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On the menu

1. Foundations: a theory of ordered regular languages

a. Sorting NFAs.

b. Wheeler languages.
C

d

Sorting any regular language: partial co-lex orders
Sortability hierarchies of regular languages

2. Complexity

a. Deciding the sortability of NFAs / regular languages
b. Polynomial-time algorithms for sorting NFAs

3. Open problems



1.a Sorting Finite-state Automata



Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.
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Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.
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Example: integers, total order <. Benefits: the sorted list is

e Searchable (binary search; sorted list = index)
e More compressible (delta-encoding: encode differences between consecutive integers)




Sorting

Not just integers. Other example: suffixes of a string




Sorting

Not just integers. Other example: suffixes of a string
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Indexing and compression still hold!

e Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.




Sorting

Not just integers. Other example: suffixes of a string
compressed representation: Burrows-Wheeler transform (BWT)

Indexing and compression still hold!

e Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.
e Compression: the index can be stored in compressed space (CSA[STOC’00], FM-index [FOCS’00]).




Sorting

Why stopping here?

e Finite sets of strings:
o eBWT, [Mantaci et al. TCS’07]
o  Suffix tree of a labeled tree [Kosaraju, FOCS’89]
o xXBWT of a labeled tree [Ferragina et al., FOCS’05]

CATACCAT
ACCTCAT CCATAG
CTCATAC

TCATACCATA




Sorting

Why stopping here?

e Finite sets of strings:
o eBWT, [Mantaci et al. TCS’07]
o  Suffix tree of a labeled tree [Kosaraju, FOCS’89]
o xXBWT of a labeled tree [Ferragina et al., FOCS’05]

e |Infinite sets of strings:
o BOSS: BWT of de Bruijn graphs [Bowe et al., WABI'12]
o Wheeler graphs [Gagie et al. TCS’17]

CATACCAT
ACCTCAT CCATAG
CTCATAC

TCATACCATA

CCT — CTC — TCA— CAT

CCA

l T

TAG — ATA—TAC— ACC

|




Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u)<in(v) = u<v
2. u<v&(uu,),(vww,a EE =2u<vVv

start ——
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Wheeler graphs

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u)<in(v) = u<v
2. u<v&(uu,),(vww,a EE =2u<vVv

These two axioms are not the only way to define an indexable order over the NFA'’s states
(more details later).

start ——
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1.b From Sorting NFAs to Regular Languages
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A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

Let’s take a step back, and study the problem as a problem on regular languages.

start ——

L = (¢Jaa)b(ablb)*
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New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

e L (regular, infinite) can be finitely represented as an NFAA.
e Sort co-lexicographically all prefixes of words in L.
e Map this information on A. What happens?

start ——

A new language-theoretical approach

L = (¢Jaa)b(ablb)*

aa
ba
aaba
aababa

aab
bab
aabab
babab

bb

bbbb
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A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

L (regular, infinite) can be finitely represented as an NFA A. a

Sort co-lexicographically all prefixes of words in L. 33
Map this information on A. What happens? ba

aaba
aababa

—
1l

aab
bab
aabab
babab

bb

bbbb

L = (¢Jaa)b(ablb)*
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A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

e L (regular, infinite) can be finitely represented as an NFAA.
e Sort co-lexicographically all prefixes of words in L.
e Map this information on A. What happens?

States form intervals and we re-obtain the Wheeler order! coincidence?

—
1l

L = (¢Jaa)b(ablb)*

aa
ba
aaba
aababa

aab
bab
aabab
babab

bb

bbbb
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Wheeler languages

Not a coincidence. From [Alanko et al. SODA'20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.
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aaba
aababa
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[b]
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Wheeler languages

Not a coincidence. From [Alanko et al. SODA’20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.

aa
ba
aaba
aababa

Wheeler languages regular languages recognized by Wheeler NFAs

regular languages recognized by Wheeler DFAs

aab
bab
aabab
babab

bb

bbbb

[€]
[a]

[aa]

[b]
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Wheeler languages

Not a coincidence. From [Alanko et al. SODA'20]:

L = (¢Jaa)b(abl|b)*

€

Theorem [Myhill-Nerode theorem for W. languages]:
A reqular language is Wheeler

=

its Myhill-Nerode equivalence classes (= states of minimum DFA) form a
finite number of intervals in co-lex order.

