Ordering infinity: indexing and compressing regular
languages

Nicola Prezza, Ca’ Foscari university of Venice, ltaly

| Universita
Joint work with: Nicola Cotumaccio (GSSI), Giovanna : :
D’Agostino (uniud), Alberto Policriti (uniud), Jarno Ca'Foscari

Alanko (university of Helsinki), Davide Martincigh (uniud) \/enezia

On the menu

1. Foundations: a theory of ordered regular languages

a. Sorting NFAs.

b. Wheeler languages.
C

d

Sorting any regular language: partial co-lex orders
Sortability hierarchies of regular languages

2. Complexity

a. Deciding the sortability of NFAs / regular languages
b. Polynomial-time algorithms for sorting NFAs

3. Open problems

1.a Sorting Finite-state Automata

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42
4 9 12 42 78

Example: integers, total order <. Benefits: the sorted list is

e Searchable (binary search; sorted list = index)
e More compressible (delta-encoding: encode differences between consecutive integers)

Sorting

Not just integers. Other example: suffixes of a string

Sorting

Not just integers. Other example: suffixes of a string

alblal]cluls — b |a |c Ju |s
c |u |s
S
u |s

Indexing and compression still hold!

e Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.

Sorting

Not just integers. Other example: suffixes of a string
compressed representation: Burrows-Wheeler transform (BWT)

Indexing and compression still hold!

e Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.
e Compression: the index can be stored in compressed space (CSA[STOC’00], FM-index [FOCS’00]).

Sorting

Why stopping here?

e Finite sets of strings:
o eBWT, [Mantaci et al. TCS’07]
o Suffix tree of a labeled tree [Kosaraju, FOCS’89]
o xXBWT of a labeled tree [Ferragina et al., FOCS’05]

CATACCAT
ACCTCAT CCATAG
CTCATAC

TCATACCATA

Sorting

Why stopping here?

e Finite sets of strings:
o eBWT, [Mantaci et al. TCS’07]
o Suffix tree of a labeled tree [Kosaraju, FOCS’89]
o xXBWT of a labeled tree [Ferragina et al., FOCS’05]

e |Infinite sets of strings:
o BOSS: BWT of de Bruijn graphs [Bowe et al., WABI'12]
o Wheeler graphs [Gagie et al. TCS’17]

CATACCAT
ACCTCAT CCATAG
CTCATAC

TCATACCATA

CCT — CTC — TCA— CAT

CCA

l T

TAG — ATA—TAC— ACC

|

Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u)<in(v) = u<v
2. u<v&(uu,),(vww,a EE =2u<vVv

start ——

11

Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u)<in(v) = u<v
2. u<v&(uu,),(vww,a EE =2u<vVv

These two axioms are not the only way to define an indexable order over the NFA'’s states
(more details later).

start ——

12

1.b From Sorting NFAs to Regular Languages

13

A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

Let’s take a step back, and study the problem as a problem on regular languages.

start ——

L = (¢Jaa)b(ablb)*

14

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

e L (regular, infinite) can be finitely represented as an NFAA.
e Sort co-lexicographically all prefixes of words in L.
e Map this information on A. What happens?

start ——

A new language-theoretical approach

L = (¢Jaa)b(ablb)*

aa
ba
aaba
aababa

aab
bab
aabab
babab

bb

bbbb

15

A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

L (regular, infinite) can be finitely represented as an NFA A. a

Sort co-lexicographically all prefixes of words in L. 33
Map this information on A. What happens? ba

aaba
aababa

—
1l

aab
bab
aabab
babab

bb

bbbb

L = (¢Jaa)b(ablb)*

16

A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

e L (regular, infinite) can be finitely represented as an NFAA.
e Sort co-lexicographically all prefixes of words in L.
e Map this information on A. What happens?

States form intervals and we re-obtain the Wheeler order! coincidence?

