
A separation of γ and b
via Thue-Morse words

Hideo Bannai1, Mitsuru Funakoshi2, Tomohiro I3,
Dominik Köppl1, Takuya Mieno2, Takaaki Nishimoto4

1Tokyo Medical and Dental University, 2Kyushu University, 3Kyushu Institute of Technology, 4RIKEN AIP

Relations between repetitiveness measures

Fig 9. "Relations between the compressibility measures. A solid arrow from X to Y
means that X = O(Y) for all string families. For all solid and dotted arrows, there are
string families where X = o(Y), with the exceptions of γ→ b and c → z. "
Our focus is on the relation γ→ b.
pγ: size of smallest string attractor [Kempa&Prezza 2018]

n String attractor: a set of positions of a string, such that any substring has an occurrence that contains one of the positions.

pb: size of smallest Bidirectional Macro Scheme (BMS) [Storer&Szymanski 1982]
n BMS: A partitioning of a string into phrases, such that each phrase of length > 1 can be copied from another occurrence in the string, and the

source of each position can be traced back to a phrase of length 1.

For Thue-Morse words, [Kutsukake et al. 2020] proved γ = 4 and
conjectured b = 𝛩(log N), which would imply γ = o(b).
We prove Kutsukake et al.'s conjecture and for the first time show the gap between
b and γ, i.e., γ is not always reachable by dictionary compression.

Measures based on
compressed
representations

Measures based on
diverseness of
substrings

[Navarro, ACM Comput. Surv. 2021]

Smallest
string
attractor LZ77

Collage
system

Run-length
BWT

Smallest
Grammar

Smallest
bidirectional
macro scheme

Bidirectional Macro Scheme
p ((l1, s1), …, (lk, sk)) ∊ (N×(Σ∪N))k is a BMS for string w if:

n |w| = l1 + … + lk (partitioning into phrases)
n Let pi = ∑1≤ j<i lj

If li = 1, si = w[pi] (ground phrase)
If li > 1, si is an integer (source of phrase)
s.t. w[si..si+li–1] = w[pi..pi+li–1]

p Except for ground phrases, the sources of the phrases
implicitly define source positions f(i) for all positions i.

p A BMS is valid, if w can be reconstructed
ó f is acyclic: i.e., for any i, f j(i) = ⊥ for some j ≥ 1.

[Storer&Szymanski 1982]

b a baa b ab
0

((2, 3), (2, 4), (1, b), (1, a), (2, 3))
41 2 3 5 6 7

3 ⊥4 4 5 ⊥ 3 4f

NP hard to compute smallest valid BMS of string

size 5

Thue-Morse words
Definition:

The n-th Thue-Morse word tn (n ≥ 1) is:
tn = μn(a)

where μ is a morphism defined by
μ(a) = ab, μ(b) = ba.

t1 = ab
t2 = abba
t3 = abbabaab
t4 = abbabaabbaababba
t5 = abbabaabbaababbabaababbaabbabaab
…
|tn| = 2n

[Prouhet 1851][Thue 1906][Morse 1921]

Main results
Theorem

For any n ≥ 2, the size of a smallest BMS for the
n-th Thue-Morse word tn is n+2.

Corollary
For any γ ≥ 4, there exists a family of strings with
smallest string attractor size γ s.t. the size b of a
smallest BMS of the string and its length N
satisfies

b = Θ(γ log (N/γ))
where N is the length of each string.

Theorem 1 (Upper Bound)
For any n ≥ 2, there exists a BMS of size n+2
for the n-th Thue-Morse word tn.

Proof:
Proof by induction.
There exists a BMS of size 2+2 = 4 for t2 = abba.
Given a BMS of size k for tn, we show how to
construct a BMS of size k+1 for tn+1.

Size k BMS for tn à Size k+1 BMS for tn+1

1.Apply μ to each phrase, and double source positions.
nwith exception: for two ground phrases a, b, make 2 ground phrases each from

μ(a) and μ(b): total 4 ground phrases.
n In tn+1, the parity (even/odd) of a position i and its source f(i) are equal:
▷ even position à even position
▷ odd position à odd position

2. Merge ground phrases a, b created from μ(a), into a new
phrase with source position 3.

n This does not introduce cycles
because a at pos 3 à 2ib+1

b at pos. 4 à 2ib
n # of phrases is k + 1.

b a baa b ab
iaib

b a baa b ab
2ia2ib

a b abb a bat3
size k

t4
size k+2

b a baa b ab a b abb a ba
2ia2ib3 4

t4

0 0

size k+1

f ⊥ ⊥ 433 4 54 9 117 9 7 9⊥ ⊥f 8 106 8 6 8⊥ ⊥

42 μ

9 117 9 7 9⊥ 4f 8 106 8 6 8⊥ 3

Theorem 2 (Lower Bound)
For any n ≥ 2, a smallest BMS of tn has size ≥ n + 2.

