
Ordering infinity: indexing and compressing regular
languages

Nicola Prezza, Ca’ Foscari university of Venice, Italy

Joint work with: Nicola Cotumaccio (GSSI), Giovanna
D’Agostino (uniud), Alberto Policriti (uniud), Jarno
Alanko (university of Helsinki), Davide Martincigh (uniud)

On the menu

1. Foundations: a theory of ordered regular languages

a. Sorting NFAs.
b. Wheeler languages.
c. Sorting any regular language: partial co-lex orders
d. Sortability hierarchies of regular languages

2. Complexity

a. Deciding the sortability of NFAs / regular languages
b. Polynomial-time algorithms for sorting NFAs

3. Open problems

2

1.a Sorting Finite-state Automata

3

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78

4

Sorting

Sorting is the algorithmic process of ordering the elements of a given set according to a specific order.

78 4 12 9 42

4 9 12 42 78

Example: integers, total order <. Benefits: the sorted list is

● Searchable (binary search; sorted list ≡ index)
● More compressible (delta-encoding: encode differences between consecutive integers)

5

Sorting

Not just integers. Other example: suffixes of a string

a b a c u s

a b a c u s

a c u s

b a c u s

c u s

s

u s

6

Sorting

Not just integers. Other example: suffixes of a string

a b a c u s

a b a c u s

a c u s

b a c u s

c u s

s

u s

7

Indexing and compression still hold!

● Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.

Sorting

Not just integers. Other example: suffixes of a string
compressed representation: Burrows-Wheeler transform (BWT)

a b a c u s

$ a b a c u s

b a c u s

a b a c u s

a c u s

u s

c u s

Indexing and compression still hold!

● Indexing: suffixies prefixed by a word (e.g. “a”) form a range. Can be found, e.g. by binary search.
● Compression: the index can be stored in compressed space (CSA [STOC’00], FM-index [FOCS’00]).

8

Sorting

Why stopping here?

● Finite sets of strings:
○ eBWT, [Mantaci et al. TCS’07]
○ Suffix tree of a labeled tree [Kosaraju, FOCS’89]
○ xBWT of a labeled tree [Ferragina et al., FOCS’05]

9

Sorting

Why stopping here?

● Finite sets of strings:
○ eBWT, [Mantaci et al. TCS’07]
○ Suffix tree of a labeled tree [Kosaraju, FOCS’89]
○ xBWT of a labeled tree [Ferragina et al., FOCS’05]

● Infinite sets of strings:
○ BOSS: BWT of de Bruijn graphs [Bowe et al., WABI’12]
○ Wheeler graphs [Gagie et al. TCS’17]

10

Wheeler graphs
[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u) < in(v) ⇒ u < v
2. u < v & (u,u’,a), (v,v’,a) ∈ E ⇒ u’ < v’

11

Wheeler graphs

12

These two axioms are not the only way to define an indexable order over the NFA’s states
(more details later).

[Gagie, Manzini, Sirén. "Wheeler graphs: A framework for BWT-based data structures." TCS’17]

WG = labeled graphs whose states can be sorted in a total order respecting the co-lex axioms:

1. in(u) < in(v) ⇒ u < v
2. u < v & (u,u’,a), (v,v’,a) ∈ E ⇒ u’ < v’

1.b From Sorting NFAs to Regular Languages

13

A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

Let’s take a step back, and study the problem as a problem on regular languages.

L = (ε|aa)b(ab|b)*
14

A new language-theoretical approach

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

● L (regular, infinite) can be finitely represented as an NFA A.
● Sort co-lexicographically all prefixes of words in L.
● Map this information on A. What happens?

L = (ε|aa)b(ab|b)*

ε
a

aa
ba

aaba
aababa

...
b

 L = aab
bab

aabab
babab

…
bb
…

bbbb
....

15

A new language-theoretical approach

ε
a

aa
ba

aaba
aababa

...
b

 L = aab
bab

aabab
babab

…
bb
…

bbbb
....L = (ε|aa)b(ab|b)*

s
q1

q3

q2

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

● L (regular, infinite) can be finitely represented as an NFA A.
● Sort co-lexicographically all prefixes of words in L.
● Map this information on A. What happens?

