Longest Common Rollercoasters

Kosuke Fujita¹, Yuto Nakashima¹, Shunsuke Inenaga¹, Hideo Bannai², and Masayuki Takeda¹

- 1. Kyushu University
- 2. Tokyo Medical and Dental University

Background

- The Longest Common Subsequence (LCS) Problem is an important problem that appears in various fields.
- Since 2018, the study on the sequence called rollercoaster has been conducted [Biedl et al., 2018].
- Longest Common Rollercoaster is natural extension of LCS.

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.

- **→** : +-run
- **---run** : −-run
- : both +-run and --run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.

- +-run
- **---run** : −-run
- : both +-run and --run

Run

Definition [Biedl et al., 2018]

A substring is a run, if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--run) substring.

: both +-run and --run

k-rollercoaster

Definition [Biedl et al., 2018]

A string X is a k-rollercoaster if any run in S is of length at least k.

Previous work on k-rollercoasters

Longest k-Rollercoaster problem

Input:

String X of length n and

Positive integer *k*.

Output:

Longest k-rollercoaster that is a subsequence of X.

- $O(nk \log n)$ time [Biedl et al., 2018]
- $O(\min\{nk^2, n \log^2 n\})$ time [Gawrychowski et al., 2019]

Our Problem

Longest Common k-Rollercoaster problem

```
Input: String S of length n, String T of length m (\leq n), Positive integer k
Output: Longest k-rollercoaster that is a subsequence of both S and T.
```

When k=1, then this problem is equivalent to LCS. So, this problem is a generalization of LCS. In the following, I talk about the case where $k \ge 2$.

Longest common k-rollercoaster

When k = 3,

Longest common 3-rollercoaster subsequence of S and T is

Our Contribution

Theorem 1.

A longest common k-rollercoaster of S and T can be computed in O(nmk) time and space.

Theorem 2.

A longest common k-rollercoaster of S and T can be computed in $O(rk \log^3 m \log \log m)$ time and O(rk) space.

r: the number of pairs (i, j) s.t. S[i] = T[j]

When S and T are random strings over $\{1, ..., \sigma\}$, then the expected value of r is nm / σ .

→ Theorem 2 is expected to be more space-efficient than Theorem 1.

Proof of Theorem 1

Theorem 1.

A longest common k-rollercoaster of S and T can be computed in O(nmk) time and space.

Idea:

We use dynamic programming on S and T.

In our dynamic programming algorithm, we use $(k, h)_{\underline{w}}$ -rollercoaster subsequences which are generalization of k-rollercoaster subsequences.

$(k, h)_w$ -rollercoaster

Definition [Biedl et al., 2018]

For an integer string X, let $X_1, X_2, ..., X_x$ be the sequence of runs in X ordered by their occurrence in X. For $w \in \{+, -\}$ and integer $h \in [1, k]$, X is a $(k, h)_w$ -rollercoaster if $X_1, X_2, ..., X_x$ satisfies the following

- 1. The last run X_x is w-run.
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$.
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise.

- 1. The last run X_4 is +-run
- 2. $|X_1|, |X_2|, |X_3| \ge 4$
- 3. h = 2 and $|X_4| = 2$
- 1. The last run X_x is +-run
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

$$X = 9 \ 8 \ 6 \ 4 \ 2 \ 1 \ 3 \ 4 \ 8 \ 5 \ 4 \ 2 \ 1 \ 3$$

- 1. The last run X_4 is +-run
- 2. $|X_1|, |X_2|, |X_3| \ge 4$
- 3. h = 2 and $|X_4| = 2$
- The last run X_x is +-run
- 2. $|X_i| \ge k$ for $i \in [1, x 1]$ 3. If $h \in [1, k 1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

- 1. The last run X_4 is +-run.
- 2. $|X_1|, |X_2|, |X_3| \ge 4$
- 3. h = 2 and $|X_4| = 2$
- 1. The last run X_x is +-run
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

$$X = 9 \ 8 \ 6 \ 4 \ 2 \ 1 \ 3 \ 4 \ 8 \ 5 \ 4 \ 2 \ 1 \ 3$$

- 1. The last run X_4 is +-run
- 2. $|X_1|, |X_2|, |X_3| \ge 4$
- 3. h = 2 and $|X_A| = 2$
- 1. The last run X_x is +-run 2. $|X_i| \ge k$ for $i \in [1, x-1]$
- If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

