

Hideo Bannai¹, Mitsuru Funakoshi², Tomohiro I³,
Dominik Köppl¹, Takuya Mieno², Takaaki Nishimoto⁴

¹Tokyo Medical and Dental University, ²Kyushu University, ³Kyushu Institute of Technology, ⁴RIKEN AIP

Relations between repetitiveness measures

Fig 9. "Relations between the compressibility measures. A solid arrow from X to Y means that X = O(Y) for all string families. For all solid and dotted arrows, there are string families where X = o(Y), with the exceptions of $\gamma \to b$ and $c \to z$."

Our focus is on the relation $\gamma \to b$.

- □γ: size of smallest string attractor [Kempa&Prezza 2018]
 - String attractor: a set of positions of a string, such that any substring has an occurrence that contains one of the positions.
- □ b: size of smallest Bidirectional Macro Scheme (BMS) [Storer&Szymanski 1982]
 - BMS: A partitioning of a string into phrases, such that each phrase of length > 1 can be copied from another occurrence in the string, and the source of each position can be traced back to a phrase of length 1.

For Thue-Morse words, [Kutsukake et al. 2020] proved $\gamma = 4$ and conjectured $b = \Theta(\log N)$, which would imply $\gamma = o(b)$.

We prove Kutsukake et al.'s conjecture and for the first time show the gap between b and γ , i.e., γ is not always reachable by dictionary compression.

Bidirectional Macro Scheme

[Storer&Szymanski 1982]

- \square $((l_1, s_1), ..., (l_k, s_k)) \in (\mathbb{N} \times (\Sigma \cup \mathbb{N}))^k$ is a BMS for string w if:
 - $|w| = l_1 + \dots + l_k$ (partitioning into phrases)
 - Let $p_i = \sum_{1 \le j \le i} l_j$ If $l_i = 1$, $s_i = w[p_i]$ (ground phrase) If $l_i > 1$, s_i is an integer (source of phrase) s.t. $w[s_i...s_i+l_i-1] = w[p_i...p_i+l_i-1]$
- Except for ground phrases, the sources of the phrases implicitly define source positions f(i) for all positions i.

■ A BMS is *valid*, if w can be reconstructed $\Leftrightarrow f$ is acyclic: i.e., for any $i, f^j(i) = \bot$ for some $j \ge 1$.

Thue-Morse words

[Prouhet 1851][Thue 1906][Morse 1921]

Definition:

The *n*-th Thue-Morse word t_n ($n \ge 1$) is:

$$t_n = \mu^n(a)$$

where μ is a morphism defined by $\mu(a) = ab$, $\mu(b) = ba$.

$$t_1 = ab$$

$$t_2 = abba$$

$$t_3$$
 = abbabaab

$$t_4$$
 = abbabaabbaabba

 t_5 = abbabaabbaabbaabbaabbaabbaabbaab

. . .

$$|t_n| = 2^n$$

Main results

Theorem

For any $n \ge 2$, the size of a smallest BMS for the n-th Thue-Morse word t_n is n+2.

Corollary

For any $\gamma \ge 4$, there exists a family of strings with smallest string attractor size γ s.t. the size b of a smallest BMS of the string and its length N satisfies

$$b = \Theta(\gamma \log (N/\gamma))$$
 where *N* is the length of each string.

Theorem 1 (Upper Bound)

For any $n \ge 2$, there exists a BMS of size n+2 for the n-th Thue-Morse word t_n .

Proof:

Proof by induction.

There exists a BMS of size 2+2=4 for $t_2=$ abba.

Given a BMS of size k for t_n , we show how to construct a BMS of size k+1 for t_{n+1} .

Size k BMS for $t_n \rightarrow$ Size k+1 BMS for t_{n+1}

$$t_3$$
 $\xrightarrow{0}$ $\xrightarrow{1_b}$ $\xrightarrow{i_a}$ \xrightarrow{size} k $\xrightarrow{\mu}$ t_4 $\xrightarrow{0}$ $\xrightarrow{4}$ $\xrightarrow{2i_b}$ $\xrightarrow{2i_a}$ \xrightarrow{size} $k+2$ \xrightarrow{f} $\xrightarrow{3}$ $\xrightarrow{4}$ $\xrightarrow{4}$ $\xrightarrow{5}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{3}$ $\xrightarrow{4}$ $\xrightarrow{5}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{3}$ $\xrightarrow{4}$ $\xrightarrow{5}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{3}$ $\xrightarrow{4}$ $\xrightarrow{4}$ $\xrightarrow{5}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{3}$ $\xrightarrow{4}$ $\xrightarrow{1}$ $\xrightarrow{1}$

- 1. Apply μ to each phrase, and double source positions.
 - with exception: for two ground phrases a, b, make 2 ground phrases each from $\mu(a)$ and $\mu(b)$: total 4 ground phrases.
 - In t_{n+1} , the parity (even/odd) of a position i and its source f(i) are equal:
 - \triangleright even position \rightarrow even position
 - odd position → odd position
- 2. Merge ground phrases a, b created from $\mu(a)$, into a new phrase with source position 3.
 - This does not introduce cycles because a at pos $3 \rightarrow 2i_b+1$ b at pos. $4 \rightarrow 2i_b$
 - \blacksquare # of phrases is k+1.

Theorem 2 (Lower Bound)

For any $n \ge 2$, a smallest BMS of t_n has size $\ge n + 2$.

Proof Idea:

Go in the "opposite" direction as Theorem 1.