16

A new language-theoretical approach

ε
a

aa
ba

aaba
aababa

...
b

 L = aab
bab

aabab
babab

…
bb
…

bbbb
....L = (ε|aa)b(ab|b)*

s
q1

q3

q2

States form intervals and we re-obtain the Wheeler order! coincidence?

New approach [Alanko, D’Agostino, Policriti, P. SODA’20]:

● L (regular, infinite) can be finitely represented as an NFA A.
● Sort co-lexicographically all prefixes of words in L.
● Map this information on A. What happens?

17

Wheeler languages

ε
a

aa
ba

aaba
aababa

...
b

 aab
bab

aabab
babab

…
bb
…

bbbb
....

L = (ε|aa)b(ab|b)*

[ε]
[a]

[aa]

[b]

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a
finite number of intervals in co-lex order.

Not a coincidence. From [Alanko et al. SODA’20]:

18

Wheeler languages

ε
a

aa
ba

aaba
aababa

...
b

 aab
bab

aabab
babab

…
bb
…

bbbb
....

L = (ε|aa)b(ab|b)*

[ε]
[a]

[aa]

[b]

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a
finite number of intervals in co-lex order.

Not a coincidence. From [Alanko et al. SODA’20]:

Wheeler languages = regular languages recognized by Wheeler NFAs
 = regular languages recognized by Wheeler DFAs

19

Wheeler languages

ε
a

aa
ba

aaba
aababa

...
b

 aab
bab

aabab
babab

…
bb
…

bbbb
....

L = (ε|aa)b(ab|b)*

[ε]
[a]

[aa]

[b]

Theorem [Myhill-Nerode theorem for W. languages]:

A regular language is Wheeler

⇐⇒

its Myhill-Nerode equivalence classes (≡ states of minimum DFA) form a
finite number of intervals in co-lex order.

Not a coincidence. From [Alanko et al. SODA’20]:

Wheeler languages = regular languages recognized by Wheeler NFAs
 = regular languages recognized by Wheeler DFAs

More in detail: powerset determinization always turns a WNFA with n states
into a WDFA with < 2n states.

20

Wheeler languages

Note that also the following situation could occur:

● Some MN classes are split into pieces (in the example: class 1)
● Still, the number of MN intervals is finite

Finite number of MN intervals on the total order ≡ Wheeler language

21

Wheeler languages

Note that also the following situation could occur:

● Some MN classes are split into pieces (in the example: class 1)
● Still, the number of MN intervals is finite

● In this case, the DFA is not Wheeler, but the language is.
● 5 intervals ≡ 5 states of a minimum Wheeler DFA for the language.
● Note: |min-DFA| < |min-WDFA| (the gap could be exponential)

Finite number of MN intervals on the total order ≡ Wheeler language

22

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

23

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

24

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

Prefix(L(A)) (in co-lex order)

Sorted states of A
(Wheeler NFA)

25

Wheeler languages

Another observation: previous examples concerned DFAs.

On NFAs, intervals could overlap in a prefix/suffix manner. In general, the picture becomes:

However, not all NFAs/languages are Wheeler! can we index arbitrary NFAs/languages?

Prefix(L(A)) (in co-lex order)

Sorted states of A
(Wheeler NFA)

26

1.c Partial co-lex orders

27

co-lex orders

sort

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

28

co-lex orders

sort

● local (axioms like in the Wheeler case, not necessarily unique),
● global (states = set of strings; extend co-lex order to sets of strings),
● glocal (reachability on the local definition, more details later)

several < can be defined:

Solution [Cotumaccio, P. SODA’21]: abandon total orders, embrace partial orders.

Result: any NFA admits a partial co-lex order of its nodes.

29

co-lex orders
● We can partition states of A into p totally-ordered chains.
● The smallest p = width(A) is the order’s width (in the example below, p = 2: {blue, yellow})

30

co-lex orders

Indexing and compression still work!

Indexing ≡ states reached by any string
(“C”) always form a convex set in the partial
order.

Convex set = p intervals on the p
(totally-sorted) chains

31

co-lex orders

BWT(A) = (IN,OUT)

Indexing and compression still work!

