Computing the Rank profile matrix (and some bonus) Jounées Nationales du Calcul Formel

Clément Pernet

Laboratoire de l'Informatique du Parallélisme, Univ. Grenoble Alpes, Univ. de Lyon, CNRS, Inria

> Cluny. 2 novembre 2015

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

JNCF, Cluny, 2 nov. 2015 1 / 51

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- int32_t
- Int64_t
- 🕘 float
- 🗿 double

GMP mpz_t (hence uint64_t)

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- int32_t
- Int64_t
- 🕘 float
- 5 double

GMP mpz_t (hence uint64_t)

2 / 51

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- 2 int32_t
- Int64_t
- 🕘 float
- 5 double
- GMP mpz_t (hence uint64_t)

Rank profiles: how to select the first 3 linearly indep rows of

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- int32_t
- Int64_t
- 🕘 float
- 5 double
- GMP mpz_t (hence uint64_t)

Rank profiles: how to select the first 3 linearly indep rows of

0	0	0	0	1
0	2	2	0	0
0	1	1	1	2
1	2	1	2	1
0	1	0	0	1

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- int32_t
- Int64_t
- 🕘 float
- 5 double
- GMP mpz_t (hence uint64_t)

Rank profiles: how to select the first 3 linearly indep rows of

1	0	0	0	0	1
	0	2	2	0	0
	0	1	1	1	2
	1	2	1	2	1
1	0	Τ	0	0	1

Which CPU arithmetic to multiply 2000×2000 matrices over 200bit integers ?

- boolean
- int32_t
- Int64_t
- 🕘 float
- 5 double
- GMP mpz_t (hence uint64_t)

Rank profiles: how to select the first 3 linearly indep rows of

0	0	0	0	1
0	2	2	0	0
0	1	1	1	2
1	2	1	2	1
0	1	0	0	1

Outline

Choosing the underlying arithmetic

- Using machine word arithmetic
- Larger field sizes

2 Reductions and building blocks

Gaussian elimination

- Which reduction
- Computing rank profiles
- Algorithmic instances
- Relation to other decompositions
- The small rank case

Outline

Choosing the underlying arithmetic

- Using machine word arithmetic
- Larger field sizes

Reductions and building blocks

3 Gaussian elimination

- Which reduction
- Computing rank profiles
- Algorithmic instances
- Relation to other decompositions
- The small rank case

Most common operation

Most of dense linear algebra operations boil down to (a lot of)

 $\texttt{y} \leftarrow \texttt{y} \pm \texttt{a} * \texttt{b}$

- dot-product
- matrix-matrix multiplication
- rank 1 update in Gaussian elimination
- Schur complements, . . .

Which computer arithmetic ?

Many base fields/rings to support

\mathbb{Z}_2	1 bit
$\mathbb{Z}_{3,5,7}$	2-3 bits
\mathbb{Z}_p	4-26 bits
\mathbb{Z},\mathbb{Q}	> 32 bits
\mathbb{Z}_p	> 32 bits

Which computer arithmetic ?

Many base fields/rings to support

1 bit
2-3 bits
4-26 bits
> 32 bits
> 32 bits

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Which computer arithmetic ?

Many base fields/rings to support

\mathbb{Z}_2	1 bit	→ bit-packing
$\mathbb{Z}_{3,5,7}$	2-3 bits	→ bit-slicing, bit-packing
\mathbb{Z}_p	4-26 bits	→ CPU arithmetic
\mathbb{Z},\mathbb{Q}	> 32 bits	→ multiprec. ints, big ints,CRT, lifting
\mathbb{Z}_p	> 32 bits	→ multiprec. ints, big ints, CRT

Available CPU arithmetic

- boolean
- integer (fixed size)
- floating point
- .. and their vectorization

Dense linear algebra over \mathbb{Z}_p for word-size p

Delayed modular reductions

- Compute using integer arithmetic
- **2** Reduce modulo *p* only when necessary

Dense linear algebra over \mathbb{Z}_p for word-size p

Delayed modular reductions

- Compute using integer arithmetic
- **2** Reduce modulo p only when necessary

When to reduce ?

Bound the values of all intermediate computations.

A priori:

Representation of \mathbb{Z}_p	$\{0 \dots p-1\}$	$\left\{-\frac{p-1}{2}\dots\frac{p-1}{2}\right\}$
Scalar product, Classic MatMul	$n(p-1)^2$	$n\left(\frac{p-1}{2}\right)^2$

Dense linear algebra over \mathbb{Z}_p for word-size p

Delayed modular reductions

- Compute using integer arithmetic

When to reduce ?

