

：−-run

：both +-run and −-run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run)
or a maximal strictly decreasing (−-run) substring.

3

：+-run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run)
or a maximal strictly decreasing (−-run) substring.

3 4 6 7 8 7 5 8 2 2 2 3 4< < < < >

：both +-run and −-run

：−-run

4

：+-run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run)
or a maximal strictly decreasing (−-run) substring.

3 4 6 7 8 7 5 8 2 2 2 3 4> >< <

：both +-run and −-run

：−-run

5

k-rollercoaster

X = 2 5 8 5 4 1 3 5 7 8 4 1

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12

X is 3-rollercoaster

Definition [Biedl et al., 2018]

A string X is a k-rollercoaster if any run in S is of length
at least k.

6

Previous work on k-rollercoasters

Longest k-Rollercoaster problem
Input :

String X of length n and
Positive integer k.

Output :
Longest k-rollercoaster that is a subsequence of X.

• O(nk log n) time [Biedl et al., 2018]

• O(min{nk2, n log2 n}) time [Gawrychowski et al., 2019]

7

Our Problem

Longest Common k-Rollercoaster problem
Input :

String S of length n,
String T of length m (≤ n),
Positive integer k

Output :
Longest k-rollercoaster that is a subsequence
of both S and T.

When k = 1, then this problem is equivalent to LCS.
So, this problem is a generalization of LCS.
In the following, I talk about the case where k ≥ 2.

8

Longest common k-rollercoaster

S = 8 4 6 5 7 2 3 5 5 9 1

T = 1 8 6 7 2 5 3 5 1 4 9

Longest common 3-rollercoaster subsequence of S and T is

8 6 2 3 5 9

When k = 3,

9

Our Contribution

Theorem 1.
A longest common k-rollercoaster of S and T can be computed
in O(nmk) time and space.

Theorem 2.
A longest common k-rollercoaster of S and T can be computed
in O(rk log3 m log log m) time and O(rk) space.

r : the number of pairs (i, j) s.t. S[i] = T[j]

When S and T are random strings over {1, ..., σ},
then the expected value of r is nm / σ.
→ Theorem 2 is expected to be more space-efficient

than Theorem 1.
10

Proof of Theorem 1

Theorem 1.
A longest common k-rollercoaster of S and T can be computed
in O(nmk) time and space.

Idea :
We use dynamic programming on S and T.

In our dynamic programming algorithm,
we use (k, h)w-rollercoaster subsequences which are
generalization of k-rollercoaster subsequences.

11

(k, h)w-rollercoaster

Definition [Biedl et al., 2018]

For an integer string X, let X1, X2, ..., Xx be the sequence of
runs in X ordered by their occurrence in X. For w ∈ {+, −}
and integer h ∈ [1, k], X is a (k, h)w-rollercoaster if X1, X2, ...,
Xx satisfies the following

1. The last run Xx is w-run.
2. |Xi| ≥ k for i ∈ [1, x – 1].
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise.

12

Example of (k, h)+-rollercoaster

X = 9 8 6 4 2 1 3 4 8 5 4 2 1 3
X1 X3X2 X4

X is (4, 2)+-rollercoaster
1. The last run X4 is +-run
2. |X1|, |X2|, |X3| ≥ 4
3. h = 2 and |X4| = 2

1. The last run Xx is +-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

13

Example of (k, h)+-rollercoaster

X = 9 8 6 4 2 1 3 4 8 5 4 2 1 3
X1 X3X2 X4

X is (4, 2)+-rollercoaster
1. The last run X4 is +-run
2. |X1|, |X2|, |X3| ≥ 4
3. h = 2 and |X4| = 2

1. The last run Xx is +-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

14

Example of (k, h)+-rollercoaster

X = 9 8 6 4 2 1 3 4 8 5 4 2 1 3
X1 X3X2 X4

X is (4, 2)+-rollercoaster
1. The last run X4 is +-run.
2. |X1|, |X2|, |X3| ≥ 4
3. h = 2 and |X4| = 2

