Extracting the Sparse Longest Common Prefix Array from the Suffix Binary Search Tree

Tomohiro $\|^{1}$

Robert W. Irving ${ }^{2}$

[^0]Lorna Love 2

suffix sorting

$T=\square$

suffix sorting

- sort all suffixes lexicographically

suffix sorting

- sort all suffixes lexicographically

suffix sorting

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- solved in $\mathcal{O}(n)$ time and words of space

suffix sorting

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- solved in $\mathcal{O}(n)$ time and words of space
- sometimes need only suffixes starting at p_{1}, \ldots, p_{m}

sparse suffix sorting

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- solved in $\mathcal{O}(n)$ time and words of space
- sometimes need only suffixes starting at p_{1}, \ldots, p_{m}

dynamic sparse suffix sorting

$$
T=\square
$$

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query

LCE query lce $\left(p_{1}, p_{2}\right)$

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=$ \# characters to compare for sorting

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=$ \# characters to compare for sorting

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=$ \# characters to compare for sorting

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=\#$ characters to compare for sorting

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=\#$ characters to compare for sorting

dynamic sparse suffix sorting

- p_{1}, \ldots, p_{m} : online, arbitrary order
- compare two suffixes with LCE query
- $c:=$ \# characters to compare for sorting
- how to store their order?

suffix binary search tree (SBST)

SBST of Irving and Love'03:
binary search tree representation
each node

- represents a position p_{i}
- stores a flag $\in\{L, R, \perp\}$
- the LCE with an ancestor

running example

- ISA : inverse suffix array
- SA: suffix array
- LCP : LCP array

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$T[i]$	c	a	a	t	c	a	c	g	g	t	c	g	g	a	c
ISA $[i]$	6	1	4	14	7	3	9	12	13	15	8	11	10	2	5

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{SA}[r]$	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
$\mathrm{LCP}[r]$	0	1	2	1	0	1	2	1	3	0	1	2	1	0	2

closest left/right ancestors

let v be a node

- cla ${ }_{v}$: lowest node having v as a descendant in its left subtree
- cra $_{v}$: lowest node having v as a descendant in its right subtree
\Rightarrow either cla ${ }_{v}$ or cra v is v 's parent

LCE value m_{v} and flag d_{v}
$\mathrm{ca}_{v}:=\operatorname{argmax}_{u \in\left\{\text { cla }_{v}, \text { crav }_{v}\right\}} \operatorname{lce}(v, u)$
if $c a_{v}=\operatorname{cla}_{v}$, then $m_{v}=\operatorname{lce}\left(v, \operatorname{cla}_{v}\right), d_{v}=L$.
if $c a_{v}=c r a{ }_{v}$, then $m_{v}=\operatorname{lce}\left(v, \operatorname{cra}_{v}\right), d_{v}=R$.
if $c a_{v}$ is undefined, then $m_{v}=0, d_{v}=\perp$.

$$
\begin{aligned}
\mathrm{e} & : \text { neither left child nor cra } \\
v & \text { exists } \\
& \Rightarrow \mathrm{LCP}[\mathrm{ISA}[v]]=0 \\
r & : d_{v}=\mathrm{R} \Rightarrow \mathrm{LCP}[\operatorname{ISA}[v]] \geq m_{v}
\end{aligned}
$$

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SA[r]	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
rules	e			r			r		r				r		r
	0			1			2		1				1		2

rules:
e : neither left child nor craw ${ }_{v}$ exists \Rightarrow LCP[ISA[v]] = 0
$r: d_{v}=\mathrm{R} \Rightarrow \operatorname{LCP}[I S A[v]] \geq m_{v}$
$1: d_{v}=\mathrm{L}$ and right subtree of v is empty \Rightarrow LCP $[$ ISA $[v]+1]=m_{v}$