Bound the values of all intermediate computations.

A priori:

Representation of \mathbb{Z}_p	$\{0\dots p-1\}$	$\left\{-\tfrac{p-1}{2}\dots \tfrac{p-1}{2}\right\}$
Scalar product, Classic MatMul Strassen-Winograd MatMul (ℓ rec. levels)	$\frac{n(p-1)^2}{\left(\frac{1+3^\ell}{2}\right)^2 \lfloor \frac{n}{2^\ell} \rfloor (p-1)^2}$	$\frac{n\left(\frac{p-1}{2}\right)^2}{9^\ell \lfloor \frac{n}{2^\ell} \rfloor \left(\frac{p-1}{2}\right)^2}$

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units

y += a * b: correct if $|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$

How to compute with (machine word size) integers efficiently?

1 use CPU's **integer arithmetic units**

y += a * b: correct if $|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$ movq (%rax,%rdx,8), %rax imulq -56(%rbp), %rax addq %rax,%rcx movq -80(%rbp),%rax

How to compute with (machine word size) integers efficiently?

1 use CPU's **integer arithmetic units** + vectorization

y += a * b: correct if
$$|ab + y| < 2^{63} \rightsquigarrow |a|, |b| < 2^{31}$$

movq (%rax,%rdx,8),%rax vpmuludq %xmm3,%xmm0,%xmm0
addq %rax,%rcx vpaddq %xmm2,%xmm0,%xmm0

movq -80(%rbp), %rax

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units + vectorization

② use CPU's floating point units y += a * b: correct if $|ab + y| < 2^{53} \rightsquigarrow |a|, |b| < 2^{26}$

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units + vectorization

y += a	* b: correct if $ ab + y <$	$2^{63} \rightsquigarrow a , a $	$ b < 2^{31}$
movq imulq addq movq	(%rax,%rdx,8), %rax -56(%rbp), %rax %rax, %rcx -80(%rbp), %rax	vpmuludq vpaddq vpsllq	%xmm3, %xmm0,%xmm0 %xmm2,%xmm0,%xmm0 \$32,%xmm0,%xmm0

use CPU's floating point units

y += a * b: correct if $|ab + y| < 2^{53} \rightsquigarrow |a|, |b| < 2^{26}$ movsd (%rax,%rdx,8), %xmm0 mulsd -56(%rbp), %xmm0 addsd %xmm0, %xmm1 movq %xmm1, %rax

How to compute with (machine word size) integers efficiently?

use CPU's integer arithmetic units + vectorization

y += a	* b: correct if $ ab + y < 2$	$2^{63} \rightsquigarrow a , a $	$ b < 2^{31}$
movq imulq addq movq	(%rax,%rdx,8), %rax -56(%rbp), %rax %rax, %rcx -80(%rbp), %rax	vpmuludq vpaddq vpsllq	%xmm3, %xmm0,%xmm0 %xmm2,%xmm0,%xmm0 \$32,%xmm0,%xmm0

use CPU's floating point units + vectorization

y +=	a * b: correct if $ ab +$	$ y < 2^{53} \rightsquigarrow$	$ a , b < 2^{26}$
movsd	(%rax,%rdx,8), %xmmO	vinsertf128	\$0x1, 16(%rcx,%rax), %ymm0
mulsd	-56(%rbp), %xmm0	vmulpd	%ymm1, %ymmO, %ymmO
addsd	%xmmO, %xmm1	vaddpd	(%rsi,%rax),%ymm0, %ymm0
movq	%xmm1, %rax	vmovapd	%ymmO, (%rsi,%rax)

Exploiting in-core parallelism

Ingredients

Exploiting in-core parallelism

Ingredients SIMD: Single Instruction Multiple Data: 1 arith. unit acting on a vector of data $4 \times 64 = 256$ bits MMX 64 hits SSE 128bits x[1] 1 x[2] 1 x[3] AV/X 256 bits v[21 1 v[3] AVX-512 512 bits x[0]+y[0] x[1]+y[1] x[2]+y[2] x[3]+y[3]Pipeline: amortize the latency of an operation when used repeatedly throughput of 1 op/ Cycle for all IF ID EX WB IF ID MEM WB arithmetic ops considered here IF MEM WE MEM WB EX

