Lower Bounds for the Number of Repetitions in 2D Strings Repetitions in $2 D$ Strings Motivation

Combinatorial properties of repetitions in $2 D$ strings

3 Repetitions in $1 D$ strings

The number of distinct squares in a string of length n

Squares

a ablabaaaaabaaaba

\rightarrow A string of length n contains at most ? ? ? distinct squares:
$>2 n$ - Fraenkel and Simpson 1998
$>2 n-\Theta(\log n)$ - Ilie 2007
$>11 / 6 n$ - Deza, Franek, and Thierry 2015
> $1.5 n$ - Thierry 2020 (preprint)
$>$ The irrelevance of the alphabet size in solving the square conjecture - Manea and Seki 2015
$>$ For each value of n, there exists a string of length n containing at least $n-o(n)$ distinct squares - Fraenkel and Simpson 1998

4 Repetitions in $1 D$ strings

The number of runs in a string of length n
$>$ Runs bcabcabcabcd deflefleflefleg
$>$ A string of length n contains at most ? ? ? runs:
$>\mathrm{O}(n)$ - Kolpakov and Kucherov 1999
> 5n-Rytter 2007
> 3.48n - Puglisi, Simpson, and Smyth 2008
>1.6n - Crochemore and Ilie 2008
$>1.52 n$ - Giraud 2008
>1.029 n - Crochemore, Ilie, and Tinta 2011
> n - Bannai, I, Inenaga, Nakashima, Takeda, and Tsuruta 2017

5 Repetitions in $1 D$ strings

The number of runs in a string of length n
$>$ Runs

bcabcabcabcd deflefleflefeg

$>$ A binary string of length n contains at most ? ? ? runs:
n - 3 - Bannai, I, Inenaga, Nakashima, Takeda, and Tsuruta 2014
$>0.957 n$ - Fisher, Holub, I, and Lewenstein 2015
$>0.9482 n$ - Holub 2017

6 Repetitions in $1 D$ strings

The number of runs in a string of length n
$>$ Runs

bcabcabcabc d deffeflefeffeg

$>$ For each value of n, there exists a string of length n containing at least ? ? ? runs:
$>\frac{3}{1+\sqrt{5}} n \sim 0.927 n$ - Franek and Yang 2006
$>0.944542 n$ - Kusano, Mtsubara, Ishino, Bannai, Shinohara 2008
$>0.944565 n$ - Mtsubara, Kusano, Ishino, Bannai, Shinohara 2008
> $0.944575712 n$ - Simpsone 2010

7 Repetitions in $2 D$ strings

The number of distinct tandems in a string of size $n \times n$
$>$ Tandems

Apostolico and Brimkov 2000
Primitive

$$
\Theta\left(n^{2} \log ^{2} n\right)
$$

> Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$
\Theta\left(n^{3}\right) \quad \text { Alphabet size }=\mathrm{n}
$$

8 Repetitions in $2 D$ strings

The number of distinct quartics in a string of size $n \times n$

> Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$
\mathrm{O}\left(n^{2} \log ^{2} n\right)
$$

9 Repetitions in 2D strings

The number of runs in a string of size $n \times n$
$>$ Runs

W	\ldots	W	W^{\prime}
\ldots	\ldots	\ldots	\ldots
W	\ldots	W	W^{\prime}
$W^{\prime \prime}$	\ldots	$W^{\prime \prime}$	$W^{\prime \prime \prime}$

Amir, Landau, Marcus, and Sokol 2018

$$
O\left(n^{3}\right) \text { and } \Omega\left(n^{2}\right)
$$

b	b	b	b	b	b
a	b	a	b	a	b
a	a	a	a	a	b
a	b	a	b	a	b
a	a	a	a	a	b
a	b	a	b	a	b
c	c	c	c	a	b

> Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba 2020

$$
\mathrm{O}\left(n^{2} \log ^{2} n\right)
$$

10 Our results

$>$ Distinct Tandems

W $\quad W$

W	W
W	W

\rightarrow Runs

W	\ldots	W	W^{\prime}
\ldots	\ldots	\ldots	\ldots
W	\ldots	W	W^{\prime}
$W^{\prime \prime}$	\ldots	$W^{\prime \prime}$	$W^{\prime \prime \prime}$

11 Runs

$A_{1}, A_{2}, \ldots, A_{l}$
A_{i} of size $N_{i} \times N_{i}$

$$
A_{i}=f\left(A_{i-1}\right)
$$

$$
\begin{aligned}
& N_{1}=8 \\
& R_{1}=1
\end{aligned}
$$

A_{1}							
0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0		0

15 Runs

A_{i}

Columns/rows: $N_{i}=2 \cdot 4^{i}$
Newruns: $R_{i}=\left(N_{i-1}-1\right)^{2}=\left(2 \cdot 4^{i-1}-1\right)^{2}$

$$
\begin{aligned}
& X_{j}=\text { the number of copies of } A_{j} \text { in } A_{i} \text { for } 1 \leq j \leq i \\
& X_{i}=1, X_{i-1}=14, X_{i-2}=216
\end{aligned}
$$

Total runs: $T_{i}=\sum_{j=1}^{i} X_{j} \cdot R_{j}=\sum_{j=1}^{i} X_{j} \cdot\left(2 \cdot 4^{j-1}-1\right)^{2}$

16 Runs

A_{l}

A_{l} is of size $n \times n$ where:

$$
n=2 \cdot 4^{l}
$$

$$
\forall_{j} X_{j} \geq \frac{5}{6} \cdot 16^{l-j}
$$

$$
T_{l}=\sum_{j=1}^{l} X_{j} \cdot\left(2 \cdot 4^{j-1}-1\right)^{2} \geq \sum_{j=1}^{l} \frac{5}{6} \cdot 16^{l-j}\left(2 \cdot 4^{j-1}-1\right)^{2}
$$

Theorem: There exists an infinite family of $n \times n$ binary 2D strings containing $\Omega\left(n^{2} \log n\right)$ runs.

17 Summary

1D strings:
$>n-o(n) \leq \#$ Squares $\leq n$ - conjectured to be n

- $0.944575712 n \leq$ \#Runs $\leq n$

2D strings:

$$
\begin{aligned}
& >n^{3} \leq \text { \#Tandems } \leq n^{3} \\
& >n^{2} \log n \leq \text { \#Quartics } \leq n^{2} \log ^{2} n \\
& >n^{2} \log n \leq \text { \#Runs } \leq n^{2} \log ^{2} n
\end{aligned}
$$

18 Future directions

$>$ Reducing the gap for quartics and/or runs.

Repetitions in 3D strings.

1 Different notions of repetitions.

