Ordering infinity: indexing and compressing regular languages

Nicola Prezza, Ca' Foscari university of Venice, Italy

Joint work with: Nicola Cotumaccio (GSSI), Giovanna D'Agostino (uniud), Alberto Policriti (uniud), Jarno Alanko (university of Helsinki), Davide Martincigh (uniud)

Università Ca'Foscari Venezia

On the menu

1. Foundations: a theory of ordered regular languages

- a. Sorting NFAs.
- b. Wheeler languages.
- c. Sorting any regular language: partial co-lex orders
- d. Sortability hierarchies of regular languages

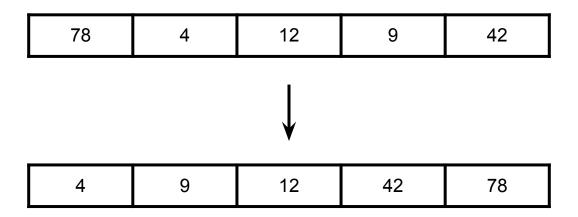
2. Complexity

- a. Deciding the sortability of NFAs / regular languages
- b. Polynomial-time algorithms for sorting NFAs

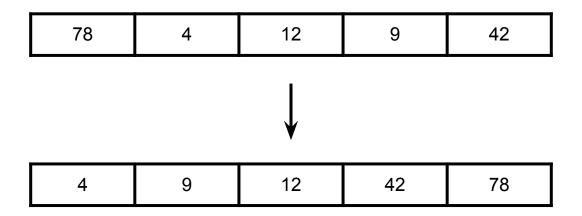
3. Open problems

1.a Sorting Finite-state Automata

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.



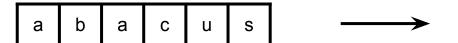
Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.



Example: integers, total order <. Benefits: the sorted list is

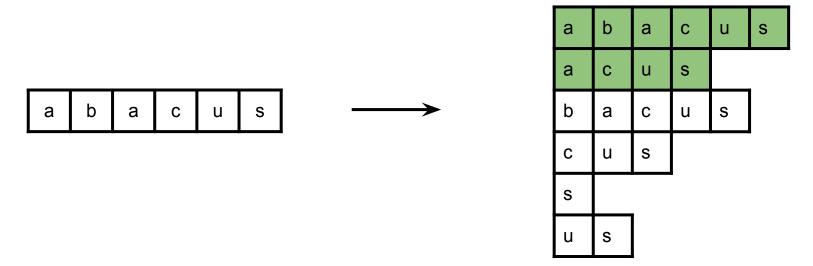
- Searchable (binary search; sorted list ≡ index)
- More compressible (delta-encoding: encode differences between consecutive integers)

Not just integers. Other example: suffixes of a string



а	b	а	С	u	S
а	С	u	S		
b	а	С	u	S	
С	u	S			-
S			•		
u	s				

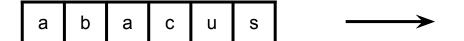
Not just integers. Other example: suffixes of a string

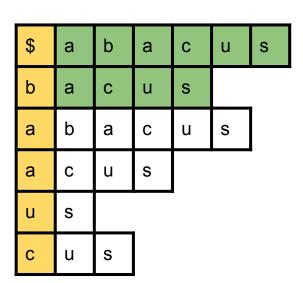


Indexing and compression still hold!

• Indexing: suffixies prefixed by a word (e.g. "a") form a range. Can be found, e.g. by binary search.

Not just integers. Other example: suffixes of a string compressed representation: Burrows-Wheeler transform (BWT)



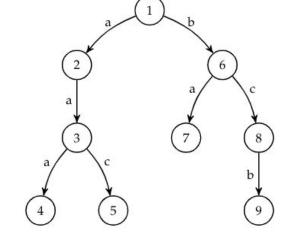


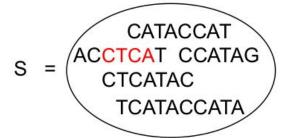
Indexing and compression still hold!

- Indexing: suffixies prefixed by a word (e.g. "a") form a range. Can be found, e.g. by binary search.
- Compression: the index can be stored in compressed space (CSA [STOC'00], FM-index [FOCS'00]).