—
1l

L = (¢Jaa)b(ablb)*

aa
ba
aaba
aababa

aab
bab
aabab
babab

bb

bbbb

17

Wheeler languages

Not a coincidence. From [Alanko et al. SODA'20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.

aa
ba
aaba
aababa

aab
bab
aabab
babab

bb

bbbb

[€]
[a]

[aa]

[b]

18

Wheeler languages

Not a coincidence. From [Alanko et al. SODA’20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.

aa
ba
aaba
aababa

Wheeler languages regular languages recognized by Wheeler NFAs

regular languages recognized by Wheeler DFAs

aab
bab
aabab
babab

bb

bbbb

[€]
[a]

[aa]

[b]

19

Wheeler languages

Not a coincidence. From [Alanko et al. SODA'20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.

aa
ba
aaba
aababa

Wheeler languages regular languages recognized by Wheeler NFAs

= regular languages recognized by Wheeler DFAs
More in detail: powerset determinization always turns a WNFA with n states
into a WDFA with < 2n states.

aab
bab
aabab
babab

bb

bbbb

[€]
[a]

[aa]

[b]

20

Wheeler languages

Note that also the following situation could occur:

e Some MN classes are split into pieces (in the example: class 1)
e Sitill, the number of MN intervals is finite

T @DT e € C T <l < TI' < TIT < l'lll__.._._
C) 3
ot s @L 0 2| L B3] L[| L

Finite number of MN intervals on the total order = Wheeler language

Wheeler languages

Note that also the following situation could occur:

e Some MN classes are split into pieces (in the example: class 1)
e Sitill, the number of MN intervals is finite

. 2 3
start —(0 C@l@ 0 < L] 3] [1 I L

Finite number of MN intervals on the total order = Wheeler language

T;@*DT e 2 €= T 2 @F = ' < ' 2 3% ..

e In this case, the DFA is not Wheeler, but the language is.
e 5Sintervals =5 states of a minimum Wheeler DFA for the language.
e Note: |min-DFA| < [min-WDFA| (the gap could be exponential)

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

23

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

m—a mmm n mmm w s w mEm w o R EEm R s N EEm N mEm N M N M R M R M R MmN mEm N M N mEm N M N w e R R N >

24

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

- { -

'\W

Sorted states of A
(Wheeler NFA)

25

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

- { -

\%’

Sorted states of A
(Wheeler NFA)

However, not all NFAs/languages are Wheeler! can we index arbitrary NFAs/languages?

26

1.c Partial co-lex orders

27

co-lex orders

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

start H@L@L

P = BT Ty

————— Hasse diagram

28

co-lex orders

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

start H@L@T_;

£ = CT(CC)*(TT)*

————— Hasse diagram

_ e local (axioms like in the Wheeler case, not necessarily unique),
several < can be defined: o global (states = set of strings; extend co-lex order to sets of strings),
e glocal (reachability on the local definition, more details later) 29

co-lex orders

We can partition states of A into p totally-ordered chains.
The smallest p = width(A) is the order’s width (in the example below, p = 2: {m, yellow})

£ = ETCCT)

----> Hasse diagram

30

C
~
start — =Lk =

.\ C
" @///

£ = BTCCT Ty

-———==>

Hasse diagram

co-lex orders

Indexing and compression still work!

Indexing = states reached by any string
(“C”) always form a convex set in the partial
T order.

Convex set = p intervals on the p
(totally-sorted) chains

31

co-lex orders

C
~
start — LR T

e
\@/,

£ = BTCCT Ty

-———==>

Hasse diagram

BWT(A) = (IN,0UT)

ouT
[(1,C)]
[(2,1)]
[(2,0)]
[(2,T)]

[(1,C),(2,T)]

[(1,0),(2,T)] |

[(1.T)]

Indexing and compression still work!

Indexing = states reached by any string
(“C”) always form a convex set in the partial

order.

Convex set = p intervals on the p
(totally-sorted) chains

Compression: |BWT| = O(log p) bits per edge

- R e (1 [1,2,2]
1 3 6 4 2 5

0 (1,1,0)

1 (1,2,7)

3 (1,2.C)

6 (1,2.T)

4 (2,1,0) (2,2,T)

2 | (2,1.0) (2,2,T)

5 (2,1,T)

32

co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset explodes with 2P (rather than 2")*

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

33

co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset explodes with 2P (rather than 2")*

e NFA : O(log p) bits per edge (rather than log n)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

34

co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset determinization explodes with 2P (rather than 2")*
e NFA compression: O(log p) bits per edge (rather than log n)

e NFA membership / pattern matching: O(p?) time per character (rather than m)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

35

1.d Sortability Hierarchies of Regular Languages

36

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthP(L) of L: smallest p such that there exists A DFA with:

e width(A) = p
e LA =L

37

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthP(L) of L: smallest p such that there exists A DFA with:

e width(A)=p
e L(A)=L
Results:

e Non-unicity of the smallest-width DFA (Myhill-Nerode theorem for p-sortable languages)

e Characterization of a canonical smallest-width DFA: the Hasse automaton for L

38

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L

39

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.