- 1. The last run Y_3 is --run
- 2. $|Y_1|, |Y_2| \ge 4$
- 3. h = 4 and $|Y_3| \ge 4$
- 1. The last run X_x is --run
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

- 1. The last run Y_3 is --run
- 2. $|Y_1|, |Y_2| \ge 4$
- 3. h = 4 and $|Y_3| \ge 4$
- The last run X_x is --run
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$ 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

- 1. The last run Y_3 is --run
- 2. $|Y_1|, |Y_2| \ge 4$
- 3. h = 4 and $|Y_3| \ge 4$
- 1. The last run X_x is --run
- 2. $|X_i| \ge k$ for $i \in [1, x-1]$
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

$$Y = 9 \ 8 \ 6 \ 4 \ 2 \ 1 \ 3 \ 4 \ 8 \ 5 \ 4 \ 2 \ 1$$

- 1. The last run Y_3 is --run
- 2. $|Y_1|, |Y_2| \ge 4$
- 3. h = 4 and $|Y_3| \ge 4$
- 1. The last run X_x is --run
- 2. $|X_i| \ge k \text{ for } i \in [1, x-1]$
- 3. If $h \in [1, k-1]$, $|X_i| = h$, and $|X_i| \ge k$ otherwise

Dynamic Programming

For $w \in \{+, -\}$, $h \in [1, k]$, $i \in [1, n]$, $j \in [1, m]$, $L_w^h[i, j]$ = the length of longest common $(k, h)_w$ -rollercoaster subsequence of S[1..i] and T[1..j] that ends with T[j].

	1			j				
L	+	1	2	3	4	5	L_{+}^{1}	$\mid L_{-}^{1}$
	1	0	1	0	0	0	L_{+}	<i>L</i> _
	2	0	1	0	1	0		
i	3	0	1	1	1	0	L_+^2	L_{-}^{2}
	4	1	1	1	1	1		
	5	1	1	1	1	1		

Dynamic Programming

For $w \in \{+, -\}$, $h \in [1, k]$, $i \in [1, n]$, $j \in [1, m]$, $L_w^h[i, j]$ = the length of longest common $(k, h)_w$ -rollercoaster subsequence of S[1..i] and T[1..j] that ends with T[j].

I	2.			j			
L	-	1	2	3	4	5	L_1 L_1
	1	0	0	0	0	0	
	2	0	0	0	0	0	
i	3	0	0	0	0	0	$ig L_+^2 ig L^2$
	4	0	0	0	0	3	
	5	0	0	0	0	3	

Dynamic Programming

For $w \in \{+, -\}$, $h \in [1, k]$, $i \in [1, n]$, $j \in [1, m]$, $L_w^h[i, j]$ = the length of longest common $(k, h)_w$ -rollercoaster of S[1..i] and T[1..j] that ends with T[j].

The length of longest common k-rollercoaster of S and T is $\max\{L_w^k[n,j] \mid w \in \{+,-\}, j \in [1,m]\}$

ī	2			j		
L	+2	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	2	0
i	3	0	0	2	2	0
	4	0	0	2	2	2
	5	0	0	2	2	2

	2			j		
$igspace^L$	2	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
i	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Recurrence for $L_w^h[i,j]$

Consider the case for w = +.

The case for w = - can be shown in a symmetric fashion.

Consider the following cases.

- 1. $S[i] \neq T[j]$
- 2. S[i] = T[j] and h = 1
- 3. S[i] = T[j] and $h \in [2, k-1]$
- 4. S[i] = T[j] and h = k

1. $S[i] \neq T[j]$

For any $h \in [1, k]$

$$L_{+}^{h}[i,j] = L_{+}^{h}[i-1,j]$$

 $L_+^h[i,j]$ = the length of longest common $(k,h)_+$ -rollercoaster of S[1..i] and T[1..j] that ends with T[j].