aa
ba
aaba
aababa

Wheeler languages regular languages recognized by Wheeler NFAs

= regular languages recognized by Wheeler DFAs
More in detail: powerset determinization always turns a WNFA with n states
into a WDFA with < 2n states.

aab
bab
aabab
babab

bb

bbbb

[€]
[a]

[aa]

[b]
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Wheeler languages

Note that also the following situation could occur:

e Some MN classes are split into pieces (in the example: class 1)
e Sitill, the number of MN intervals is finite

T @DT e € C T <l < TI' < TIT < l'lll__.._._
C ) 3
ot s @L 0 2| L B3] L[ | L

Finite number of MN intervals on the total order = Wheeler language




Wheeler languages

Note that also the following situation could occur:

e Some MN classes are split into pieces (in the example: class 1)
e Sitill, the number of MN intervals is finite

. 2 3
start —( 0 C@l@ 0 < L] 3] [1 I L

Finite number of MN intervals on the total order = Wheeler language

T;@*DT e 2 €= T 2 @F = ' < ' 2 3% ..

e In this case, the DFA is not Wheeler, but the language is.
e 5Sintervals =5 states of a minimum Wheeler DFA for the language.
e Note: |min-DFA| < [min-WDFA| (the gap could be exponential)



Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:
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Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)
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Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

- { -

'\W

Sorted states of A
(Wheeler NFA)
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Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

- { -

\%’

Sorted states of A
(Wheeler NFA)

However, not all NFAs/languages are Wheeler! can we index arbitrary NFAs/languages?
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1.c Partial co-lex orders

27



co-lex orders

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

start H@L@L

P = BT Ty

————— Hasse diagram

28



co-lex orders

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

start H@L@T_;

£ = CT(CC)*(TT)*

————— Hasse diagram

_ e local (axioms like in the Wheeler case, not necessarily unique),
several < can be defined: o global (states = set of strings; extend co-lex order to sets of strings),
e glocal (reachability on the local definition, more details later) 29



co-lex orders

We can partition states of A into p totally-ordered chains.
The smallest p = width(A) is the order’s width (in the example below, p = 2: {m, yellow})

£ = ETCCT )

----> Hasse diagram

30



C
~
start — =Lk =

.\ C
" @///

£ = BTCCT Ty

-———==>

Hasse diagram

co-lex orders

Indexing and compression still work!

Indexing = states reached by any string
(“C”) always form a convex set in the partial
T order.

Convex set = p intervals on the p
(totally-sorted) chains

31



co-lex orders

C
~
start — LR T

e
\@/,

£ = BTCCT Ty

-———==>

Hasse diagram

BWT(A) = (IN,0UT)

ouT
[(1,C)]
[(2,1)]
[(2,0)]
[(2,T)]

[(1,C),(2,T)]

[(1,0),(2,T)] |

[(1.T)]

Indexing and compression still work!

Indexing = states reached by any string
(“C”) always form a convex set in the partial

order.

Convex set = p intervals on the p
(totally-sorted) chains

Compression: |BWT| = O(log p) bits per edge

- R e (1 [1,2,2]
1 3 6 4 2 5

0 (1,1,0)

1 (1,2,7)

3 (1,2.C)

6 (1,2.T)

4 (2,1,0) (2,2,T)

2 | (2,1.0) (2,2,T)

5 (2,1,T)
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co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset explodes with 2P (rather than 2")*

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!

33



co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset explodes with 2P (rather than 2")*

e NFA : O(log p) bits per edge (rather than log n)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
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co-lex orders

Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA'21] p = width(A) is a fundamental parameter for NFAs:

e Powerset determinization explodes with 2P (rather than 2")*
e NFA compression: O(log p) bits per edge (rather than log n)

e NFA membership / pattern matching: O(p?) time per character (rather than m)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
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1.d Sortability Hierarchies of Regular Languages
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Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthP(L) of L: smallest p such that there exists A DFA with:

e width(A) = p
e LA =L

37



Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthP(L) of L: smallest p such that there exists A DFA with:

e width(A)=p
e L(A)=L
Results:

e Non-unicity of the smallest-width DFA (Myhill-Nerode theorem for p-sortable languages)

e Characterization of a canonical smallest-width DFA: the Hasse automaton for L

38



Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L
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Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.
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Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

e width(A) = p
e LA =L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.

Observation: widthN(L) = widthP(L) = 1 (total order) iff L is Wheeler.

41



Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:
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Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:

1.