Proof by induction:

 \square Smallest BMS for t_2 has size 2 + 2 = 4.

Seems difficult to do (if not impossible)

Assume Theorem 2 holds for all integers up to some $n \ge 2$.

Given a BMS of size k for t_{n+1} , IF we can construct a BMS of size k-1 for t_n , then,

 $k \ge n + 3$ must hold, since $k - 1 \ge n + 2$.

Theorem 2.

For any $n \ge 2$, a smallest BMS of t_n has size $\ge n + 2$.

Proof Idea (modified):

Go in the "opposite" direction as Theorem 1.

Proof by induction:

- \square Smallest BMSs for t_2 , t_3 , t_4 resp. have sizes 4, 5, 6.
- \square Assume Theorem 2 holds for all integers up to some $n \ge 4$.

Given a BMS of size k for t_{n+1} , \overline{HF} we can construct a BMS of size k-i for t_{n+1-i} for some $i \in \{1, 2, 3\}$.

 $k \ge n + 3$ must hold, since $k - i \ge (n + 1 - i) + 2 = n - i + 3$.

Size k BMS for $t_{n+1} \rightarrow$ Size k' BMS for t_n

Modify BMS for t_{n+1} in the following steps:

... and apply this procedure at most 3 times.

Problems when shifting a bad phrase boundary

If the parity (odd/even) of the source changes, we cannot always extend the phrase and keep the same source.

Problems when shifting a bad phrase boundary

If the parity of the source is the same, we can keep the same phrase source, and a bad phrase boundary can be shifted to extend the phrase.

... b a ... b a ...

However, cycles may be introduced.

1-1. Eliminating ground phrases

Eliminating a ground phrase a at odd position $(i_b + 1)$

- If source $f(i_b)$ of left **b** is even
 - merge a with left phrase
 - = update source of a to $f(i_b)+1$
- Repeat while source of **b** is even (There is always an **a** to its right)

These changes don't introduce cycles since **b** was not in a cycle.

What do we do, when the source of **b** is odd?

(Symmetric/analogous for eliminating ground phrase a/b at odd/even positions)

Key observation

Parity Lemma

The parity of occurrences in t_n can only change for the 6 strings: a, b, ab, ba, aba, bab

Proof:

- 1. aa and bb can occur only at odd positions.
 - Due to morphism $(\mu(a) = ab, \mu(b) = ba)$, even positions start with either ab or ba.
- 2. abab and baba can only occur at even positions.
 - Otherwise, due to 1., the string would contain a cubes:

- However, Thue-Morse words are known to be cube free.
- 3. The 6 strings are the only strings that do not contain aa, bb, abab or baba as substrings.

1-1. Eliminating ground phrases: Terminal Cases

Let j be smallest integer s.t. $f^{j}(i_{b})$ is odd (or is \perp).

Only following cases due to parity lemma. (occurrence of b in aba, bab, ba, ab, b)

Procedure terminates, because # of bad phrase boundaries strictly decreases.

1-2. Eliminating Phrases: aba, bab

Eliminate aba that starts at odd position.

- move bad boundary to truncate to ba and update source of a while source of left b is even.
- Terminal cases: when next source of b is odd.

(Symmetric/analogous for eliminating phrase aba/bab at odd/even positions)

1-3. Eliminating remaining bad phrase boundaries

All remaining "bad" phrase boundaries can be removed by moving them to the right, keeping the sources of phrases because only cases are:

length-2 phrases where both boundaries are bad

phrases with bad boundaries whose occurrences always have the same parity (no phrases aba, bab or ground phrase)

Changes in # of phrases #_{tot} in terms of # of ground phrases #_g

of phrases

$$k_n \le k_{n+1} - \lceil (\#_g(n+1) - 2)/2 \rceil$$

- If $k_n \le k_{n+1} 1$, just choose i = 1 and we are done.
- If $k_n = k_{n+1}$, then $\#_g(n+1) = 2$ and case \mathbb{A} was applied twice.
- Two phrases of ab and two phrases of ba are created. Therefore $\#_g(n) \ge 4$

$$k_{n-1} \le k_n - \lceil (\#_{g}(n) - 2)/2 \rceil$$

$$\leq k_n - 1 = k_{n+1} - 1$$

- If $k_{n-1} \le k_{n+1} 2$, just choose i = 2 and we are done.
- If $k_{n-1} = k_n 1$, then $\#_g(n) = 4$ and case **A** was applied twice, and case was **B** applied once. Therefore $\#_g(n-1) \ge 5$

$$k_{n-2} \le k_{n-1} - \lceil (\#_{g}(n-1) - 2)/2 \rceil$$

 $\le k_{n-1} - 2 = k_{n+1} - 3$

Summary

- Size of smallest BMS for t_n : $b(t_n) = n+2$ Proof: given size k BMS for t_n , we can make
 - \blacksquare size k+1 BMS for t_{n+1}
 - size k i BMS for t_{n-i} for some $i \in \{1, 2, 3\}$.
- Since $\gamma(t_n) = 4$ for any $n \ge 4$ [Kutsukake et al. 2020] $\{t_n \mid n \ge 4\}$ is a family of strings such that $\gamma = o(b)$
- Concatenating t_n over different binary alphabets gives, for any $\gamma \ge 4$, a family of strings such that: $b = \Theta(\gamma \log N/\gamma)$, where N is length of string.

Showed for the first time the gap between b and γ , i.e., γ is not always reachable by dictionary compression.