Exploiting in-core parallelism

Ingredients SIMD: Single Instruction Multiple Data: 1 arith. unit acting on a vector of data $4 \times 64 = 256$ bits MMX 64 hits SSE 128bits 1 x[3] AV/X 256 bits AVX-512 512 bits x[0]+y[0] x[1]+y[1] x[2]+y[2] x[3]+y[3]Pipeline: amortize the latency of an operation when used repeatedly throughput of 1 op/ Cycle for all IF ID EX WB IF ID MEM WB arithmetic ops considered here IF MEM WB Execution Unit parallelism: multiple arith. units acting simulatneously on distinct registers

Intel Sandybridge micro-architecture

AMD Bulldozer micro-architecture

Intel Nehalem micro-architecture

Performs at every clock cycle:

►	1	Floating	Pt.	Mul	$\times 2$	2
---	---	----------	-----	-----	------------	---

• 1 Floating Pt. Add \times 2

Or:

- ► 1 Integer Mul × 2
- ► 2 Integer Add × 2

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)	
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56		
Intel Sandybridge AVX1	INT FP									
AMD Bulldozer FMA4	INT FP									
Intel Nehalem SSE4	INT FP									
AMD K10 SSE4a	INT FP									
Speed of light: CPU freq \times (# daxpy / Cycle) $\times 2$										

Computing the Rank Profile Matrix

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP								
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 SSE4a Speed of light: CPU	INT FP freg ×	(# d	axpv /	Cvcle)	$\times 2$				
opeca of light. et o	incq A	(<i>#</i> −u	unpy /	cycle)					

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 SSE4a Speed of light: CPU	INT FP freq ×	(# d	axpy /	Cycle)	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP								
Intel Nehalem SSE4	INT FP								
AMD K10 SSE4a Speed of light: CPU	INT FP freq ×	(# da	axpy /	Cycle)	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU Fr _{eq.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP	128 128	2	1	2	2 4	2.1 2.1	8.4 16.8	
Intel Nehalem SSE4	INT FP								
AMD K10 SSE4a Speed of light: CPU	${ m INT} \ { m FP} \ { m freq} imes$	(# da	axpy /	Cycle) >	$\times 2$				

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem SSE4	INT FP								
AMD K10 SSE4a	INT FP								
Speed of light: CPU freq $ imes$ ($\#$ daxpy / Cycle) $ imes 2$									

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP	128 128	2	1	2	2 4	2.1 2.1	8.4 16.8	6.44 13.1
Intel Nehalem SSE4	INT FP	128 128	2 1	1 1		2 2	2.66 2.66	10.6 10.6	
AMD K10 SSE4a Speed of light: CPU	INT FP J freq ×	(# da	axpy /	Cycle)	$\times 2$				
Summary: 64 bits AXPY throughput

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell AVX2	INT FP	256 256	2	1	2	4 8	3.5 3.5	28 56	23.3 49.2
Intel Sandybridge AVX1	INT FP	128 256	2 1	1 1		2 4	3.3 3.3	13.2 26.4	12.1 24.6
AMD Bulldozer FMA4	INT FP	128 128	2	1	2	2 4	2.1 2.1	8.4 16.8	6.44 13.1
Intel Nehalem SSE4	INT FP	128 128	2 1	1 1		2 2	2.66 2.66	10.6 10.6	4.47 9.6
AMD K10 SSE4a Speed of light: CPU	INT FP J freq ×	(# da	axpy /	Cycle)	$\times 2$				

Summary: 64 bits AXPY throughput

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10	INT	64	2	1		1	2.4	4.8	
SSE4a	FP	128	1	1		2	2.4	9.6	
Speed of light: CPU	Speed of light: CPU freq $ imes$ ($\#$ daxpy / Cycle) $ imes 2$								

C. Pernet (LIP, U. Grenoble Alpes)

Summary: 64 bits AXPY throughput

		Register size	# Adders	# Multipliers	# FMA	# daxpy /Cycle	CPU F _{req.} (Ghz)	Speed of Light (Gfops)	Speed in practice (Gfops)
Intel Haswell	INT	256	2	1		4	3.5	28	23.3
AVX2	FP	256			2	8	3.5	56	49.2
Intel Sandybridge	INT	128	2	1		2	3.3	13.2	12.1
AVX1	FP	256	1	1		4	3.3	26.4	24.6
AMD Bulldozer	INT	128	2	1		2	2.1	8.4	6.44
FMA4	FP	128			2	4	2.1	16.8	13.1
Intel Nehalem	INT	128	2	1		2	2.66	10.6	4.47
SSE4	FP	128	1	1		2	2.66	10.6	9.6
AMD K10	INT	64	2	1		1	2.4	4.8	
SSE4a	FP	128	1	1		2	2.4	9.6	8.93
Speed of light: CPU	I freq $ imes$	(# da	axpy /	Cycle)	$\times 2$				

