

Hideo Bannai ${ }^{1}$, Mitsuru Funakoshi ${ }^{2}$, Tomohiro ${ }^{3}$,
Dominik Köppl ${ }^{1}$, Takuya Mieno ${ }^{2}$, Takaaki Nishimoto ${ }^{4}$
${ }^{1}$ Tokyo Medical and Dental University, ${ }^{2}$ Kyushu University, ${ }^{3}$ Kyushu Institute of Technology, ${ }^{4}$ RIKEN AIP

Relations between repetitiveness measures

Fig 9. "Relations between the compressibility measures. A solid arrow from X to Y means that $X=\mathrm{O}(Y)$ for all string families. For all solid and dotted arrows, there are string families where $X=\mathrm{o}(Y)$, with the exceptions of $\gamma \rightarrow \boldsymbol{b}$ and $c \rightarrow z$."
Our focus is on the relation $\boldsymbol{\gamma} \rightarrow \boldsymbol{b}$.
$\square \gamma$: size of smallest string attractor [Kempa\&Prezza 2018]

- String attractor: a set of positions of a string, such that any substring has an occurrence that contains one of the positions.
$\square b$: size of smallest Bidirectional Macro Scheme (BMS) [Storer\&Szymanski 1982]
- BMS: A partitioning of a string into phrases, such that each phrase of length >1 can be copied from another occurrence in the string, and the source of each position can be traced back to a phrase of length 1.

For Thue-Morse words, [Kutsukake et al. 2020] proved $\gamma=4$ and conjectured $b=\Theta(\log N)$, which would imply $\gamma=o(b)$.
We prove Kutsukake et al.'s conjecture and for the first time show the gap between b and γ, i.e., γ is not always reachable by dictionary compression.

Bidirectional Macro Scheme

[Storer\&Szymanski 1982]
$\square\left(\left(l_{1}, s_{1}\right), \ldots,\left(l_{k}, s_{k}\right)\right) \in(\mathbf{N} \times(\Sigma \cup \mathbf{N}))^{k}$ is a BMS for string w if:
$\square|w|=l_{1}+\ldots+l_{k}$

- Let $p_{i}=\sum_{1 \leq j<i} l_{j}$

If $l_{i}=1, s_{i}=w\left[p_{i}\right]$
If $l_{i}>1, s_{i}$ is an integer
s.t. $w\left[s_{i} . s_{i}+l_{i}-1\right]=w\left[p_{i} . p_{i}+l_{i}-1\right]$
(partitioning into phrases)
(ground phrase)
(source of phrase)
\square Except for ground phrases, the sources of the phrases implicitly define source positions $f(i)$ for all positions i.

$((2,3),(2,4),(1, b),(1, a),(2,3))$
size 5
\square A BMS is valid, if w can be reconstructed $\Leftrightarrow f$ is acyclic: i.e., for any $i, f^{j}(i)=\perp$ for some $j \geq 1$.

Thue-Morse words

Definition:
The n-th Thue-Morse word $t_{n}(n \geq 1)$ is:

$$
t_{n}=\mu^{n}(\mathrm{a})
$$

where μ is a morphism defined by
$\mu(\mathrm{a})=\mathrm{ab}, \mu(\mathrm{b})=\mathrm{ba}$.
$t_{1}=\mathrm{ab}$
$t_{2}=\mathrm{abba}$
$t_{3}=$ abbabaab
$t_{4}=$ abbabaabbaababba
$t_{5}=$ abbabaabbaababbabaababbaabbabaab
$\left|t_{n}\right|=2^{n}$

Main results

Theorem

For any $n \geq 2$, the size of a smallest BMS for the n-th Thue-Morse word t_{n} is $n+2$.

Corollary
For any $\gamma \geq 4$, there exists a family of strings with smallest string attractor size γ s.t. the size b of a smallest BMS of the string and its length N satisfies

$$
b=\Theta(\gamma \log (N / \gamma))
$$

where N is the length of each string.

Theorem 1 (Upper Bound)

For any $n \geq 2$, there exists a BMS of size $n+2$ for the n-th Thue-Morse word t_{n}.

Proof:

Proof by induction.
There exists a BMS of size $2+2=4$ for $t_{2}=$ abba.
Given a BMS of size k for t_{n}, we show how to construct a BMS of size $k+1$ for t_{n+1}.