1. The last run Xx is +-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

15

Example of (k, h)+-rollercoaster

X = 9 8 6 4 2 1 3 4 8 5 4 2 1 3

X is (4, 2)+-rollercoaster
1. The last run X4 is +-run
2. |X1|, |X2|, |X3| ≥ 4
3. h = 2 and |X4| = 2

1. The last run Xx is +-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

X1 X3X2 X4

16

Example of (k, h)−-rollercoaster

Y = 9 8 6 4 2 1 3 4 8 5 4 2 1

Y is (4, 4)−-rollercoaster
1. The last run Y3 is −-run
2. |Y1|, |Y2| ≥ 4
3. h = 4 and |Y3| ≥ 4

1. The last run Xx is −-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

Y1 Y2
Y3

17

Example of (k, h)−-rollercoaster

Y = 9 8 6 4 2 1 3 4 8 5 4 2 1

Y is (4, 4)−-rollercoaster
1. The last run Y3 is −-run
2. |Y1|, |Y2| ≥ 4
3. h = 4 and |Y3| ≥ 4

1. The last run Xx is −-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

Y1 Y2
Y3

18

Example of (k, h)−-rollercoaster

Y = 9 8 6 4 2 1 3 4 8 5 4 2 1

Y is (4, 4)−-rollercoaster
1. The last run Y3 is −-run
2. |Y1|, |Y2| ≥ 4
3. h = 4 and |Y3| ≥ 4

1. The last run Xx is −-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

Y1 Y2
Y3

19

Example of (k, h)−-rollercoaster

Y = 9 8 6 4 2 1 3 4 8 5 4 2 1

Y is (4, 4)−-rollercoaster
1. The last run Y3 is −-run
2. |Y1|, |Y2| ≥ 4
3. h = 4 and |Y3| ≥ 4

1. The last run Xx is −-run
2. |Xi| ≥ k for i ∈ [1, x – 1]
3. If h ∈ [1, k – 1], |Xi| = h, and |Xi| ≥ k otherwise

Y1 Y2
Y3

20

Dynamic Programming

For w ∈ {+, −}, h ∈ [1, k], i ∈ [1, n], j ∈ [1, m],
Lw

h[i, j] = the length of longest common (k, h)w-rollercoaster
subsequence of S[1..i] and T[1..j] that ends with T[j].

L+
1 j

1 2 3 4 5

i

1 0 1 0 0 0

2 0 1 0 1 0

3 0 1 1 1 0

4 1 1 1 1 1

5 1 1 1 1 1

L+
1 L−

1

L+
2 L−

2

S = 1 4 3 2 2

T = 2 1 3 4 2

k = 2
i = 3

j = 4

21

Dynamic Programming

For w ∈ {+, −}, h ∈ [1, k], i ∈ [1, n], j ∈ [1, m],
Lw

h[i, j] = the length of longest common (k, h)w-rollercoaster
subsequence of S[1..i] and T[1..j] that ends with T[j].

L-
2 j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 3

5 0 0 0 0 3

L+
1 L−

1

L+
2 L−

2

S = 1 4 3 2 2

T = 2 1 3 4 2

k = 2
i = 4

j = 5

22

Dynamic Programming

L+
2

j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 2 0

3 0 0 2 2 0

4 0 0 2 2 2

5 0 0 2 2 2

L-
2

j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 3

5 0 0 0 0 3

For w ∈ {+, −}, h ∈ [1, k], i ∈ [1, n], j ∈ [1, m],
Lw

h[i, j] = the length of longest common (k, h)w-rollercoaster
of S[1..i] and T[1..j] that ends with T[j].

The length of longest common k-rollercoaster of S and T is
max{Lw

k[n, j] | w ∈ {+, −}, j ∈ [1, m]}

S = 1 4 3 2 2

T = 2 1 3 4 2

23

Recurrence for Lw
h[i, j]

Consider the case for w = +.
The case for w = − can be shown in a symmetric fashion.