C. Pernet (LIP, U. Grenoble Alpes)

Computing over fixed size integers: ressources

Micro-architecture bible: Agner Fog's software optimization resources [www.agner.org/optimize]

Experiments:

Looking into the near future

Intel Skylake & Knights Landing: AVX512-F

2016 (2017 on Xeons)

- Enlarge SIMD register width to 512 bits (8 double or int64_t)
- ▶ same micro arch : FMA for FP and seprate mul/add for INT.

Looking into the near future

Intel Skylake & Knights Landing: AVX512-F

2016 (2017 on Xeons)

- Enlarge SIMD register width to 512 bits (8 double or int64_t)
- ▶ same micro arch : FMA for FP and seprate mul/add for INT.

Cannonlake: AVX512-IFMA

>2017

- AVX512 extension: IFMA (Integer FMA): y += a*b on int64_t
- ▶ But limited to the lower 52 bits of the output (uses the FP FMA)
 → no advantage for int64_t over double

Integer Packing

32 bits: half the precision twice the speed

double	double	double	double
float float	float float	float float	float float

Gfops	double	float	$int64_t$	$int32_t$
Intel SandyBridge	24.7	49.1	12.1	24.7
Intel Haswell	49.2	77.6	23.3	27.4
AMD Bulldozer	13.0	20.7	6.63	11.8

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. n = 2000.

Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits

Computing over fixed size integers

SandyBridge i5-3320M@3.3Ghz. n = 2000.

Take home message

- Floating pt. arith. delivers the highest speed (except in corner cases)
- 32 bits twice as fast as 64 bits
- best bit computation throughput for double precision floating points.

18 / 51

Larger finite fields: $\log_2 p \ge 32$

As before:

- Use adequate integer arithmetic
- 2 reduce modulo p only when necessary

Which integer arithmetic?

- big integers (GMP)
- Iixed size multiprecision (Givaro-RecInt)
- Residue Number Systems (Chinese Remainder theorem) vising moduli delivering optimum bitspeed

Larger finite fields: $\log_2 p \ge 32$

As before:

- Use adequate integer arithmetic
- 2 reduce modulo p only when necessary

Which integer arithmetic?

- big integers (GMP)
- Iixed size multiprecision (Givaro-RecInt)
- Residue Number Systems (Chinese Remainder theorem) wurder using moduli delivering optimum bitspeed

$\log_2 p$	50	100	150	-
GMP	58.1s	94.6s	140s	n = 1000, on an Intel SandyBridge.
RecInt	5.7s	28.6s	837s	
RNS	0.785s	1.42s	1.88s	

In practice

In practice

In practice

Outline

Choosing the underlying arithmetic

- Using machine word arithmetic
- Larger field sizes

2 Reductions and building blocks

Gaussian elimination

- Which reduction
- Computing rank profiles
- Algorithmic instances
- Relation to other decompositions
- The small rank case

Reductions to building blocks

Huge number of algorithmic variants for a given computation. \rightsquigarrow Need to structure the design for a set of routines :

- Focus tuning effort on a single routine
- Some operations deliver better efficiency:
 - in practice: memory access pattern
 - in theory: better algorithms

Memory access pattern

The memory wall: communication speed improves slower than arithmetic

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy

Memory access pattern

- The memory wall: communication speed improves slower than arithmetic
- Deep memory hierarchy
- \rightsquigarrow Need to overlap communications by computation

Design of BLAS 3 [Dongarra & Al. 87]

▶ Group all ops in Matrix products gemm: Work $O(n^3) >>$ Data $O(n^2)$

MatMul has become a building block in practice

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Matrix Multiplication $\rightsquigarrow O$	(n^{ω})	1
[Strassen 69]:	$O(n^{2.807})$	Other operations
:	- ([Strassen 69]: Inverse in $O(n^{\omega})$
Schönhage 81]	$O(n^{2.52})$	[Schönhage 72]: QR in $O(n^{\omega})$
:	· · · ·	[Bunch, Hopcroft 74]: LU in $O(n^{\omega})$
[Coppersmith. Winograd 90]	$O(n^{2.375})$	[Ibarra & al. 82]: Rank in $O(n^{\omega})$
:	- ([Keller-Gehrig 85]: CharPoly in
	- / 0.2708620	$O(n^{\omega} \log n)$
[Le Gall 14]	$O(n^{2.3728039})$	