Compression: |BWT| = O(log p) bits per edge

Indexing ≡ states reached by any string
(“C”) always form a convex set in the partial
order.

Convex set = p intervals on the p
(totally-sorted) chains

32

co-lex orders
Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA’21] p = width(A) is a fundamental parameter for NFAs:

● Powerset determinization explodes with 2p (rather than 2n)*

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
33

co-lex orders
Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA’21] p = width(A) is a fundamental parameter for NFAs:

● Powerset determinization explodes with 2p (rather than 2n)*

● NFA compression: O(log p) bits per edge (rather than log n)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
34

co-lex orders
Let n = number of states, m = number of edges.

[Cotumaccio, P. SODA’21] p = width(A) is a fundamental parameter for NFAs:

● Powerset determinization explodes with 2p (rather than 2n)*

● NFA compression: O(log p) bits per edge (rather than log n)

● NFA membership / pattern matching: O(p2) time per character (rather than m)

*consequence: NFA equivalence / universality (PSPACE-complete) are FPT w.r.t. p!
35

1.d Sortability Hierarchies of Regular Languages

36

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthD(L) of L: smallest p such that there exists A DFA with:

● width(A) = p
● L(A) = L

37

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Deterministic width widthD(L) of L: smallest p such that there exists A DFA with:

● width(A) = p
● L(A) = L

Results:

● Non-unicity of the smallest-width DFA (Myhill-Nerode theorem for p-sortable languages)

● Characterization of a canonical smallest-width DFA: the Hasse automaton for L

38

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

● width(A) = p
● L(A) = L

39

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

● width(A) = p
● L(A) = L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.

40

Width of a language

From [Cotumaccio, D’Agostino, Policriti, P. (submitted)]:

Definition Nondeterministic width widthN(L) of L. Smallest p such that there exists A NFA with:

● width(A) = p
● L(A) = L

Definition The width of a regular language L is p = width(L) = widthN(L). We also say that L is
p-sortable.

Observation: widthN(L) = widthD(L) = 1 (total order) iff L is Wheeler.

41

Width of a language

Which relations exist between widthN(L) and widthD(L)? We prove:

42

Width of a language

Which relations exist between widthN(L) and widthD(L)? We prove:

1. Both hierarchies are proper and do not collapse: for every p, there exists L such that
widthN(L) = widthD(L) = p

p = 1 (Wheeler languages)

p = 2

p = 3

p = Ack(10100,10100)...
...

p = 1 (Wheeler languages)

p = 2

p = 3

p = Ack(10100,10100)...
...

Deterministic Nondeterministic

=

43

Width of a language

Which relations exist between widthN(L) and widthD(L)? We prove:

2. widthN(L) ≤ widthD(L) ≤ 2width (L) - 1
3. There exist infinitely many L such that widthD(L) ≥ e width (L)

N

p = 1 (Wheeler languages)

p = 2

p = 3

p = Ack(10100,10100)...
...

p = 1 (Wheeler languages)

p = 2

p = 3

p = Ack(10100,10100)...
...

Deterministic Nondeterministic

Exponential gap
for p>1

N√

=

44

2.a Complexity Issues

45

Complexity issues
How hard is it to compute width(A) and width(L(A))?

46

Complexity issues
How hard is it to compute width(A) and width(L(A))?

First, a definition. Let q be a state of an NFA A.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of A to q.

47

Complexity issues
How hard is it to compute width(A) and width(L(A))?

First, a definition. Let q be a state of an NFA A.

Definition: Iq is the language recognized by q: set of strings labeling paths that connect
the source of A to q.

Definition: an NFA A is reduced iff q ≠ q’ ⇒ Iq ≠ Iq’

48

Complexity issues
How hard is it to compute width(A) and width(L(A))?

 given
compute

A: DFA A: reduced NFA A: NFA

width(A) O(m2 + n5/2) [1] O(n6) [4] NP-hard [2]*

width(L(A)) nO(width(L(A)) [4]** PSPACE-hard [3]* PSPACE-hard [3]*

[1] Cotumaccio and P. On Indexing and Compressing Finite Automata. SODA’21.
[2] Gibney and Thankachan. On the hardness and inapproximability of recognizing Wheeler graphs. ESA’19
[3] D’Agostino, Martincigh, Policriti. Ordering regular languages: a danger zone. ICTCS’21
[4] Cotumaccio, D’Agostino, Policriti, P. Ongoing work.