Consider the following cases.
1. S[i] ≠ T[j]
2. S[i] = T[j] and h = 1
3. S[i] = T[j] and h ∈ [2, k – 1]
4. S[i] = T[j] and h = k

24

1. S[i] ≠ T[j]

S α

T ß
1 j m

1 i n

For any h ∈ [1, k]
L+

h[i, j] = L+
h[i – 1, j]

L+
h[i, j] = the length of longest common (k, h)+-rollercoaster of

S[1..i] and T[1..j] that ends with T[j].

25

2. S[i] = T[j] and h = 1

Any (k, 1)+-rollercoaster is either
• a (k, k)–-rollercoaster subsequence, or
• a sequence of length 1.

Decreasing sequence of
length at least k.

Increasing sequence of length 1.

L+
1[i, j] =

L–
k[i, j]

1

if L–
k[i, j] ≠ 0,

otherwise.

26

M+
h[i, j] = the length of longest common (k, h)+-rollercoaster

of S[1..i] and T[1..j – 1] that ends with an element
which is less than T[j]

3. S[i] = T[j] and h ∈ [2, k – 1]

L+
h[i, j] =

M+
h−1[i, j] + 1

0

if M+
h−1[i, j] ≠ 0,

otherwise.

M+
2 j

1 2 3 4 5

i

1 0 0 1 1 1

2 0 0 1 1 1

3 0 0 1 2 1

4 0 0 1 2 1

5 0 0 1 2 1

S = 1 4 3 4 2

T = 2 1 3 4 2

k = 3

27

j = 4

i = 4

Algorithm for Case 3
M+

h-1[i, j] = the length of longest common (k, h - 1)+-rollercoaster of S[1..i] and
T[1..j - 1] that ends with an element that is less than T[j]

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 ? ? ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] > T[j]

S[i] = T[j]

L+
h[i, j] =

28

Algorithm for Case 3
maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+

h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 ? ? ? ...

...

L+
h - 1

S[i] > T[j]

S[i] = T[j]

0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

M+
h-1[i, j] =

L+
h[i, j] =

29

Algorithm for Case 3

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 ? ? ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

30

Algorithm for Case 3

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 ? ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

M+
h-1[i, 3] = 0

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

31

Algorithm for Case 3

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 ? ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

32

Algorithm for Case 3

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 ? ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

33

Algorithm for Case 3

L+
h 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 6 ? ...

...

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

M+
h-1[i, 8] = 5

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

34

Algorithm for Case 3

L+
h

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 6 ? ...

...

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

35

Algorithm for Case 3

L+
h

L+
h - 1 0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i - 1 0 5 3 7 ...

...

S[i] = T[j]

0 1 2 3 4 5 6 7 8 9 10 11 ... m

...

i 0 0 6 8 ...

...

M+
h-1[i, 11] = 7

maximum of the blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

0 if there are no blue cells in row i – 1 and columns 1, 2, ... , j – 1 in L+
h – 1

M+
h-1[i - 1, j] + 1 if M+

h-1[i - 1, j] ≠ 0,

0 otherwise.

M+
h-1[i, j] =

L+
h[i, j] =

S[i] > T[j]

36

L+
k[i, j] =

max{M+
k−1[i, j], M+

k[i, j]} + 1

0
if max{M+

k−1[i, j], M+
k[i, j]} ≠ 0,

otherwise.

4. S[i] = T[j] and h = k

In a similar way to Case 3, we obtain the following:

37

Recurrence for L+
h[i, j]

L+
1[i, j] =

When 2 ≤ h ≤ k – 1,

L-
k[i, j] if S[i] = T[j] and L-

k[i, j] ≠ 0,
1 if S[i] = T[j] and L-

k[i, j] = 0,
L+

1[i - 1, j] otherwise.

L+
h[i, j] =

M+
h-1[i, j] + 1 if S[i] = T[j] and M+

h-1[i, j] ≠ 0,
0 if S[i] = T[j] and M+

h-1[i, j] = 0,
L+

h[i - 1, j] otherwise.