Both hierarchies are proper and do not collapse: for every p, there exists L such that

widthN(L) = width®(L) = p

p = Ack(10'%°,1019)

p=3

p=2

p = 1 (Wheeler languages)

Deterministic

p = Ack(10'%°,1019)

p = 1 (Wheeler languages)

Nondeterministic

43



Width of a language

Which relations exist between widthN(L) and widthP(L)? We prove:

2. widthN(L) < widthP(L) < 2widti (L) _ 1
3. There exist infinitely many L such that widthP(L) 2 e

Vwidth' (L)

p = Ack(101%0,10100) p = Ack(101%0,10100)

Exponential gap

: for p>1 :
p=3 ‘K\\\\\\ p=3

p=2 p=2

p = 1 (Wheeler languages) <« = —> p = 1 (Wheeler languages)

Deterministic Nondeterministic



2.a Complexity Issues

45



Complexity issues

How hard is it to compute width(A) and width(L(A))?
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Complexity issues

How hard is it to compute width(A) and width(L(A))?
First, a definition. Let q be a state of an NFAA.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of Ato q.
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Complexity issues

How hard is it to compute width(A) and width(L(A))?
First, a definition. Let q be a state of an NFAA.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of Ato q.

Definition: an NFAAis reduced iffq#q = Iq 7 Iq,

48



Complexity issues

How hard is it to compute width(A) and width(L(A))?

given A: DFA A: reduced NFA A: NFA
compute

width(A) O(m2 + n%2) [1] O(n%) [4] NP-hard [2]*

width(L(A)) OWidh(L(A) [4]%* PSPACE-hard [3]* | PSPACE-hard [3]*

[1] Cotumaccio and P. On Indexing and Compressing Finite Automata. SODA'21.

[2] Gibney and Thankachan. On the hardness and inapproximability of recognizing Wheeler graphs. ESA'19
[3] D’Agostino, Martincigh, Policriti. Ordering regular languages: a danger zone. ICTCS’21

[4] Cotumaccio, D’Agostino, Policriti, P. Ongoing work.

* completeness holds in the Wheeler (p=1) case.
** note: in P for Wheeler L(A).
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2.b Sorting / Indexing Algorithms
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Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n°?) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.
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Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n°?) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

Theorem [Cotumaccio, P. 2021]. (1) can be solved in O(m?) time on DFAs.

Theorem [Gibney, Thankachan. 2019]. (1) is NP-hard on NFAs!
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Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

172
<
<, %, ...,S.and some states q, ... q, .
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Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

172
<
<, S, ..., S, and some states q, ... g, .

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
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Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders
<, <, ..., S and some states q, ... q,_,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

1. <is a partial (pre-)order

2.  width(2) < width() = p

3. 2 enables indexing

4. = can be computed in O(n®°) time



Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q = q'iff (9 <, g

15,0, ... 5, Q') for some co-lex pre-orders
<p S, ..., S and some states g, ... g, ,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

. . 1 [l . o '
< is a partial (pre-)order We can index any NFA for the optimal p in polytime!

1.

2.  width(2) < width() = p

3. 2 enables indexing

4. = can be computed in O(n®°) time



Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Letq=q'iff (9<, q, <, q, ... £ Q') for some co-lex pre-orders

<
<, <, ..., S and some states q, ... q,_,.

Lemma On reduced NFAs, = is precisely the smallest-width co-lex pre-order <.
In general, on any NFA:

. . 1 [l . o '
< is a partial (pre-)order We can index any NFA for the optimal p in polytime!

1.

i <) < Wi <) =
2. ‘;V'dth( ) < _W'dth_(—) P Note: we do not actually compute p, unless reduced
3. = enables indexing _ o NFA. Does not break NP-hardness of computing p
4. =can be computed in O(n®) time (NFA used in the hardness proof is not reduced).
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(infinite, unordered) list of open problems

Approximation algorithms for width(A) / width(L(A))

How does width(L) change with regexp operations?

Logical characterization of p-sortable languages (see Buchi’s theorem: MSO = REG)
Indexability lower bounds as a function of width(A) (fine-grained complexity)

Zoo of NFA orders (complexity, relations between different notions of width,...)
Algorithms for minimizing width(A) and/or number of states

Repetitive graph compression: run-length BWT / graph attractors

Dynamic data structures: maintain small width upon edge insertions/deletions
Generalizations: string-labeled edges, sorting context-free languages, ...

Thank you! questions?
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