< 1969: $O(n^3)$ for everyone (Gauss, Householder, Danilevskii, etc)

Matrix Multiplication $\rightsquigarrow O$	(n^{ω})		
[Strassen 69]:	$O(n^{2.807})$	Other operations	
:		[Strassen 69]: Inv	verse in $O(n^{\omega})$
[Schönhage 81]	$O(n^{2.52})$	[Schönhage 72]:	$QR \text{ in } O(n^\omega)$
:	· · · ·	[Bunch, Hopcroft 74]:	LU in $O(n^\omega)$
[Coppersmith_Winograd 90]	$O(n^{2.375})$	[lbarra & <i>al.</i> 82]:	Rank in $O(n^{\omega})$
	0(11)	[Keller-Gehrig 85]: Char	Poly in
:			$O(n^{\omega} \log n)$
[Le Gall 14]	$O(n^{2.3728639})$		

MatMul has become a building block in theoretical reductions

Computing the Rank Profile Matrix

Reductions: theory

Reductions: theory

Common mistrust

- Fast linear algebra is
 - ✗ never faster
 - X numerically unstable

Reductions: theory and practice

Common mistrust

- Fast linear algebra is
 - ✗ never faster
 - × numerically unstable

Lucky coincidence

- ✓ same building block in theory and in practice
- \rightsquigarrow reduction trees are still relevant

Reductions: theory and practice

Common mistrust

- Fast linear algebra is
 - ✗ never faster
 - × numerically unstable

Lucky coincidence

- ✓ same building block in theory and in practice
- \rightsquigarrow reduction trees are still relevant

Road map towards efficiency in practice

- Tune the MatMul building block.
- 2 Tune the reductions.

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

$$\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations

$$\rightsquigarrow k\left(\frac{p-1}{2}\right)^2 < 2^{53}$$

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations
- Strassen-Winograd $6n^{2.807} + \dots$

$$\rightsquigarrow 9^\ell \left\lfloor \tfrac{k}{2^\ell} \right\rfloor \left(\tfrac{p-1}{2} \right)^2 < 2^{53}$$

JNCF, Cluny, 2 nov. 2015 26 / 51

Ingedients [FFLAS-FFPACK library]

• Compute over $\mathbb Z$ and delay modular reductions

- Fastest integer arithmetic: double
- Cache optimizations

$$\rightsquigarrow 9^\ell \left\lfloor \tfrac{k}{2^\ell} \right\rfloor \left(\tfrac{p-1}{2} \right)^2 < 2^{53}$$

• Strassen-Winograd $6n^{2.807} + \dots$

with memory efficient schedules [Boyer, Dumas, P. and Zhou 09] Tradeoffs:

27 / 51

p = 83, $\rightsquigarrow 1 \mod / 10000$ mul.

 $p=821\text{,} \rightsquigarrow 1 \ \mathrm{mod} \ / \ 100 \ \mathrm{mul}.$

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

Reductions in dense linear algebra

LU decomposition

▶ Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$

n	1000	5000	10000	15000	20000		
LAPACK-dgetrf fflas-ffpack	0.024s 0.058s	2.01s 2.46s	14.88s 16.08s	48.78s 47.47s	113.66 105.96s		
ntel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9							
Reductions in dense linear algebra

LU decomposition

• Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$

n	1000	5000	10000	15000	20000	
LAPACK-dgetrf fflas-ffpack	0.024s 0.058s	2.01s 2.46s	14.88s 16.08s	48.78s 47.47s	113.66 105.96s	
Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9						

Characteristic Polynomial

• A new reduction to matrix multiplication in $O(n^{\omega})$.

n	1000	2000	5000	10000	
magma-v2.19-9 fflas-ffpack	1.38s 0.532s	24.28s 2.936s	332.7s 32.71s	2497s 219.2s	
Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9					