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{SA}[r]$	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
rules	e	I	I	r	I		r	I	r	I	I		r		r
	0		2	1		1	2		3		1	2	1		2

rules:
e : neither left child nor cra ${ }_{v}$ exists \Rightarrow LCP[ISA[v]] $=0$
$r: d_{v}=\mathrm{R} \Rightarrow \mathrm{LCP}[\operatorname{ISA}[v]] \geq m_{v}$
$1: d_{v}=\mathrm{L}$ and right subtree of v is empty \Rightarrow LCP $[I S A[v]+1]=m_{v}$
d : v has left child $u \Rightarrow$ rightmost node in u's subtree determines LCP[ISA[v]]

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SA[r]	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
rules	e	I	I	r	I		r	I	r	I	l		r	d	r
	0		2	1		1	2		3		1	2	1	0	2

rules:
e : neither left child nor cra ${ }_{v}$ exists \Rightarrow LCP $[I S A[v]]=0$
$r: d_{v}=\mathrm{R} \Rightarrow \mathrm{LCP}[\operatorname{ISA}[v]] \geq m_{v}$
$1: d_{v}=\mathrm{L}$ and right subtree of v is empty \Rightarrow LCP $[I S A[v]+1]=m_{v}$
d : v has left child $u \Rightarrow$ rightmost node in u's subtree determines LCP[ISA[v]]
a : otherwise: cra $_{v}$ determines LCP[ISA[v]]

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{SA}[r]$	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
rules	e	a	I	r	a		r	a	r	a	l		r	d	r
$\mathrm{LCP}[r]$	0	1	2	1	0	1	2	1	3	0	1	2	1	0	2

- rules e, r, I can be computed in constant time per node.
- how to compute rules d and a ?
rules:
e : neither left child nor cra ${ }_{v}$ exists $\Rightarrow \operatorname{LCP}[I S A[v]]=0$
$r: d_{v}=\mathrm{R} \Rightarrow$ LCP[ISA[$\left.\left.v\right]\right] \geq m_{v}$
$1: d_{v}=\mathrm{L}$ and right subtree of v is empty \Rightarrow LCP $[$ ISA $[v]+1]=m_{v}$
d : v has left child $u \Rightarrow$ rightmost node in u's subtree determines LCP[ISA[v]]
a : otherwise: $\mathrm{cra}_{\mathrm{v}}$ determines LCP[ISA[v]]

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{SA}[r]$	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
rules	e	a	I	r	a		r	a	r	a	l		r	d	r
$\mathrm{LCP}[r]$	0	1	2	1	0	1	2	1	3	0	1	2	1	0	2

task
compute LCP[11]

task
 compute LCP[11]

$=$ lce $\left(\mathrm{cra}_{11}, 11\right)$ since 11 has no left child

task

compute LCP[11]

$=$ lce $\left(\mathrm{cra}_{11}, 11\right)$ since 11 has no left child

$$
\left.\begin{array}{rl}
= & \text { lce }\left(\operatorname{cra}_{11},\right. \text { cla } \\
11
\end{array}\right) \text { since } d_{11}=\mathrm{L}
$$

task

compute LCP[11]

$=$ lce $\left(\mathrm{cra}_{11}, 11\right)$ since 11 has no left child

$$
\begin{aligned}
= & \text { lce }\left(\operatorname{cra}_{11}, \text { cla }_{11}\right) \text { since } d_{11}=\mathrm{L} \\
& (\text { proof later }) \\
= & \operatorname{lce}\left(\operatorname{cra}_{11}, 7\right)=m_{7}=1 \text { since } \\
& \operatorname{cra} a_{11}=\operatorname{cra}
\end{aligned} .
$$

task

compute LCP[11]

$=$ lce $\left(\right.$ cra $\left._{11}, 11\right)$ since 11 has no left child

$$
\begin{aligned}
= & \operatorname{lce}\left(\operatorname{cra}_{11}, \operatorname{cla}_{11}\right) \text { since } d_{11}=L \\
& (\text { proof later) } \\
= & \operatorname{lce}\left(\operatorname{cra}_{11}, 7\right)=m_{7}=1 \text { since } \\
& \operatorname{cra}_{11}=\operatorname{cra}_{7} .
\end{aligned}
$$