Why stopping here?

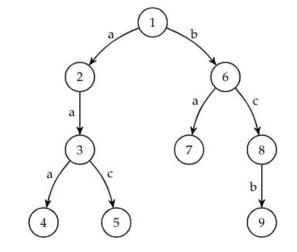
- Finite sets of strings:
 - o eBWT, [Mantaci et al. TCS'07]
 - Suffix tree of a labeled tree [Kosaraju, FOCS'89]
 - o xBWT of a labeled tree [Ferragina et al., FOCS'05]

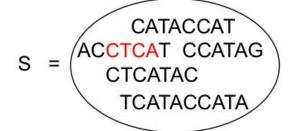


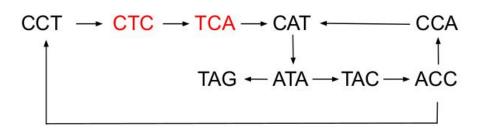


Why stopping here?

- Finite sets of strings:
 - eBWT, [Mantaci et al. TCS'07]
 - Suffix tree of a labeled tree [Kosaraju, FOCS'89]
 - xBWT of a labeled tree [Ferragina et al., FOCS'05]
- Infinite sets of strings:
 - BOSS: BWT of de Bruijn graphs [Bowe et al., WABI'12]
 - Wheeler graphs [Gagie et al. TCS'17]





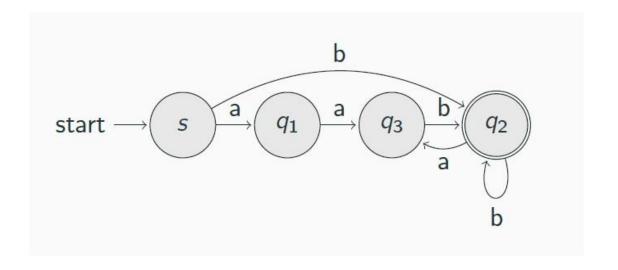


Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS'17]

WG = labeled graphs whose states can be sorted in a **total order** respecting the co-lex axioms:

- 1. $in(u) < in(v) \Rightarrow u < v$
- 2. $u < v \& (u,u',a), (v,v',a) \in E \Rightarrow u' < v'$



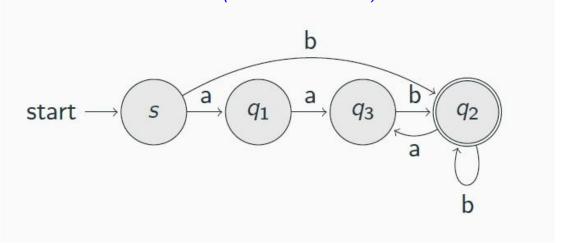
Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS'17]

WG = labeled graphs whose states can be sorted in a **total order** respecting the co-lex axioms:

- 1. $in(u) < in(v) \Rightarrow u < v$
- 2. $u < v \& (u,u',a), (v,v',a) \in E \Rightarrow u' < v'$

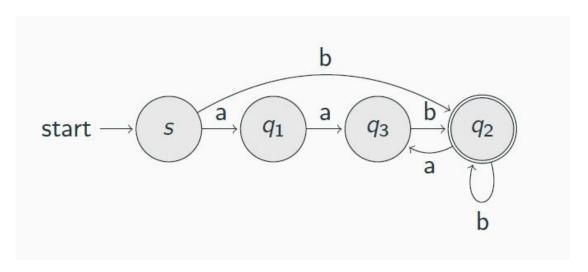
These two axioms are not the only way to define an indexable order over the NFA's states (more details later).



1.b From Sorting NFAs to Regular Languages

New approach [Alanko, D'Agostino, Policriti, P. SODA'20]:

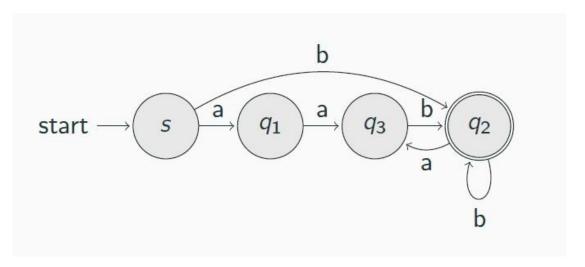
Let's take a step back, and study the problem as a problem on regular languages.



$$L = (\epsilon | aa)b(ab|b)^*$$

New approach [Alanko, D'Agostino, Policriti, P. SODA'20]:

- L (regular, infinite) can be finitely represented as an NFA A.
- Sort co-lexicographically all prefixes of words in L.
- Map this information on A. What happens?