Proof Idea:
Go in the "opposite" direction as Theorem 1.
Proof by induction:
p Smallest BMS for t2 has size 2 + 2 = 4.

p Assume Theorem 2 holds for all integers up to some n ≥ 2.

Given a BMS of size k for tn+1, IF we can construct
a BMS of size k – 1 for tn, then,

k ≥ n + 3 must hold, since k – 1 ≥ n + 2.

Seems difficult to do
(if not impossible)

Theorem 2.
For any n ≥ 2, a smallest BMS of tn has size ≥ n + 2.

Proof Idea (modified):
Go in the "opposite" direction as Theorem 1.
Proof by induction:
p Smallest BMSs for t2, t3, t4 resp. have sizes 4, 5, 6.

p Assume Theorem 2 holds for all integers up to some n ≥ 4.

Given a BMS of size k for tn+1, IF we can construct
a BMS of size k – i for tn+1–i for some i ∊ { 1, 2, 3 }.

k ≥ n + 3 must hold, since k – i ≥ (n + 1 – i) + 2 = n – i + 3.

Size k BMS for tn+1 à Size k' BMS for tn
Modify BMS for tn+1 in the following steps:

2. Apply inverse morphism μ–1

(halve phrases and sources)

1-2. Eliminate phrases aba, bab

1-1. Eliminate ground phrases

even positions

a b b a b a a b b a a b a b b a …

a b b a b a a b …

a b b a b a a b b a a b a b b a …

1. Remove "bad" phrase boundariesShift phrase boundaries left/right
(almost) keeping same phrase source.
Difficult part: to ensure
• NOT to introduce cycles
• # of phrases is reduced
Note:
• we can discard sources for length-2

phrases starting at even position

Those that don't start a phrase
at an even positiontn+1

tn+1

tn

1-3. Eliminate remaining bad
phrase boundaries

… and apply this procedure at most 3 times.

Problems when shifting a bad phrase boundary

If the parity (odd/even) of the source changes,
we cannot always extend the phrase and keep the
same source.

… …b… …a b ab ab b

Problems when shifting a bad phrase boundary

If the parity of the source is the same,
we can keep the same phrase source, and
a bad phrase boundary can be shifted to extend the
phrase.

However, cycles may be introduced.

… …b a… …b a

… …

… … … …b a b a

… …b a b a

… …… … b ab a

1-1. Eliminating ground phrases

Eliminating a ground phrase a at odd position (ib + 1)
p If source f(ib) of left b is even
nmerge a with left phrase

= update source of a to f(ib)+1
p Repeat while source of b is even

(There is always an a to its right)
These changes don't introduce
cycles since b was not in a cycle.

What do we do, when the source
of b is odd?

b a
ib

even positions

b a

b a

b a

f(ib)

Eliminate ground
phrase a by
merging with left
phrase

f 2(ib)

f 3(ib)

If there is a phrase
boundary, merge a
with left phrase

f(ib)+1

f 2(ib)+1

f 3(ib)+1

ib+1

(Symmetric/analogous for eliminating ground phrase a/b at odd/even positions)

Key observation
Parity Lemma

The parity of occurrences in tn can only change for the 6 strings:
a, b, ab, ba, aba, bab

Proof:
1. aa and bb can occur only at odd positions.

n Due to morphism (μ(a) = ab, μ(b) = ba), even positions start with either ab or ba.

2. abab and baba can only occur at even positions.
n Otherwise, due to 1., the string would contain a cubes:

n However, Thue-Morse words are known to be cube free.

3. The 6 strings are the only strings that do not contain
aa, bb, abab or baba as substrings.

b a b a b a
even positions

a b a b a bor

1-1. Eliminating ground phrases: Terminal Cases

Let j be smallest integer s.t. f j(ib) is odd (or is ⊥).