- goal: maintain lce $\left(\right.$ cra $_{v}$, cla $_{v}$) for each node v to process

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce(cla u, cra $_{u}$) of all ancestors u of v.

$$
S=\left\{\begin{array}{l}
\text { lce }\left(\operatorname{cra}_{1}, \operatorname{cla}_{1}\right)=0,
\end{array}\right.
$$

\}

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce(cla u, cra $_{u}$) of all ancestors u of v.

$$
\begin{aligned}
S= & \{ \\
& \operatorname{lce}\left(\mathrm{cra}_{1}, \mathrm{cla}_{1}\right)=0, \\
& \operatorname{lce}\left(\mathrm{cra}_{4}, \mathrm{cla}_{4}\right)=0,
\end{aligned}
$$

\}

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce $\left(\right.$ cla $\left._{u}, \operatorname{cra}_{u}\right)$ of all ancestors u of v.

$$
\begin{aligned}
S= & \{ \\
& \operatorname{lce}\left(\operatorname{cra}_{1}, \operatorname{cla}_{1}\right)=0, \\
& \operatorname{lce}\left(\operatorname{cra}_{4}, \operatorname{cla}_{4}\right)=0, \\
& \operatorname{lce}\left(\operatorname{cra}_{5}, \operatorname{cla}_{5}\right)=0,
\end{aligned}
$$

\}

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce(cla ${ }_{u}$, cra $_{u}$) of all ancestors u of v.

$$
\begin{aligned}
& S=\{ \\
& \operatorname{lce}\left(\operatorname{cra}_{1}, \operatorname{cla}_{1}\right)=0, \\
& \operatorname{lce}\left(\operatorname{cra}_{4}, \operatorname{cla}_{4}\right)=0, \\
& \operatorname{lce}\left(\operatorname{cra}_{5}, \operatorname{cla}_{5}\right)=0, \\
& \operatorname{lce}\left(\operatorname{cra}_{7}, \operatorname{cla}_{7}\right)=0,
\end{aligned}
$$

\}

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce(cla ${ }_{u}$, cra $_{u}$) of all ancestors u of v.

$$
\begin{array}{r}
S=\{ \\
\quad \operatorname{lce}\left(\operatorname{cra}_{1}, \operatorname{cla}_{1}\right)=0, \\
\\
\operatorname{lce}\left(\operatorname{cra}_{4}, \operatorname{cla}_{4}\right)=0, \\
\operatorname{lce}\left(\operatorname{cra}_{5}, \operatorname{cla}_{5}\right)=0, \\
\\
\\
\\
\\
\\
\operatorname{ces}\left(\operatorname{cra}_{7}, \operatorname{cla}_{7}\right)=0, \\
\operatorname{cra}\left(\operatorname{cra}_{11}, \operatorname{cla}_{11}\right)=1
\end{array}
$$

\}

stack S
maintain stack S of LCE values such that, on visiting node v, S stores lce(cla $_{u}$, cra $_{u}$) of all ancestors u of v.

$$
\begin{array}{r}
S=\{ \\
\quad \operatorname{lce}\left(\operatorname{cra}_{1}, \operatorname{cla}_{1}\right)=0, \\
\operatorname{lce}\left(\operatorname{cra}_{4}, \operatorname{cla}_{4}\right)=0, \\
\operatorname{lce}\left(\operatorname{cra}_{5}, \operatorname{cla}_{5}\right)=0, \\
\operatorname{lce}\left(\operatorname{cra}_{7}, \operatorname{cla}_{7}\right)=0, \\
\operatorname{lce}\left(\operatorname{cra}_{11}, \operatorname{cla}_{11}\right)=1
\end{array}
$$

\}

- why helpful?
- how computable?

known facts

1. $u, v, w \in[1 . . n]$ with $T[u ..] \prec T[v.] \prec T[w .$.

$$
\Rightarrow \operatorname{lce}(u, w)=\min (\operatorname{lce}(u, v), \operatorname{lce}(v, w))
$$