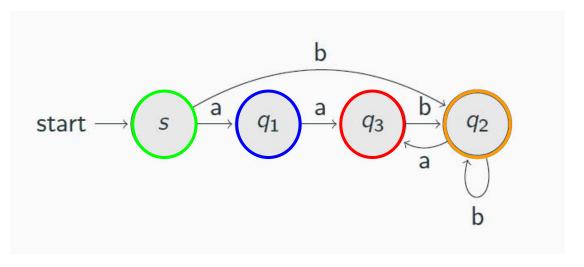


 $L = (\epsilon | aa)b(ab|b)^*$

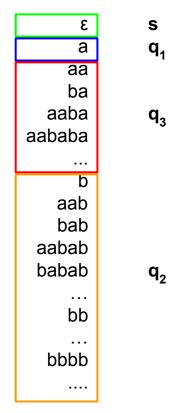
3 а aa ba aaba aababa aab bab aabab babab bb bbbb

New approach [Alanko, D'Agostino, Policriti, P. SODA'20]:

- L (regular, infinite) can be finitely represented as an NFA A.
- Sort co-lexicographically all prefixes of words in L.
- Map this information on A. What happens?



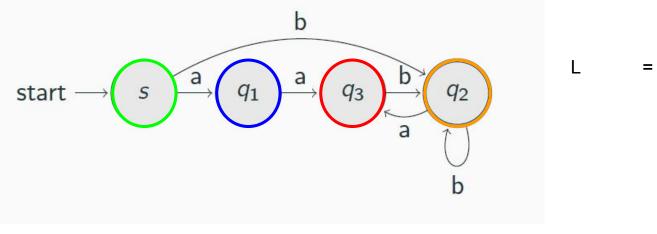
 $L = (\epsilon |aa)b(ab|b)^*$



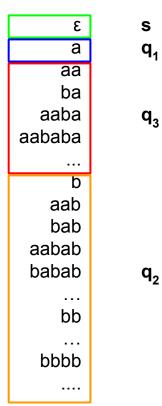
New approach [Alanko, D'Agostino, Policriti, P. SODA'20]:

- L (regular, infinite) can be finitely represented as an NFA A.
- Sort co-lexicographically all prefixes of words in L.
- Map this information on A. What happens?

States form intervals and we re-obtain the Wheeler order! coincidence?



 $L = (\varepsilon | aa)b(ab|b)^*$



Not a coincidence. From [Alanko et al. SODA'20]:

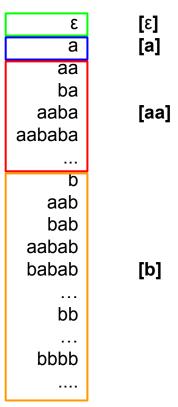
Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a finite number of intervals in co-lex order.

 $L = (\varepsilon | aa)b(ab|b)^*$



Not a coincidence. From [Alanko et al. SODA'20]:

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a finite number of intervals in co-lex order.

Wheeler languages

- = regular languages recognized by Wheeler NFAs
- = regular languages recognized by Wheeler DFAs

 $L = (\epsilon | aa)b(ab|b)^*$

[٤] [a] а aa ba aaba [aa] aababa aab bab aabab babab [b] bb bbbb

Not a coincidence. From [Alanko et al. SODA'20]:

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a finite number of intervals in co-lex order.

Wheeler languages = regular languages recognized by Wheeler NFAs

= regular languages recognized by Wheeler DFAs

More in detail: powerset determinization *always* turns a WNFA with n states into a WDFA with < 2n states.

 $L = (\varepsilon | aa)b(ab|b)^*$

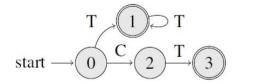
[٤] [a] a aa ba aaba [aa] aababa aab bab aabab babab [b] bb

bbbb

. . . .