Only following cases due to parity lemma.
(occurrence of b in aba, bab, ba, ab, b)

Procedure terminates, because
of bad phrase boundaries strictly decreases.

a b a

a b a

b a a b a

a b a

b a b

b a b

b a b a

b a b a

b a

b a

f j–1(ib) f j–1(ib) f j–1(ib)

Done since phrase ba doesn't need
source

Done since phrase ba doesn't need
source. Recurse to eliminate a.

Done since phrase ba doesn't need
source. Recurse to eliminate a.

Done since phrase ba doesn't need
source

Done since phrase ba doesn't need
source. Recurse to eliminate b.

Done since phrase ba doesn't need
source. Middle boundary only made the first time.

b a
ib

even positions

f j–1(ib) f j–1(ib) f j–1(ib)

1-2. Eliminating Phrases: aba, bab

b a b a a
ib

b a b a

b a b a

b a b a b a

b a b a

b a b b a b a

b a b a

even positions

No change in # of phrases

Eliminate aba that starts at odd position.
•move bad boundary to truncate to ba and update

source of a while source of left b is even.
•Terminal cases: when next source of b is odd.

Recurse to eliminate bab.
Done since new phrase ba doesn't
need source

Done since new phrase ba doesn't
need source

ib ib

ib

(Symmetric/analogous for eliminating phrase aba/bab at odd/even positions)

f j–1(ib) f j–1(ib)

f j–1(ib) f j–1(ib) f j–1(ib)

1-3. Eliminating remaining bad phrase boundaries

All remaining "bad" phrase boundaries can be
removed by moving them to the right, keeping the
sources of phrases because only cases are:
p length-2 phrases where both boundaries are bad

p phrases with bad boundaries whose occurrences
always have the same parity
(no phrases aba, bab or ground phrase)

Changes in # of phrases #tot
in terms of # of ground phrases #g

a b a

a b a

b a a b a

a b a

b a b

b a b

b a b a

b a b a

b a

b a

f j–1(ib) f j–1(ib) f j–1(ib)

f j–1(ib) f j–1(ib) f j–1(ib)

Done since phrase ba doesn't
need source

Done since phrase ba doesn't
need source. Recurse to eliminate a.

Done since phrase ba doesn't
need source. Recurse to eliminate a.

Done since phrase ba doesn't
need source

Done since phrase ba doesn't
need source. Recurse to eliminate b.

Done since phrase ba doesn't
need source.

#g : ±0
#tot : ±0

#g : –1
#tot : –1

#g : –1
#tot : ±0 first time, –1 otherwise

boundary only needed once

#g : –2
#tot : –1 k' ≤ k – ⌈(#g – 2)/2⌉

b a
ib

even positions
Can also happen for abab

of phrases

kn ≤ kn+1 – ⌈(#g(n+1) – 2)/2⌉
n If kn ≤ kn+1 – 1, just choose i = 1 and we are done.
n If kn = kn+1, then #g(n+1) = 2 and case A was applied twice.
n Two phrases of ab and two phrases of ba are created. Therefore #g(n) ≥ 4

kn–1 ≤ kn – ⌈(#g(n) – 2)/2⌉
kn–1 ≤ kn – 1 = kn+1 – 1

n If kn – 1 ≤ kn+1 – 2, just choose i = 2 and we are done.
n If kn – 1 = kn – 1, then #g(n) = 4 and case A was applied twice, and case was B applied once.

Therefore #g(n – 1) ≥ 5

kn–2 ≤ kn–1 – ⌈(#g(n – 1) – 2)/2⌉
kn–2 ≤ kn–1 – 2 = kn+1 – 3

#g : ±0
#tot : ±0

#g : –1
#tot : –1

#g : –1
#tot : ±0 first time, –1 otherwise

#g : –2
#tot : –1 k' ≤ k – ⌈(#g – 2)/2⌉

Can also happen for abab

A

B

Summary
p Size of smallest BMS for tn: b(tn) = n+2

Proof: given size k BMS for tn, we can make
n size k + 1 BMS for tn+1
n size k – i BMS for tn – i for some i ∊{1, 2, 3}.

p Since γ(tn) = 4 for any n ≥ 4 [Kutsukake et al. 2020]
{ tn | n ≥ 4 } is a family of strings such that γ = o(b)

p Concatenating tn over different binary alphabets
gives, for any γ ≥ 4, a family of strings such that:
b=𝛩(γ log N/γ), where N is length of string.

Showed for the first time the gap between b and γ, i.e.,
γ is not always reachable by dictionary compression.