Size k BMS for $t_{n} \rightarrow$ Size $k+1$ BMS for t_{n+1}

1. Apply μ to each phrase, and double source positions.
\square with exception: for two ground phrases a, b, make 2 ground phrases each from $\mu(\mathrm{a})$ and $\mu(\mathrm{b})$: total 4 ground phrases.
\square In t_{n+1}, the parity (even/odd) of a position i and its source $f(i)$ are equal:
\triangleright even position \rightarrow even position
\triangleright odd position \rightarrow odd position
2. Merge ground phrases a, b created from $\mu(\mathrm{a})$, into a new phrase with source position 3.

- This does not introduce cycles because a at pos $3 \rightarrow 2 i_{\mathrm{b}}+1$ b at pos. $4 \rightarrow 2 i_{\mathrm{b}}$
\# of phrases is $k+1$.

Theorem 2 (Lower Bound)

For any $n \geq 2$, a smallest BMS of t_{n} has size $\geq n+2$.

Proof Idea:

Go in the "opposite" direction as Theorem 1.
Proof by induction:
\square Smallest BMS for t_{2} has size $2+2=4$.

Seems difficult to do (if not impossible)
\square Assume Theorem 2 holds for all integers up to some $n \geq 2$.

Given a BMS of size \boldsymbol{k} for $\boldsymbol{t}_{\boldsymbol{n}+1}$, IF we can construct a BMS of size $\boldsymbol{k}-\mathbf{1}$ for $\boldsymbol{t}_{\boldsymbol{n}}$, then,

$k \geq n+3$ must hold, since $k-1 \geq n+2$.

Theorem 2.

For any $n \geq 2$, a smallest BMS of t_{n} has size $\geq n+2$.

Proof Idea (modified):

Go in the "opposite" direction as Theorem 1.
Proof by induction:
\square Smallest BMSs for t_{2}, t_{3}, t_{4} resp. have sizes 4, 5, 6 .
\square Assume Theorem 2 holds for all integers up to some $n \geq 4$.

Given a BMS of size \boldsymbol{k} for $\boldsymbol{t}_{\boldsymbol{n}+1}$, IF we can construct a BMS of size $k-i$ for $\boldsymbol{t}_{\boldsymbol{n}+1-i}$ for some $i \in\{1,2,3\}$.

$k \geq n+3$ must hold, since $k-i \geq(n+1-i)+2=n-i+3$.

Size k BMS for $t_{n+1} \rightarrow$ Size k^{\prime} BMS for t_{n}

Modify BMS for t_{n+1} in the following steps:

| t_{n+1} | a | b | b | a | b | a | a | b | b | a | a | b | a | b | b | a | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Shift phrase boundaries left/right (almost) keeping same phrase source. Difficult part: to ensure

- NOT to introduce cycles
- \# of phrases is reduced

Note:

- we can discard sources for length-2 phrases starting at even position

a	b	b	a	b	a	a	b	\cdots

even positions

Those that don't start a phrase at an even position

1. Remove "bad" phrase boundaries

1-1. Eliminate ground phrases
1-2. Eliminate phrases $a b a, b a b$
1-3. Eliminate remaining bad phrase boundaries
2. Apply inverse morphism μ^{-1} (halve phrases and sources)

Problems when shifting a bad phrase boundary
If the parity (odd/even) of the source changes, we cannot always extend the phrase and keep the same source.

Problems when shifting a bad phrase boundary
If the parity of the source is the same, we can keep the same phrase source, and a bad phrase boundary can be shifted to extend the phrase.

However, cycles may be introduced.

1-1. Eliminating ground phrases

Eliminating a ground phrase a at odd position $\left(i_{\mathrm{b}}+1\right)$
\square If source $f\left(i_{b}\right)$ of left \mathbf{b} is even
\square merge a with left phrase
$=$ update source of a to $f\left(i_{\mathrm{b}}\right)+1$
\square Repeat while source of \mathbf{b} is even (There is always an a to its right)
These changes don't introduce cycles since \mathbf{b} was not in a cycle.

What do we do, when the source of \mathbf{b} is odd?

Key observation

Parity Lemma

The parity of occurrences in t_{n} can only change for the 6 strings:
a, b, ab, ba, aba, bab

Proof:

1. aa and bb can occur only at odd positions.

- Due to morphism $(\mu(a)=a b, \mu(b)=b a)$, even positions start with either $a b$ or $b a$.

2. abab and baba can only occur at even positions.

