Extracting the Sparse Longest Common Prefix Array from
the Suffix Binary Search Tree

Tomohiro | 1

Robert W. lrving 2

Dominik Koppl 3

Lorna Love 2

IDepartment of Artificial Intelligence, Kyushu Institute of
Technology, Japan

2School of Computing Science, University of Glasgow, Glasgow, UK

3M&D Data Science Center, Tokyo Medical and Dental University,
NELSEN

suffix sorting

2 /16

suffix sorting

W sort all suffixes lexicographically

\'
I

/16

suffix sorting

W sort all suffixes lexicographically

\'
I

w0
(]
=
—+

|

suffix array

/ 16

suffix sorting

W sort all suffixes lexicographically
W |engths of the longest common prefix (LCP) between adjacent suffixes.
W solved in O(n) time and words of space

LCP array
suffix array

\'
I

|

(7]
o
=
—+

2 /16

suffix sorting

W sort all suffixes lexicographically

W |engths of the longest common prefix (LCP) between adjacent suffixes.
W solved in O(n) time and words of space
W sometimes need only suffixes starting at p1,...,pm
’ P1 ‘ ’ p2 ‘ ’ p3 ‘
v v v LCP array
T=[‘ ‘ \ suffix array

= —————————— -
] —
] =
DT SOt
I - D
] [
I]
— —
—_— T
- I

2 /16

sparse suffix sorting

s

sort all suffixes lexicographically
lengths of the longest common prefix (LCP) between adjacent suffixes.
solved in O(n) time and words of space

sometimes need only suffixes starting at py, ..., pm
’ P1 ‘ ’ p2 ‘ ’ p3 ‘
¥ ! ! sparse LCP array
T=| ‘ ‘ sparse suffix array

= | I
sort

E—

2 /16

dynamic sparse suffix sorting

3 /16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
T = !
—

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query

——
N LCE query lce(p1, p2)

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query

W = # characters to compare for sorting

B compared positions ¢
7o ——]

—
" LCE query Ice(pr, p2)

 ——

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query

W = # characters to compare for sorting

B compared positions ¢
7o ——]

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query

W = # characters to compare for sorting

’Pz‘ ’Iil‘ ’P3‘”

compared positions ¢

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query

W = # characters to compare for sorting

’ pf ‘ ’ '[11 ‘ ’ ’Df"/ compared positions ¢
T = []
I
s]
—
> > LCE query

3/ 16

dynamic sparse suffix sorting

W P, ..., Ppm: online, arbitrary order
W compare two suffixes with LCE query

W = # characters to compare for sorting

’p2‘ "[11‘ ’p3‘_/compared positions ¢
N
T
—
> > LCE query

3/ 16

dynamic sparse suffix sorting

W P ..., pn: online, arbitrary order
W compare two suffixes with LCE query
W = # characters to compare for sorting

W how to store their order?

7l 7] (7]

) compared positions ¢
T g ’] - -

3/ 16

suffix binary search tree (SBST)

SBST of Irving and Love'03:
binary search tree representation

each node
W represents a position p;
W stores a flag € {L,R, L}
W the LCE with an ancestor

4 /16

running example

W [SA : inverse suffix array

w SA : suffix array

w [CP: LCP array

i 1 2 3 4 5 6 8 9 10 11 12 13 14 15
T[] c a a t c¢c a g g t c¢c g g a c
ISA[[] 6 1 4 14 7 3 12 13 15 8 11 10 2 5
r 1 2 3 4 5 6 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 11 7 13 12 8 9 4 10
LCP[r] O 1 2 1 0 1 1 3 0 1 2 1 0 2

5 /16

problem definition
W obtain SA from in-order traversal in
O(m) time.
W how to obtain LCP?

8 9 10 11 12 13 14 15

11 7 13 12 8 9 4 10
1 3 0 1 2 1 0 2

6/ 16

closest left/right ancestors

let v be a node
W cla, : lowest node having v as a descendant in its left subtree
W cra, : lowest node having v as a descendant in its right subtree

= either cla, or cra, is v's parent

7 /16

LCE value m, and flag d,

cay i= argmaX,c (i, cra,} 1€€(V, U)
if ca, = cla,, then m, = Ice(v,cla,), d, = L.
if ca, = cra,, then m, = Ice(v,cra,), d, =R.

if ca, is undefined, then m, =0, d, = L.

s s

8 /16

8 9 10 11 12 13 14 15

2 3 4 5 6 7

1

10

9 4

2 14 6 3 15 1 5 11 7 13 12 8

SA[r]

1

2

1

0

LCP[r]

9/ 16

rules:

e : neither left child nor cra, exists
= LCP[ISA[v]] =0

2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 6 3 15 1 5 11 7 13 12 8 9 4 10

SA[r]
rules

SO D N

9/ 16

rules:
e : neither left child nor cra, exists
= LCP[ISA[v]] =0
r . d, =R = LCP[ISA[v]] > m,

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
rules e r r r r r

0] 1 2 1 1 2

9/ 16

rules:
e : neither left child nor cra, exists
= LCP[ISA[v]] =0
r . d, =R = LCP[ISA[v]] > m,
| : d, =L and right subtree of v is
empty = LCP[ISA[v] + 1] = m,

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
rules e | [r | ro I | | r r
0 2 1 1 2 3 1 2 1 2 9/ 16

rules:
e : neither left child nor cra, exists
= LCP[ISA[v]] =0
r . d, =R = LCP[ISA[v]] > m,
| : d, =L and right subtree of v is
empty = LCP[ISA[v] + 1] = m,
d : v has left child v = rightmost

node in u's subtree determines
LCP[ISA[v]]