2. $T\left[\right.$ cra $\left._{v .}.\right] \prec T[v ..] \prec T\left[\right.$ cla $\left._{v} ..\right]$ (assume cla ${ }_{v}$ and cra $_{v}$ exist)

lemma

given

- lce(cla ${ }_{v}$, cra $\left._{v}\right)$ and
- $m_{v}=\operatorname{lce}\left(v, \operatorname{ca}_{v}\right)$,
we can compute

- lce ($v, \operatorname{cla}_{v}$) and
- lce $\left(v, \operatorname{cra}_{v}\right)$ in constant time.

proof of lemma

w wlog., $d_{v}=\mathrm{L}$, and clav and cra ${ }_{v}$ exist

$$
\Rightarrow c a_{v}=\text { cla }_{v}
$$

hence:

- $\operatorname{lce}\left(v, \operatorname{cla}_{v}\right)=\operatorname{lce}\left(v, \operatorname{ca}_{v}\right)=m_{v}$

- $\operatorname{lce}\left(v, \operatorname{cra}_{v}\right)=\operatorname{lce}\left(\operatorname{cla}_{v}, \operatorname{cra}_{v}\right)$
the latter is because of Facts 1 and 2:

$$
\begin{aligned}
\operatorname{lce}\left(\operatorname{cra}_{v}, \operatorname{cla}_{v}\right) & =\min \left(\operatorname{lce}\left(v, \operatorname{cra}_{v}\right), \operatorname{lce}\left(v, \operatorname{cla}_{v}\right)\right) \\
& =\operatorname{lce}\left(v, \operatorname{cra}_{v}\right) \leq \operatorname{lce}\left(v, \operatorname{cla}_{v}\right)
\end{aligned}
$$

corollary: how to compute stack S

given:

- value lce $\left(\right.$ cla $_{v}$, cra $\left._{v}\right)$
- x : v 's left child

then:

- cla $_{x}=v$ and cra $_{x}=$ cra $_{v}$
\Rightarrow lce $\left(\right.$ cla $_{x}$, cra $\left._{x}\right)=\operatorname{lce}\left(v\right.$, cra $\left._{v}\right)$
computable in constant time by
lemma
(right child analogously by symmetry)
\Rightarrow can maintain stack S during a top-down traversal in constant time per node.

subarray extraction

can compute $\operatorname{SLCP}[\ell, r]$ in $\mathcal{O}(h+(r-\ell))$ time, where h is the tree's height.

- augment tree with subtree sizes
- can find node ℓ by top-down traversal (while maintaining S)
- can start in-order traversal at node ℓ
- stop traversal when arriving at node r
- number of visited nodes is $\mathcal{O}(h)+r-\ell$, and each node is processed in constant time.

summary

suffix binary search tree by Irving and Love'03

- maintains ranks of m suffixes
- $\mathcal{O}(m)$ space (each node stores 2 integers +1 bit)
- construction needs $\mathcal{O}(m h)$ LCE queries (h : height)
- can be made balanced ($h=\mathcal{O}(\lg m)$)
- used for sparse suffix sorting by Fischer+'20
- $\mathcal{O}\left(c(\sqrt{\lg \sigma}+\lg \lg n)+m \lg m \lg n \lg ^{*} n\right)$ time
- c: lower bound on number of characters needed to compare
- $\mathcal{O}(m)$ space
(n : text length, σ : alphabet size)
our contribution: can extract
- SSA[i..i+ $\ell-1]$ and
- SLCP $[i . . i+\ell-1]$ in $\mathcal{O}(h+\ell)$ time
any questions are always very welcome!

open problems

- memory-efficient representations of suffix binary search trees?
- time-efficient implementation via B trees
- balanced by construction

B+ variants have good memory locality

- can we merge two trees efficiently?

[^0]: ${ }^{1}$ Department of Artificial Intelligence, Kyushu Institute of Technology, Japan
 ${ }^{2}$ School of Computing Science, University of Glasgow, Glasgow, UK
 ${ }^{3}$ M\&D Data Science Center, Tokyo Medical and Dental University, Japan