Otherwise, due to 1 ., the string would contain a cubes:

even positions

- However, Thue-Morse words are known to be cube free.

3. The 6 strings are the only strings that do not contain $a a, b b, a b a b$ or baba as substrings.

1-1. Eliminating ground phrases: Terminal Cases

even positions

Let j be smallest integer s.t. $f^{j}\left(i_{\mathrm{b}}\right)$ is odd (or is \perp).
Only following cases due to parity lemma. (occurrence of b in aba, bab, ba, ab, b)

Procedure terminates, because
\# of bad phrase boundaries strictly decreases.

Done since phrase ba doesn't need source. Recurse to eliminate a.	Done since phrase ba doesn't need source. Recurse to eliminate b.	Done since phrase ba doesn't need source. Middle boundary only made the first time.
Done since phrase ba doesn't need source	Done since phrase ba doesn't need source. Recurse to eliminate a.	Done since phrase ba doesn't need source

1-2. Eliminating Phrases: aba, bab

1-3. Eliminating remaining bad phrase boundaries
All remaining "bad" phrase boundaries can be removed by moving them to the right, keeping the sources of phrases because only cases are:
\square length-2 phrases where both boundaries are bad

\square phrases with bad boundaries whose occurrences always have the same parity
(no phrases aba, bab or ground phrase)

Changes in \# of phrases $\#_{\text {tot }}$ in terms of \# of ground phrases $\#_{g}$

$$
\begin{aligned}
& i_{\mathrm{b}} \\
& \mathrm{~b}|\mathrm{a}|
\end{aligned}
$$

$$
\#_{\mathrm{g}}:-1
$$

even positions

$$
\begin{aligned}
& \#_{\mathrm{g}}: \pm 0 \\
& \#_{\text {tot }}: \pm 0
\end{aligned}
$$

$\#_{\text {tot }}: \pm 0$ first time, -1 otherwise
Can also happen for abab

$$
\begin{array}{|l}
\#_{\mathrm{g}}:-1 \\
\#_{\text {tot }}:-1
\end{array} \quad \begin{aligned}
& \#_{\mathrm{g}}:-2 \\
& \#_{\mathrm{tot}}:-1
\end{aligned} \quad k^{\prime} \leq k-\left[\left(\#_{\mathrm{g}}-2\right) / 2\right\rceil
$$

\# of phrases

$k_{n} \leq k_{n+1}-\left\lceil\left(\#_{\mathrm{g}}(n+1)-2\right) / 2\right\rceil$

- If $k_{n} \leq k_{n+1}-1$, just choose $i=1$ and we are done.
- If $k_{n}=k_{n+1}$, then $\#_{\mathrm{g}}(n+1)=2$ and case \mathbb{A} was applied twice.
- Two phrases of ab and two phrases of ba are created. Therefore $\#_{g}(n) \geq 4$
$k_{n-1} \leq k_{n}-\left\lceil\left(\#_{\mathrm{g}}(n)-2\right) / 2\right\rceil$
$\leq k_{n}-1=k_{n+1}-1$
If $k_{n-1} \leq k_{n+1}-2$, just choose $i=2$ and we are done.
- If $k_{n-1}=k_{n}-1$, then $\#_{\mathrm{g}}(n)=4$ and case A was applied twice, and case was B applied once.

Therefore $\#_{\mathrm{g}}(n-1) \geq 5$

$$
\begin{aligned}
k_{n-2} & \leq k_{n-1}-\left\lceil\left(\#_{\mathrm{g}}(n-1)-2\right) / 2\right\rceil \\
& \leq k_{n-1}-2=k_{n+1}-3
\end{aligned}
$$

Summary

\square Size of smallest BMS for $t_{n}: b\left(t_{n}\right)=n+2$ Proof: given size k BMS for t_{n}, we can make
\square size $k+1$ BMS for t_{n+1}

- size $k-i$ BMS for t_{n-i} for some $i \in\{1,2,3\}$.
\square Since $\gamma\left(t_{n}\right)=4$ for any $n \geq 4$ [Kutsukake et al. 2020] $\left\{t_{n} \mid n \geq 4\right\}$ is a family of strings such that $\gamma=o(b)$
\square Concatenating t_{n} over different binary alphabets gives, for any $\gamma \geq 4$, a family of strings such that: $b=\Theta(\gamma \log N / \gamma)$, where N is length of string.
Showed for the first time the gap between b and γ, i.e., γ is not always reachable by dictionary compression.