Note that also the following situation could occur:

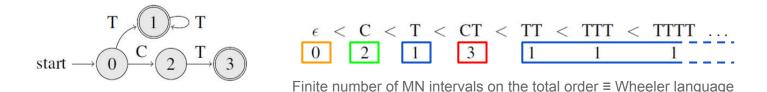
- Some MN classes are split into pieces (in the example: class 1)
- Still, the number of MN *intervals* is *finite*



<u>Finite</u> number of MN <u>intervals</u> on the <u>total</u> order ≡ Wheeler language

Note that also the following situation could occur:

- Some MN classes are split into pieces (in the example: class 1)
- Still, the number of MN intervals is finite



- In this case, the DFA is not Wheeler, but the language is.
- 5 intervals \equiv 5 states of a minimum *Wheeler DFA* for the language.
- Note: |min-DFA| < |min-WDFA| (the gap could be exponential)

Another observation: previous examples concerned **DFAs**.

On **NFAs**, intervals could **overlap** in a prefix/suffix manner. In general, the picture becomes:

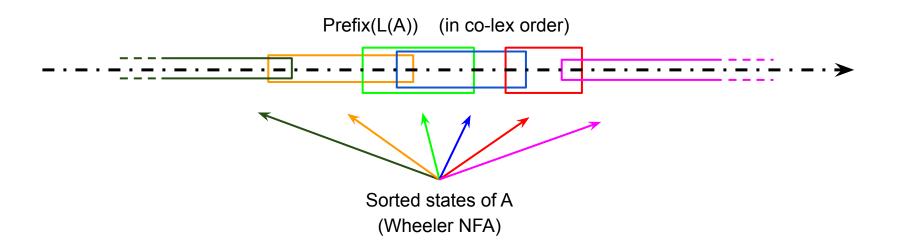
Another observation: previous examples concerned **DFAs**.

On **NFAs**, intervals could **overlap** in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

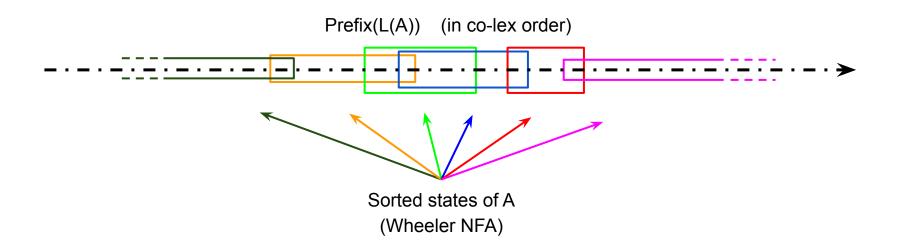
Another observation: previous examples concerned **DFAs**.

On **NFAs**, intervals could **overlap** in a prefix/suffix manner. In general, the picture becomes:



Another observation: previous examples concerned **DFAs**.

On **NFAs**, intervals could **overlap** in a prefix/suffix manner. In general, the picture becomes:

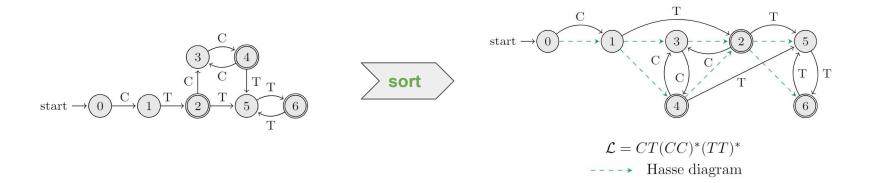


However, not all NFAs/languages are Wheeler! can we index arbitrary NFAs/languages?

1.c Partial co-lex orders

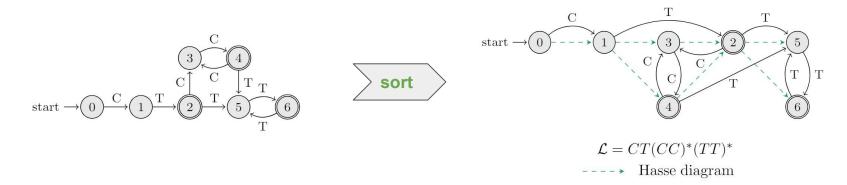
Solution [Cotumaccio, P. SODA'21]: abandon total orders, embrace partial orders.