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
rules e | [r | ro | r I r d r
0 2 1 1 2 3 1 2 1 0 2 9 /16

rules:

e : neither left child nor cra, exists
= LCP[ISA[v]] =0

r . d, =R = LCP[ISA[v]] > m,

| : d, =L and right subtree of v is
empty = LCP[ISA[v] + 1] = m,

d : v has left child v = rightmost
node in u's subtree determines

LCP[ISA[v]]
a : otherwise: cra, determines
LCP[ISA[v]]
r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
rules e a | r a r a r a I r d r
LCP[r] 0 1. 21 0 12 1 3 0 1 2 1 0 2 9 /16

W rules e, r, | can be computed in rules:

constant time per node. e : neither left child nor cra, exists
= LCP[ISA[v]] =0

r . d, =R = LCP[ISA[v]] > m,

| : d, =L and right subtree of v is
empty = LCP[ISA[v] + 1] = m,

d : v has left child v = rightmost
node in u's subtree determines

W how to compute rules d and a?

LCP[ISA[v]]
a : otherwise: cra, determines
LCP[ISA[v]]
r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SA[r] 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
rules e a | r a r a r a I r d r
LCP[r] 0 1. 21 0 12 1 3 0 1 2 1 0 2 9 /16

X
w0
(g}

4+

compute LCP[11]

10 / 16

task
compute LCP[11]

= Ice(crayy, 11) since 11 has no left
child

10 / 16

task
compute LCP[11]

= Ice(crayy, 11) since 11 has no left
child

= lce(crayy, clajy) since di; =L
(proof later)

10 / 16

task
compute LCP[11]

= Ice(crayy, 11) since 11 has no left
child

= lce(crayy, clajy) since di; =L
(proof later)

= lce(crasy, 7) = my = 1 since
Crai; = Cray.

10 / 16

task
compute LCP[11]

= Ice(crayy, 11) since 11 has no left
child

= lce(crayy, clajy) since di; =L
(proof later)

= lce(crasy, 7) = my = 1 since
Crai; = Cray.

W goal: maintain Ice(cra,,cla,) for
each node v to process

10 / 16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

5={

Ice(cray, clag) = 0,

11 /16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

S={
lce(cray, cla;) =0,
Ice(crag, clag) = 0,

11 /16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

S={
lce(cray, cla;) =0,
Ice(crag, clag) = 0,

lce(cras, clas) = 0,

11 /16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

5={

11 /16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

5={

Ice(cray, clag

0
Ice(cray, clag 0,
0,
0

Ice(craz, clay

()
()

Ice(cras, clag) =
()
(

Ice(crayy, clagp) =

11 /16

stack S

maintain stack S of LCE values such
that, on visiting node v, S stores
Ice(cla,, cra,) of all ancestors u of v.

5={

Ice(cray, clag

0
Ice(cray, clag 0,
0,
0

Ice(craz, clay

()
()

Ice(cras, clag) =
()
(

Ice(crayy, clagp) =
}
W why helpful?

W how computable?
11 / 16

known facts
1. u,v,w € [l.n] with T[u..] < T[v..] < T[w..]
= lce(u, w) = min(lce(u, v),lce(v, w))
2. Tlera,..] < T[v..] < Tlcla,..] (assume cla, and cra, exist)

lemma
given

w [ce(cla,,cra,) and

w m, = lce(v,ca,),

we can compute
w Ice(v,cla,) and

W [ce(v,cra,) in constant time.

12 /16

proof of lemma

w wlog., d, =L, and cla, and cra,
exist

= ca, = cla,
hence:
w Ice(v,cla,) =lce(v,ca,) = m,

w Ice(v,cra,) = Ice(cla,,cra,)

the latter is because of Facts 1 and 2:

Ice(cra,, cla,) = min(lce(v, cra,), Ice(v, cla,))

= Ice(v,cra,) < Ice(v,cla,)

13 / 16

corollary: how to compute stack S

given:
W value Ice(cla,,cra,)
W x: v's left child
then:

W cla, = v and cra, = cra,

= lce(clay, cray) = lee(v, cra,)
computable in constant time by
lemma

(right child analogously by symmetry)

=> can maintain stack S during a top-down traversal in constant time per node.

14 / 16

subarray extraction

can compute SLCP[/, r] in O(h+ (r — ¢)) time, where h is the tree's height.

augment tree with subtree sizes

can find node ¢ by top-down traversal (while maintaining S)
can start in-order traversal at node ¢

stop traversal when arriving at node r

number of visited nodes is O(h) + r — ¢, and each node is processed in
constant time.

15 / 16

summary

suffix binary search tree by Irving and Love'03

srsrs

maintains ranks of m suffixes
O(m) space (each node stores 2 integers + 1 bit)
construction needs O(mh) LCE queries (h: height)
can be made balanced (h = O(Ig m))
used for sparse suffix sorting by Fischer+'20
© O(c(+/Igo + Iglgn) + mlg mlg nlg* n) time
o ¢: lower bound on number of characters needed to compare
. O(m) space (n : text length, o: alphabet size)

our contribution: can extract

u
u

SSA[i..i + ¢ — 1] and
SLCP[i..i+ ¢ —1] in O(h+{) time

any questions are always very welcome!
16 / 16

open problems

W memory-efficient representations of suffix binary search trees?
W time-efficient implementation via B trees

© balanced by construction
© B+ variants have good memory locality

W can we merge two trees efficiently?

16 / 16