L+
k[i, j] =

max{M+
k-1[i, j], M+

k[i, j]} + 1

0

L+
k[i - 1, j]

if S[i] = T[j] and max{M+
k-1[i, j], M+

k[i, j]} ≠ 0,

When h = 1,

When h = k,

if S[i] = T[j] and max{M+
k-1[i, j], M+

k[i, j]} = 0,

otherwise.
38

Retrieve

39

L+
1 j

1 2 3 4 5

i

1 0 1 0 0 0

2 0 1 0 0 0

3 0 1 1 0 0

4 0 1 1 0 3

5 0 1 1 1 3

L-
3 j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 3

5 0 0 0 0 3

S = 8 4 6 2 7

T = 1 8 6 7 2

k = 3

L+
1[5, 5] = L+

1[4, 5] = 3

S [5] ≠ T[5], so we adapt case 1

Calculate L+
1[5, 5]

Retrieve

40

L+
1 j

1 2 3 4 5

i

1 0 1 0 0 0

2 0 1 0 0 0

3 0 1 1 0 0

4 0 1 1 0 3

5 0 1 1 1 3

L-
3 j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 3

5 0 0 0 0 3

S = 8 4 6 2 7

T = 1 8 6 7 2

k = 3

L+
1[5, 5] = L+

1[4, 5] = 3

S [5] ≠ T[5], so we adapt case 1

Calculate L+
1[5, 5]

Retrieve

41

L+
1 j

1 2 3 4 5

i

1 0 1 0 0 0

2 0 1 0 0 0

3 0 1 1 0 0

4 0 1 1 0 3

5 0 1 1 1 3

L-
3 j

1 2 3 4 5

i

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 3

5 0 0 0 0 3

S = 8 4 6 2 7

T = 1 8 6 7 2

k = 3

L+
1[4, 5] = L –

3[4, 5] = 3

S [5] = T[5], so we adapt case 2

Calculate L+
1[4, 5]

Complexity of our algorithm

1. Initialize L+
1, ..., L+

k, L−
1, ..., L−

k to 0

2. For i = 1, ..., n,
a. For h = 2, ..., k, compute L+

h, L−
h

b. Compute L+
k, L−

k

c. Compute L+
1, L−

1

3. Compute max{Lw
k[n, j] | w ∈ {+, −}, j ∈ [1, m]}

4. Retrieve longest common k-rollercoaster

O(nmk) time and space

O(nmk) time

O(m) time

O(m) time and space

42

Conclusions

Theorem 1.
A longest common k-rollercoaster of S and T can be computed
in O(nmk) time and space.

Theorem 2.
A longest common k-rollercoaster of S and T can be computed
in O(rk log3 m log log m) time and O(rk) space.

r : the number of pairs (i, j) s.t. S[i] = T[j]

43

	Longest Common Rollercoasters
	Background
	Run
	Run
	Run
	k-rollercoaster
	Previous work on k-rollercoasters
	Our Problem
	Longest common k-rollercoaster
	Our Contribution
	Proof of Theorem 1
	(k, h)w-rollercoaster
	Example of (k, h)+-rollercoaster
	Example of (k, h)+-rollercoaster
	Example of (k, h)+-rollercoaster
	Example of (k, h)+-rollercoaster
	Example of (k, h)−-rollercoaster
	Example of (k, h)−-rollercoaster
	Example of (k, h)−-rollercoaster
	Example of (k, h)−-rollercoaster
	Dynamic Programming
	Dynamic Programming
	Dynamic Programming
	Recurrence for Lwh[i, j]
	1. S[i] ≠ T[j]
	2. S[i] = T[j] and h = 1
	3. S[i] = T[j] and h ∈ [2, k – 1]
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	Algorithm for Case 3
	4. S[i] = T[j] and h = k
	Recurrence for L+h[i, j]
	Retrieve
	Retrieve
	Retrieve
	Complexity of our algorithm
	Conclusions