Result: any NFA admits a *partial co-lex order* of its nodes.



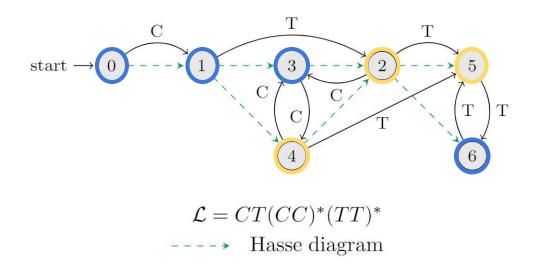
Solution [Cotumaccio, P. SODA'21]: abandon total orders, embrace partial orders.

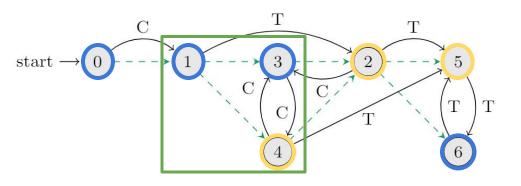
Result: any NFA admits a *partial co-lex order* of its nodes.



- several < can be defined:
- local (axioms like in the Wheeler case, not necessarily unique),
- **global** (states = set of strings; extend co-lex order to sets of strings),
- **glocal** (reachability on the local definition, more details later)

- We can partition states of A into p totally-ordered chains.
- The smallest p = width(A) is the order's width (in the example below, p = 2: {blue, yellow})



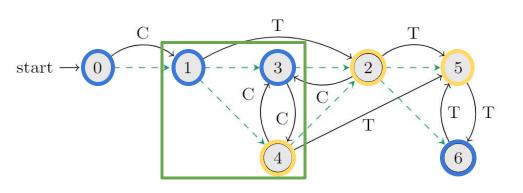


$$\mathcal{L} = CT(CC)^*(TT)^*$$
--- Hasse diagram

Indexing and compression still work!

Indexing ≡ states reached by any string ("C") always form a *convex set in the partial* order.

Convex set = p intervals on the p (totally-sorted) chains



$$\mathcal{L} = CT(CC)^*(TT)^*$$
---- Hasse diagram

Indexing and compression still work!

Indexing ≡ states reached by any string ("C") always form a *convex set in the partial* order.

Convex set = p intervals on the p (totally-sorted) chains

Compression: |BWT| = O(log p) bits per edge

BWT(A) = (IN,OUT)

OUT
[(1,C)]
[(2,T)]
[(2,C)]
[(2,T)]
[(1,C),(2,T)]
[(1,C),(2,1)]

IN	0	[1]	[2,2]	[2]	[1]	[1]	[1,2,2]
	0	1	3	6	4	2	5
0		(1,1,C)	- 0			100	
1						(1,2,T)	
3					(1,2,C)		
6							(1,2,T)
4			(2,1,C)				(2,2,T)
2			(2,1,C)				(2,2,T)
5				(2,1,T)			

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

Powerset determinization explodes with 2^p (rather than 2ⁿ)*

^{*}consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

- Powerset determinization explodes with 2^p (rather than 2ⁿ)*
- NFA compression: O(log p) bits per edge (rather than log n)

^{*}consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

- Powerset determinization explodes with 2^p (rather than 2ⁿ)*
- NFA compression: O(log p) bits per edge (rather than log n)
- NFA membership / pattern matching: O(p²) time per character (rather than m)

^{*}consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

1.d Sortability Hierarchies of Regular Languages

From [Cotumaccio, D'Agostino, Policriti, P. (submitted)]:

Definition Deterministic width width^D(L) of L: smallest p such that there exists A DFA with:

- width(A) = p
- L(A) = L

From [Cotumaccio, D'Agostino, Policriti, P. (submitted)]:

Definition Deterministic width width^D(L) of L: smallest p such that there exists A DFA with:

- width(A) = p
- L(A) = L

Results:

- Non-unicity of the smallest-width DFA (Myhill-Nerode theorem for p-sortable languages)
- Characterization of a canonical smallest-width DFA: the Hasse automaton for L

From [Cotumaccio, D'Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width width V(L) of L. Smallest p such that there exists A NFA with:

- width(A) = p
- L(A) = L

From [Cotumaccio, D'Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width width V(L) of L. Smallest p such that there exists A NFA with:

- width(A) = p
- L(A) = L

Definition The *width* of a regular language L is $p = width(L) = width^{N}(L)$. We also say that L is p-sortable.

