Extracting the Sparse Longest Common Prefix Array from the Suffix Binary Search Tree

Tomohiro I 1

Robert W. Irving ²

 $^{
m 1}$ Department of Artificial Intelligence, Kyushu Institute of Technology, Japan

Dominik Köppl ³

 $^3\mbox{M\&D}$ Data Science Center, Tokyo Medical and Dental University, Japan

²School of Computing Science, University of Glasgow, Glasgow, UK

Lorna Love ²

$$T =$$

■ sort *all* suffixes lexicographically

Τ	=				

sort all suffixes lexicographically

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space
- lacksquare sometimes need only suffixes starting at p_1,\ldots,p_m

sparse suffix sorting

- sort all suffixes lexicographically
- lengths of the longest common prefix (LCP) between adjacent suffixes.
- lacktriangle solved in $\mathcal{O}(n)$ time and words of space
- lacksquare sometimes need only suffixes starting at p_1,\ldots,p_m

$$\Gamma =$$

$$\mathcal{T} =$$

- p_1, \ldots, p_m : online, arbitrary order
- compare two suffixes with LCE query

LCE query $lce(p_1, p_2)$

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting

- $ightharpoonup p_1, \ldots, p_m$: online, arbitrary order
- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting

- compare two suffixes with LCE query
- lacktriangle c:=# characters to compare for sorting
- how to store their order?

suffix binary search tree (SBST)

SBST of Irving and Love'03: binary search tree representation

each node

- \blacksquare represents a position p_i
- lacktriangle stores a flag $\in \{L, R, \bot\}$
- the LCE with an ancestor

running example

■ ISA : inverse suffix array

■ SA : suffix array ■ LCP : LCP array

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i] ISA[i]	с 6	a 1	a 4	t 14	с 7	a 3	с 9	g 12	g 13	t 15	c 8	g 11	g 10	a 2	с 5
r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SA[r] LCP[r]															

problem definition

- obtain SA from in-order traversal in $\mathcal{O}(m)$ time.
- how to obtain LCP?

r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SA[r]	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10
LCP[r]	0	1	2	1	0	1	2	1	3	0	1	2	1	0	2

closest left/right ancestors

let v be a node

- \blacksquare cla_v: lowest node having v as a descendant in its left subtree
- ightharpoonup cra_v: lowest node having v as a descendant in its right subtree
- \Rightarrow either cla_v or cra_v is v's parent

LCE value m_{ν} and flag d_{ν}

- ightharpoonup ca_v := argmax_{u \in \{cla_v, cra_v\}} lce(v, u)
- \blacksquare if $ca_v = cla_v$, then $m_v = lce(v, cla_v)$, $d_v = L$.
- ightharpoonup if $ca_v = cra_v$, then $m_v = lce(v, cra_v)$, $d_v = R$.
- lacktriangle if ca_v is undefined, then $m_v = 0$, $d_v = \bot$.

/ 16

- rules e, r, I can be computed in constant time per node.
- how to compute rules d and a?

rules:

e : neither left child nor
$$\operatorname{cra}_v$$
 exists $\Rightarrow \operatorname{LCP}[\operatorname{ISA}[v]] = 0$

$${\sf r}: d_{\sf v}={\sf R}\Rightarrow {\sf LCP[\mathsf{ISA}[v]]}\geq m_{\sf v}$$
 ${\sf I}: d_{\sf v}={\sf L}$ and right subtree of ${\sf v}$ is

empty
$$\Rightarrow$$
 LCP[ISA[v] + 1] = m_v
d : v has left child $u \Rightarrow$ rightmost
node in u 's subtree determines

LCP[ISA[
$$v$$
]]

a: otherwise: cra_v determines

LCP[ISA[v]]

	281 [187 [[7]]														
r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	2	14	6	3	15	1	5	11	7	13	12	8	9	4	10

rules

= lce(cra₁₁, 11) since 11 has no left child

- = lce(cra₁₁, 11) since 11 has no left child
- = lce(cra₁₁, cla₁₁) since $d_{11} = L$ (proof later)

- = lce(cra₁₁, 11) since 11 has no left child
- = $lce(cra_{11}, cla_{11})$ since $d_{11} = L$ (proof later)
- = $lce(cra_{11}, 7) = m_7 = 1$ since $cra_{11} = cra_7$.