40

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.

Observation: widthN(L) = widthP(L) = 1 (total order) iff L is Wheeler.

41

Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:

42

Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:

1.

Both hierarchies are proper and do not collapse: for every p, there exists L such that

widthN(L) = width®(L) = p

p = Ack(10'%°,1019)

p=3

p=2

p = 1 (Wheeler languages)

Deterministic

p = Ack(10'%°,1019)

p = 1 (Wheeler languages)

Nondeterministic

43

Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:

2. widthN(L) < widthP(L) < 2widti (L) _ 1
3. There exist infinitely many L such that widthP(L) 2 e

Vwidth' (L)

p = Ack(101%0,10100) p = Ack(101%0,10100)

Exponential gap

: for p>1 :
p=3 ‘K\\\\\\ p=3

p=2 p=2

p = 1 (Wheeler languages) <« = —> p = 1 (Wheeler languages)

Deterministic Nondeterministic

2.a Complexity Issues

45

Complexity issues

How hard is it to compute width(A) and width(L(A))?

46

Complexity issues

How hard is it to compute width(A) and width(L(A))?
First, a definition. Let q be a state of an NFAA.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of Ato q.

47

Complexity issues

How hard is it to compute width(A) and width(L(A))?
First, a definition. Let q be a state of an NFAA.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of Ato q.

Definition: an NFAAis reduced iffq#q = Iq 7 Iq,

48

Complexity issues

How hard is it to compute width(A) and width(L(A))?

given A: DFA A: reduced NFA A: NFA
compute

width(A) O(m2 + n%2) [1] O(n%) [4] NP-hard [2]*

width(L(A)) OWidh(L(A) [4]%* PSPACE-hard [3]* | PSPACE-hard [3]*

[1] Cotumaccio and P. On Indexing and Compressing Finite Automata. SODA'21.

[2] Gibney and Thankachan. On the hardness and inapproximability of recognizing Wheeler graphs. ESA'19
[3] D’Agostino, Martincigh, Policriti. Ordering regular languages: a danger zone. ICTCS’21

[4] Cotumaccio, D’Agostino, Policriti, P. Ongoing work.

* completeness holds in the Wheeler (p=1) case.
** note: in P for Wheeler L(A).

49

2.b Sorting / Indexing Algorithms

50

Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n°?) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

51

Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n°?) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

Theorem [Cotumaccio, P. 2021]. (1) can be solved in O(m?) time on DFAs.

Theorem [Gibney, Thankachan. 2019]. (1) is NP-hard on NFAs!

52

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

172
<
<, %, ...,S.and some states q, ... q, .

53

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

172
<
<, S, ..., S, and some states q, ... g, .

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.

54

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders
<, <, ..., S and some states q, ... q,_,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

1. <is a partial (pre-)order

2. width(2) < width() = p

3. 2 enables indexing

4. = can be computed in O(n®°) time

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q = q'iff (9 <, g

15,0, ... 5, Q') for some co-lex pre-orders
<p S, ..., S and some states g, ... g, ,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

. . 1 [l . o '
< is a partial (pre-)order We can index any NFA for the optimal p in polytime!

1.

2. width(2) < width() = p

3. 2 enables indexing

4. = can be computed in O(n®°) time

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

<
<, <, ..., S and some states q, ... q,_,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

. . 1 [l . o '
< is a partial (pre-)order We can index any NFA for the optimal p in polytime!

1.

i <) < Wi <) =
2. ‘;V'dth() < _W'dth_(—) P Note: we do not actually compute p, unless reduced
3. = enables indexing _ o NFA. Does not break NP-hardness of computing p
4. =can be computed in O(n®) time (NFA used in the hardness proof is not reduced).

57

—

CLO NGO~ LN=

(infinite, unordered) list of open problems

Approximation algorithms for width(A) / width(L(A))

How does width(L) change with regexp operations?

Logical characterization of p-sortable languages (see Buchi’s theorem: MSO = REG)
Indexability lower bounds as a function of width(A) (fine-grained complexity)

Zoo of NFA orders (complexity, relations between different notions of width,...)
Algorithms for minimizing width(A) and/or number of states

Repetitive graph compression: run-length BWT / graph attractors

Dynamic data structures: maintain small width upon edge insertions/deletions
Generalizations: string-labeled edges, sorting context-free languages, ...

Thank you! questions?

58