2. S[i] = T[j] and h = 1

$$L_{+}^{-1}[i,j] = egin{cases} L_{-}^{k}[i,j] & ext{if } L_{-}^{k}[i,j]
eq 0, \ 1 & ext{otherwise.} \end{cases}$$

Any $(k, 1)_+$ -rollercoaster is either

- a (k, k)_-rollercoaster subsequence, or
- a sequence of length 1.

Increasing sequence of length 1.

3. S[i] = T[j] and $h \in [2, k-1]$

 $M_+^h[i,j] =$ the length of longest common $(k,h)_+$ -rollercoaster of S[1..i] and T[1..j-1] that ends with an element which is less than T[j]

$$k=3$$

$$S = \begin{bmatrix} 1 & 4 & 3 & 4 \\ \hline 1 & 4 & 3 & 4 \end{bmatrix} 2$$

$$T = \begin{bmatrix} 2 & 1 & 3 & 4 \\ \hline j=4 & 4 & 4 \end{bmatrix}$$

1 1	r 2			j		
1 VI	r 2 +	1	2	3	4	5
	1	0	0	1	1	1
	2	0	0	1	1	1
i	3	0	0	1	2	1
	4	0	0	1	2	1
	5	0	0	1	2	1

$$L_{+}^{h}[i,j] = egin{cases} M_{+}^{h-1}[i,j]+1 & ext{if } M_{+}^{h-1}[i,j]
eq 0, \ 0 & ext{otherwise.} \end{cases}$$

 $M_+^{h-1}[i,j]$ = the length of longest common $(k,h-1)_+$ -rollercoaster of S[1..i] and T[1..j-1] that ends with an element that is less than T[j]

$$L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i - 1	0				5		3			7			
	:													

S[i] > T[j]

$L_{\scriptscriptstyle+}{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i	0			?					?			?	
	:													

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11		m
	:														
	i - 1	0				5		3			7			•••	
	:														

S[i] > T[j]

$L_+{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	•••	m
	:														
	i	0			?					?			?		
	:														

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i - 1	0				5		3			7			
	:													

S[i] > T[j]

$L_{\scriptscriptstyle+}{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	•••	m
	:														
	i	0			?					?			?		
	:														

$$S[i] = T[j]$$

$$M_{+}^{h-1}[i, 3] = 0$$

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11		m
	::														
	i - 1	0				5		3			7			•••	

S[i] > T[j]

$L_+{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:										,			
	i	0			0					?			?	
	÷			·		·								

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i - 1	0				5		3			7			
	:													

S[i] > T[j]

$L_+{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	•••	m
	:														
	i	0			0					?			?		
	÷														

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11	•••	m
	::														
	i - 1	0				5		3			7				
	:														

S[i] > T[j]

$$M_{+}^{h-1}[i, 8] = 5$$

$$M_{+}^{h-1}[i,j] = \begin{cases} \text{maximum of the blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ 0 \text{ if there are no blue cells in row } i-1 \text{ and columns } 1,2,\ldots,j-1 \text{ in } L_{+}^{h-1} \\ L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i-1,j]+1 & \text{if } M_{+}^{h-1}[i-1,j] \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

L_+^{h-1}		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i - 1	0				5		3			7			
	:													

S[i] > T[j]

$L_+{}^h$		0	1	2	3	4	5	6	7	8	9	10	11	 m
	:													
	i	0			0					6			?	
	:													

4. S[i] = T[j] and h = k

In a similar way to Case 3, we obtain the following:

$$L_{+}^{k}[i,j] = \begin{cases} \max\{M_{+}^{k-1}[i,j], M_{+}^{k}[i,j]\} + 1 \\ \text{if } \max\{M_{+}^{k-1}[i,j], M_{+}^{k}[i,j]\} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Recurrence for $L_{+}^{h}[i,j]$

When
$$h = 1$$
, $L_{-}^{k}[i,j] = \begin{cases} L_{-}^{k}[i,j] & \text{if } S[i] = T[j] \text{ and } L_{-}^{k}[i,j] \neq 0, \\ 1 & \text{if } S[i] = T[j] \text{ and } L_{-}^{k}[i,j] = 0, \\ L_{+}^{1}[i-1,j] & \text{otherwise.} \end{cases}$