- = lce(cra₁₁, 11) since 11 has no left child
- = $lce(cra_{11}, cla_{11})$ since $d_{11} = L$ (proof later)
- = $lce(cra_{11}, 7) = m_7 = 1$ since $cra_{11} = cra_7$.
- **Quantity** goal: maintain $lce(cra_v, cla_v)$ for each node v to process

$$S = \{$$

$$lce(cra_1, cla_1) = 0,$$

ł

$$S = \{$$

$$lce(cra_1, cla_1) = 0,$$

$$lce(cra_4, cla_4) = 0,$$

$$S = \{$$
 $lce(cra_1, cla_1) = 0,$
 $lce(cra_4, cla_4) = 0,$
 $lce(cra_5, cla_5) = 0,$

11 / 16

$$S = \{$$
 $lce(cra_1, cla_1) = 0,$
 $lce(cra_4, cla_4) = 0,$
 $lce(cra_5, cla_5) = 0,$
 $lce(cra_7, cla_7) = 0,$

$$\begin{split} S &= \{ \\ & lce(cra_1, cla_1) = 0, \\ & lce(cra_4, cla_4) = 0, \\ & lce(cra_5, cla_5) = 0, \\ & lce(cra_7, cla_7) = 0, \\ & lce(cra_{11}, cla_{11}) = 1 \end{split}$$

$$egin{aligned} & \operatorname{lce}(\mathsf{cra}_1,\mathsf{cla}_1) = 0, \ & \operatorname{lce}(\mathsf{cra}_4,\mathsf{cla}_4) = 0, \ & \operatorname{lce}(\mathsf{cra}_5,\mathsf{cla}_5) = 0, \ & \operatorname{lce}(\mathsf{cra}_7,\mathsf{cla}_7) = 0, \ & \operatorname{lce}(\mathsf{cra}_{11},\mathsf{cla}_{11}) = 1 \end{aligned}$$

why helpful?

how computable?

11 / 10

known facts

- 1. $u, v, w \in [1..n]$ with $T[u..] \prec T[v..] \prec T[w..]$ $\Rightarrow lce(u, w) = min(lce(u, v), lce(v, w))$
- 2. $T[cra_v..] \prec T[v..] \prec T[cla_v..]$ (assume cla_v and cra_v exist)

lemma given

- \blacksquare lce(cla_v, cra_v) and
- \blacksquare $m_v = lce(v, ca_v),$

we can compute

- ightharpoonup lce(v, cla_v) and
- ightharpoonup lce(v, cra $_v$) in constant time.

proof of lemma

- lacktriangle wlog., $d_v = L$, and cla_v and cra_v exist
- $\Rightarrow ca_v = cla_v$
- hence:

 - ightharpoonup $lce(v, cra_v) = lce(cla_v, cra_v)$

the latter is because of Facts 1 and 2:

$$lce(cra_v, cla_v) = min(lce(v, cra_v), lce(v, cla_v))$$
$$= lce(v, cra_v) \le lce(v, cla_v)$$

cra v

cla

 $lce(v, cla_v) = m_v$

corollary: how to compute stack S

given:

- value lce(cla_v, cra_v)
- x: v's left child

then:

- ightharpoonup cla_x = v and cra_x = cra_v
- \Rightarrow lce(cla_x, cra_x) = lce(v, cra_v) computable in constant time by lemma
- (right child analogously by symmetry)

subarray extraction

can compute $SLCP[\ell, r]$ in $\mathcal{O}(h + (r - \ell))$ time, where h is the tree's height.

- augment tree with subtree sizes
- lacktriangle can find node ℓ by top-down traversal (while maintaining S)
- lacktriangle can start in-order traversal at node ℓ
- stop traversal when arriving at node r
- number of visited nodes is $\mathcal{O}(h) + r \ell$, and each node is processed in constant time.

summary

suffix binary search tree by Irving and Love'03

- maintains ranks of m suffixes
- \bigcirc $\mathcal{O}(m)$ space (each node stores 2 integers + 1 bit)
- ightharpoonup construction needs $\mathcal{O}(mh)$ LCE queries (h: height)
- lacktriangle can be made balanced $(h = \mathcal{O}(\lg m))$
- used for sparse suffix sorting by Fischer+'20
 - $\Box \mathcal{O}(c(\sqrt{\lg \sigma} + \lg \lg n) + m \lg m \lg n \lg^* n) \text{ time }$
 - □ c: lower bound on number of characters needed to compare
 - \square $\mathcal{O}(m)$ space (n: text length, σ : alphabet size)

our contribution: can extract

- \blacksquare SSA[$i..i+\ell-1$] and
- SLCP[$i..i + \ell 1$] in $\mathcal{O}(h + \ell)$ time

any questions are always very welcome!

open problems

- memory-efficient representations of suffix binary search trees?
- time-efficient implementation via B trees
 - □ balanced by construction
 - $^{\square}$ B+ variants have good memory locality
- can we merge two trees efficiently?