* completeness holds in the Wheeler (p=1) case.
** note: in P for Wheeler L(A).

49

2.b Sorting / Indexing Algorithms

50

Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n5/2) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

51

Sorting and Indexing

Recipe for indexing (optimally) an NFA: [Cotumaccio, P. 2021]:

1. Compute co-lex order < of smallest width.

2. Compute a smallest chain decomposition of (Q,<).
O(n5/2) time (reduction to maximum matching)

3. Build BWT of the NFA. O(m+n) time given the chain decomposition.

Theorem [Cotumaccio, P. 2021]. (1) can be solved in O(m2) time on DFAs.

Theorem [Gibney, Thankachan. 2019]. (1) is NP-hard on NFAs!

52

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q ⊴ q’ iff (q ≤1 q1 ≤2 q2 … ≤k q’) for some co-lex pre-orders
≤1, ≤2, …, ≤k and some states q1 ... qk-1.

53

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q ⊴ q’ iff (q ≤1 q1 ≤2 q2 … ≤k q’) for some co-lex pre-orders
≤1, ≤2, …, ≤k and some states q1 ... qk-1.

Lemma On reduced NFAs, ⊴ is precisely the smallest-width co-lex pre-order ≤.

54

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q ⊴ q’ iff (q ≤1 q1 ≤2 q2 … ≤k q’) for some co-lex pre-orders
≤1, ≤2, …, ≤k and some states q1 ... qk-1.

Lemma On reduced NFAs, ⊴ is precisely the smallest-width co-lex pre-order ≤.
In general, on any NFA:

1. ⊴ is a partial (pre-)order
2. width(⊴) ≤ width(≤) = p
3. ⊴ enables indexing
4. ⊴ can be computed in O(n6) time

55

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q ⊴ q’ iff (q ≤1 q1 ≤2 q2 … ≤k q’) for some co-lex pre-orders
≤1, ≤2, …, ≤k and some states q1 ... qk-1.

Lemma On reduced NFAs, ⊴ is precisely the smallest-width co-lex pre-order ≤.
In general, on any NFA:

1. ⊴ is a partial (pre-)order
2. width(⊴) ≤ width(≤) = p
3. ⊴ enables indexing
4. ⊴ can be computed in O(n6) time

We can index any NFA for the optimal p in polytime!

56

Sorting and Indexing

Not all hope is lost, however. [Cotumaccio, D’Agostino, Policriti, P. Ongoing work]:

Definition (glocal order) Let q ⊴ q’ iff (q ≤1 q1 ≤2 q2 … ≤k q’) for some co-lex pre-orders
≤1, ≤2, …, ≤k and some states q1 ... qk-1.

Lemma On reduced NFAs, ⊴ is precisely the smallest-width co-lex pre-order ≤.
In general, on any NFA:

1. ⊴ is a partial (pre-)order
2. width(⊴) ≤ width(≤) = p
3. ⊴ enables indexing
4. ⊴ can be computed in O(n6) time

We can index any NFA for the optimal p in polytime!

Note: we do not actually compute p, unless reduced
NFA. Does not break NP-hardness of computing p
(NFA used in the hardness proof is not reduced).

57

(infinite, unordered) list of open problems

1. Approximation algorithms for width(A) / width(L(A))
2. How does width(L) change with regexp operations?
3. Logical characterization of p-sortable languages (see Büchi’s theorem: MSO ≡ REG)
4. Indexability lower bounds as a function of width(A) (fine-grained complexity)
5. Zoo of NFA orders (complexity, relations between different notions of width,...)
6. Algorithms for minimizing width(A) and/or number of states
7. Repetitive graph compression: run-length BWT / graph attractors
8. Dynamic data structures: maintain small width upon edge insertions/deletions
9. Generalizations: string-labeled edges, sorting context-free languages, ...

10. ...

Thank you! questions?
58