When $2 \le h \le k - 1$,

$$L_{+}^{h}[i,j] = \begin{cases} M_{+}^{h-1}[i,j] + 1 & \text{if } S[i] = T[j] \text{ and } M_{+}^{h-1}[i,j] \neq 0, \\ 0 & \text{if } S[i] = T[j] \text{ and } M_{+}^{h-1}[i,j] = 0, \\ L_{+}^{h}[i-1,j] & \text{otherwise.} \end{cases}$$

When
$$h = k$$
,
$$L_{+}^{k}[i,j] = \begin{cases} \max\{M_{+}^{k-1}[i,j], M_{+}^{k}[i,j]\} + 1 \\ & \text{if } S[i] = T[j] \text{ and } \max\{M_{+}^{k-1}[i,j], M_{+}^{k}[i,j]\} \neq 0, \\ 0 & \text{if } S[i] = T[j] \text{ and } \max\{M_{+}^{k-1}[i,j], M_{+}^{k}[i,j]\} = 0, \\ L_{+}^{k}[i-1,j] & \text{otherwise.} \end{cases}$$

Retrieve

$$k=3$$

$$S = \begin{bmatrix} 8 & 4 & 6 & 2 & 7 \\ & & & & \\ T & = \begin{bmatrix} 1 & 8 & 6 & 7 & 2 \end{bmatrix}$$

Calculate
$$L_{+}^{1}[5, 5]$$

 $S[5] \neq T[5]$, so we adapt case 1

$$L_{+}^{1}[5, 5] = L_{+}^{1}[4, 5] = 3$$

7	1			j		
L	+	1	2	3	4	5
	1	0	1	0	0	0
	2	0	1	0	0	0
i	3	0	1	1	0	0
	4	0	1	1	0	3
	5	0	1	1	1	3

	3			j		
L	-	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
i	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Retrieve

$$k = 3$$

$$S = \begin{bmatrix} 8 & 4 & 6 & 2 & 7 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 8 & 6 & 7 & 2 \end{bmatrix}$$

Calculate
$$L_{+}^{1}[5, 5]$$

 $S[5] \neq T[5]$, so we adapt case 1

$$L_{+}^{1}[5, 5] = L_{+}^{1}[4, 5] = 3$$

	1			j		
L	+	1	2	3	4	5
	1	0	1	0	0	0
	2	0	1	0	0	0
i	3	0	1	1	0	0
	4	0	1	1	0	3
	5	0	1	1	1	3

7	3			j		
L	-	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
i	3	0	0	0	0	0
	4	0	0	0	0	3
	5	0	0	0	0	3

Retrieve

$$k=3$$

$$S = \begin{bmatrix} 8 & 4 & 6 & 2 \end{bmatrix} 7$$

$$T = \begin{bmatrix} 1 & 8 & 6 & 7 & 2 \end{bmatrix}$$

Calculate $L_{+}^{-1}[4, 5]$

S[5] = T[5], so we adapt case 2

$$L_{+}^{1}[4, 5] = L_{-}^{3}[4, 5] = 3$$

	1			j		
L	+	1	2	3	4	5
	1	0	1	0	0	0
	2	0	1	0	0	0
i	3	0	1	1	0	0
	4	0	1	1	0	3
	5	0	1	1	1	3

I	3			j		
L	-	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
i	3	0	0	0	0	0
	1	Q	0	0	0	3
	5	0	0	0	0	3

Complexity of our algorithm

1. Initialize L_{+}^{1} , ..., L_{+}^{k} , L_{-}^{1} , ..., L_{-}^{k} to 0

O(nmk) time and space

- 2. For i = 1, ..., n,
 - a. For h = 2, ..., k, compute L_{+}^{h} , L_{-}^{h}
 - b. Compute L_+^k , L_-^k
 - c. Compute L_+^{-1} , L_-^{-1}

O(nmk) time

3. Compute $\max\{L_w^k[n,j] \mid w \in \{+,-\}, j \in [1,m]\}$

O(m) time

4. Retrieve longest common k-rollercoaster

O(m) time and space

Conclusions

Theorem 1.

A longest common k-rollercoaster of S and T can be computed in O(nmk) time and space.

Theorem 2.

A longest common k-rollercoaster of S and T can be computed in $O(rk \log^3 m \log \log m)$ time and O(rk) space.

r: the number of pairs (i, j) s.t. S[i] = T[j]