

Lower Bounds for the Number of Repetitions in 2D Strings

Motivation

Combinatorial properties of repetitions in 2*D* strings

The number of distinct squares in a string of length n

> Squares

- \triangleright A string of length n contains at most ??? distinct squares:
 - $\geq 2n$ Fraenkel and Simpson 1998
 - $\geq 2n \Theta(\log n)$ Ilie 2007
 - > 11/6n Deza, Franck, and Thierry 2015
 - > 1.5n Thierry 2020 (preprint)
- The irrelevance of the alphabet size in solving the square conjecture Manea and Seki 2015
- For each value of n, there exists a string of length n containing at least n o(n) distinct squares Fraenkel and Simpson 1998

conjectured to be n

The number of runs in a string of length n

Runs

bcabcabcabcddefefefefeg

- \triangleright A string of length n contains at most ??? runs:
 - > 0(n) Kolpakov and Kucherov 1999
 - > 5*n* Rytter 2007
 - > 3.48n Puglisi, Simpson, and Smyth 2008
 - \geq 1.6n Crochemore and Ilie 2008
 - > 1.52n Giraud 2008
 - $\geq 1.029n$ Crochemore, Ilie, and Tinta 2011
 - > n Bannai, I, Inenaga, Nakashima, Takeda, and Tsuruta 2017

The number of runs in a string of length n

> Runs

- \triangleright A binary string of length n contains at most ??? runs:
 - $\gg n-3$ Bannai, I, Inenaga, Nakashima, Takeda, and Tsuruta 2014
 - $\geq 0.957n$ Fisher, Holub, I, and Lewenstein 2015
 - > 0.9482n Holub 2017

The number of runs in a string of length n

Runs

- For each value of n, there exists a string of length n containing at least \ref{least} runs:
 - > $\frac{3}{1+\sqrt{5}}n\sim0.927n$ Franck and Yang 2006
 - > 0.944542n Kusano, Mtsubara, Ishino, Bannai, Shinohara 2008
 - > 0.944565n Mtsubara, Kusano, Ishino, Bannai, Shinohara 2008
 - > 0.944575712n Simpsone 2010

7

Repetitions in 2D strings

The number of distinct tandems in a string of size $n \times n$

> Tandems

а	b	a	b	b
а	а	a	а	a
а	b	a	b	С
С	d	С	d	С
e	f	е	f	С
a	а	а	а	d

> Apostolico and Brimkov 2000

Primitive

$$\Theta(n^2 \log^2 n)$$

> Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$\Theta(n^3)$$
 Alphabet size = n

8 R

Repetitions in 2D strings

The number of distinct quartics in a string of size $n \times n$

Quartics

а	b	а	a	b
а	а	a	а	a
а	b	а	b	С
а	а	a	а	С
а	b	а	b	С
а	а	а	а	d

Apostolico and Brimkov 2000

$$\Theta(n^2 \log n)$$

➤ Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$O(n^2 \log^2 n)$$

9

Repetitions in 2D strings

The number of runs in a string of size $n \times n$

Runs

W	 W	W'
W	 W	W'
W''	 W''	W'''

Amir, Landau, Marcus, and Sokol 2018

b	b	b	b	b	b
а	b	а	b	а	b
а	а	а	а	а	b
а	b	а	b	а	b
а	а	а	а	а	b
а	b	а	b	а	b
С	С	С	С	а	b

 $O(n^3)$ and $\Omega(n^2)$

> Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$O(n^2 \log^2 n)$$

10 Our results

Runs $\Omega(n^2 \log n)$

Theorem: There exists an infinite family of $n \times n$ binary 2D strings containing $\Omega(n^2 \log n)$ runs.

W	 W	W'
W	 W	W'
W''	 W''	W'''

$$A_1, A_2, ..., A_l$$

 A_1, A_2, \dots, A_l A_i of size $N_i \times N_i$

$$A_i = f(A_{i-1})$$

$$N_1 = 8$$

$$R_1 = 1$$

A_1

0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

 A_2

$$N_2 = 4 \cdot N_1 = 4 \cdot 8 = 32$$

$$14 \cdot R_1 = 14$$

$$R_2 = (N_1 - 1)^2 = 7^2 = 49$$

$$T_2 = R_2 + 14 \cdot R_1 = 63$$

$$R_3 = (N_2 - 1)^2 = 31^2$$

$$T_3 = R_3 + 14 \cdot R_2 + 216 \cdot R_1$$

 $\overline{14 \cdot 14 + 2 \cdot 2 \cdot 5}$

$$A_i$$

Columns/rows: $N_i = 2 \cdot 4^i$

New runs: $R_i = (N_{i-1} - 1)^2 = (2 \cdot 4^{i-1} - 1)^2$

 X_j = the number of copies of A_j in A_i for $1 \le j \le i$ $X_i = 1, X_{i-1} = 14, X_{i-2} = 216$

Total runs: $T_i = \sum_{j=1}^{i} X_j \cdot R_j = \sum_{j=1}^{i} X_j \cdot (2 \cdot 4^{j-1} - 1)^2$

 A_l

 A_l is of size $n \times n$ where:

$$n = 2 \cdot 4^l$$

$$\forall_j X_j \ge \frac{5}{6} \cdot 16^{l-j}$$

$$T_{l} = \sum_{j=1}^{l} X_{j} \cdot (2 \cdot 4^{j-1} - 1)^{2} \ge \sum_{j=1}^{l} \frac{5}{6} \cdot 16^{l-j} (2 \cdot 4^{j-1} - 1)^{2}$$

Theorem: There exists an infinite family of $n \times n$ binary 2D strings containing $\Omega(n^2 \log n)$ runs.

17 Summary

1D strings:

- $racklesize n o(n) \le \# Squares \le n$ conjectured to be n
- $> 0.944575712n \le \#Runs \le n$

2D strings:

- $> n^3 \le \text{\#Tandems} \le n^3$
- $> n^2 \log n \le \text{\#Quartics} \le n^2 \log^2 n$
- $> n^2 \log n \le \# \text{Runs} \le n^2 \log^2 n$

18 Future directions

- Reducing the gap for quartics and/or runs.
- > Repetitions in 3D strings.
- Different notions of repetitions.