From [Cotumaccio, D'Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width width V(L) of L. Smallest p such that there exists A NFA with:

- width(A) = p
- L(A) = L

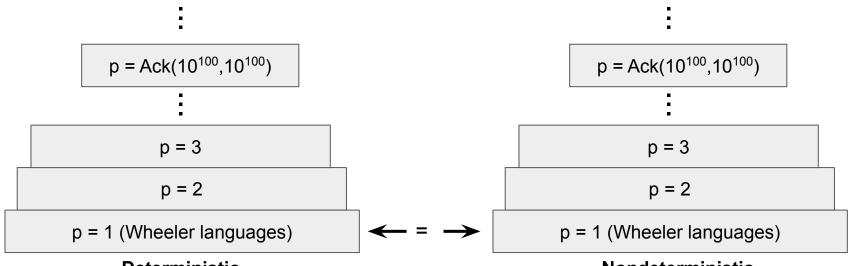
Definition The *width* of a regular language L is $p = width(L) = width^{N}(L)$. We also say that L is p-sortable.

Observation: width $^{N}(L)$ = width $^{D}(L)$ = 1 (total order) iff L is Wheeler.

Which relations exist between width^N(L) and width^D(L)? We prove:

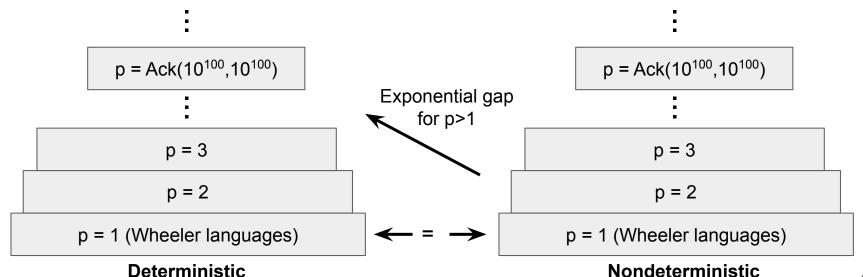
Which relations exist between width^N(L) and width^D(L)? We prove:

1. Both hierarchies are proper and do not collapse: for every p, there exists L such that width^N(L) = width^D(L) = p



Which relations exist between width^N(L) and width^D(L)? We prove:

- 2. width^N(L) \leq width^D(L) \leq 2^{width}(L) 1
- 3. There exist infinitely many L such that width $D(L) \ge e^{\sqrt{\text{width}}(L)}$



2.a Complexity Issues

How hard is it to compute width(A) and width(L(A))?

How hard is it to compute width(A) and width(L(A))?

First, a definition. Let q be a state of an NFA A.

Definition: I_q is the *language recognized by q*: set of strings labeling paths that connect the source of A to q.

How hard is it to compute width(A) and width(L(A))?

First, a definition. Let q be a state of an NFA A.

Definition: I_q is the *language recognized by q*: set of strings labeling paths that connect the source of A to q.

Definition: an NFA A is *reduced* iff $q \neq q' \Rightarrow l_q \neq l_{q'}$

How hard is it to compute width(A) and width(L(A))?

given	A: DFA	A: reduced NFA	A: NFA
width(A)	$O(m^2 + n^{5/2})$ [1]	O(n ⁶) [4]	NP-hard [2]*
width(L(A))	n ^{O(width(L(A))} [4]**	PSPACE-hard [3]*	PSPACE-hard [3]*

- [1] Cotumaccio and P. On Indexing and Compressing Finite Automata. SODA'21.
- [2] Gibney and Thankachan. On the hardness and inapproximability of recognizing Wheeler graphs. ESA'19
- [3] D'Agostino, Martincigh, Policriti. Ordering regular languages: a danger zone. ICTCS'21
- [4] Cotumaccio, D'Agostino, Policriti, P. Ongoing work.

^{*} completeness holds in the Wheeler (p=1) case.

^{**} note: in P for Wheeler L(A).

2.b Sorting / Indexing Algorithms

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

- Compute co-lex order < of smallest width.
- 2. Compute a smallest chain decomposition of (Q,<). $O(n^{5/2})$ time (reduction to maximum matching)
- 3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

- 1. Compute co-lex order < of smallest width.
- 2. Compute a smallest chain decomposition of (Q,<). $O(n^{5/2})$ time (reduction to maximum matching)
- 3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

Theorem [Cotumaccio, P. 2021]. (1) can be solved in O(m²) time on **DFAs**.

Theorem [Gibney, Thankachan. 2019]. (1) is NP-hard on NFAs!

Not all hope is lost, however. [Cotumaccio, D'Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let $q ext{ } ext{q'}$ iff $(q ext{ } ext{ }$

Not all hope is lost, however. [Cotumaccio, D'Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let $q ext{ } ext{$\stackrel{d}{=}$ } q'$ iff $(q ext{$\stackrel{d}{=}$ } q_1 ext{$\stackrel{d}{=}$ } q_2 \dots ext{$\stackrel{d}{=}$ } q')$ for some co-lex pre-orders $ext{$\stackrel{d}{=}$ } ext{$\stackrel{d}{=}$ } ext{$}$

Lemma On reduced NFAs, ≤ is precisely the smallest-width co-lex pre-order ≤.

Not all hope is lost, however. [Cotumaccio, D'Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let $q ext{ } ext{$\stackrel{d}{=}$ } q'$ iff $(q ext{$\stackrel{d}{=}$ } q_1 ext{$\stackrel{d}{=}$ } q_2 \dots ext{$\stackrel{d}{=}$ } q')$ for some co-lex pre-orders $ext{$\stackrel{d}{=}$ } ext{$\stackrel{d}{=}$ } ext{$}$

Lemma On reduced NFAs, ≤ is precisely the smallest-width co-lex pre-order ≤. In general, *on any NFA*:

- 1. ⊴ is a partial (pre-)order
- 2. $width(\le) \le width(\le) = p$
- 3. ≤ enables indexing
- 4. \leq can be computed in $O(n^6)$ time

Not all hope is lost, however. [Cotumaccio, D'Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let $q ext{ } e$

Lemma On reduced NFAs, ≤ is precisely the smallest-width co-lex pre-order ≤. In general, *on any NFA*:

- 1. ≤ is a partial (pre-)order
- 2. $width(\leq) \leq width(\leq) = p$
- 3. ≤ enables indexing
- 4. \leq can be computed in $O(n^6)$ time

We can index *any NFA* for the *optimal p* in polytime!

Not all hope is lost, however. [Cotumaccio, D'Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let $q ext{ } e$

Lemma On reduced NFAs, ≤ is precisely the smallest-width co-lex pre-order ≤. In general, *on any NFA*:

- 1. ⊴ is a partial (pre-)order
- 2. width(\leq) \leq width(\leq) = p
- ⊴ enables indexing
- 4. \leq can be computed in $O(n^6)$ time

We can index *any NFA* for the *optimal p* in polytime!

Note: we do not actually compute p, unless reduced NFA. Does not break NP-hardness of computing p (NFA used in the hardness proof is *not reduced*).

(infinite, unordered) list of open problems

- Approximation algorithms for width(A) / width(L(A))
- 2. How does width(L) change with regexp operations?
- 3. Logical characterization of p-sortable languages (see Büchi's theorem: MSO ≡ REG)
- 4. Indexability lower bounds as a function of width(A) (fine-grained complexity)
- 5. Zoo of NFA orders (complexity, relations between different notions of width,...)
- 6. Algorithms for minimizing width(A) and/or number of states
- 7. Repetitive graph compression: run-length BWT / graph attractors
- 8. Dynamic data structures: maintain small width upon edge insertions/deletions
- 9. Generalizations: string-labeled edges, sorting context-free languages, ...
- 10. ..

Thank you! questions?