Reductions in dense linear algebra

LU decomposition • Block recursive algorithm \rightsquigarrow reduces to MatMul $\rightsquigarrow O(n^{\omega})$ 1000 500010000 1500020000 $\times 7.63$ n14.88s/ 113.66 0.024s 2.01s 48.78s LAPACK-dgetrf $\times 6.59$ 47.47s 105.96s fflas-ffpack 0.058s 2.46s 16.08s • Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

Characteristic Polynomial

• A new reduction to matrix multiplication in $O(n^{\omega})$.

n	1000	2000	5000	10000	×7.5	
magma-v2.19-9 fflas-ffpack	1.38s 0.532s	24.28s 2.936s	332.7s 32.71s	2497s × 219.2s ×	×6.7	
Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9						

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

JNCF, Cluny, 2 nov. 2015 28 / 51

Outline

3

Choosing the underlying arithmetic

- Using machine word arithmetic
- Larger field sizes

2 Reductions and building blocks

Gaussian elimination

- Which reduction
- Computing rank profiles
- Algorithmic instances
- Relation to other decompositions
- The small rank case

The case of Gaussian elimination

Which reduction to MatMul ?

The case of Gaussian elimination

Which reduction to MatMul ?

Slab recursive FFLAS-FFPACK

Tile recursive FFLAS-FFPACK

Sub-cubic complexity: recursive algorithms

The case of Gaussian elimination

Which reduction to MatMul ?

Tile recursive FFLAS-FFPACK

- Sub-cubic complexity: recursive algorithms
- Data locality

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

JNCF, Cluny, 2 nov. 2015 30 / 51

Computing rank profiles

Rank profiles: first linearly independent columns

- Major invariant of a matrix (echelon form)
- Gröbner basis computations (Macaulay matrix)
- Krylov methods

Gaussian elimination revealing echelon forms:

```
[Ibarra, Moran and Hui 82]
```

[Keller-Gehrig 85]

```
[Jeannerod, P. and Storjohann 13]
```


Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative)
 similar to partial pivoting

Need for a more flexible pivoting

Computing rank profiles

Lessons learned (or what we thought was necessary):

- treat rows in order
- exhaust all columns before considering the next row
- slab block splitting required (recursive or iterative)
 similar to partial pivoting

Need for a more flexible pivoting

Gathering linear independence invariants

Two ways to look at a matrix: row- or column-wise

- Row rank profile, column echelon form,
- Column rank profile, row echelon form,

Can't a unique invariant capture all information ?

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

Theorem

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

Definition (Rank Profile matrix)

The unique $\mathcal{R}_A \in \{0,1\}^{m \times n}$ such that any pair of (i, j)-leading sub-matrix of \mathcal{R}_A and of A have the same rank.

- RowRP and CoIRP read directly on $\mathcal{R}(A)$
- Same holds for any (i, j)-leading submatrix.

$$A = PLUQ = P \begin{bmatrix} L & 0 \\ M & I_{m-r} \end{bmatrix} \begin{bmatrix} I_r & \\ & 0 \end{bmatrix}$$

0

 $RowRP = \{1,4\}$ $CoIRP = \{1,2\}$ $\begin{bmatrix} U & V \\ I_{n-r} \end{bmatrix} Q$

Four types of elementary operations:

Search: finding a pivot

Four types of elementary operations:

Search: finding a pivot

Permutation: moving the pivot to the main diagonal

Four types of elementary operations:

Search: finding a pivot

Permutation: moving the pivot to the main diagonal Nermalization: computing $I = I = a_{i,k}$

Normalization: computing L: $l_{i,k} \leftarrow \frac{a_{i,k}}{a_{k,k}}$

Four types of elementary operations:

Search: finding a pivot

Permutation: moving the pivot to the main diagonal

Normalization: computing L: $l_{i,k} \leftarrow \frac{a_{i,k}}{a_{k,k}}$

Update: applying the elimination $a_{i,j} \leftarrow a_{i,j} - \frac{a_{i,k}a_{k,j}}{a_{k,k}}$

Normalization: determines whether L or U is unit diagonal

Normalization: determines whether L or U is unit diagonal

Update: no impact on the decomposition, only in the scheduling:

- iterative, tile/slab iterative, recursive,
- left/right looking, Crout

Normalization: determines whether L or U is unit diagonal

Update: no impact on the decomposition, only in the scheduling:

- iterative, tile/slab iterative, recursive,
- left/right looking, Crout

Search: defines the first r values of P and Q

Normalization: determines whether L or U is unit diagonal

Update: no impact on the decomposition, only in the scheduling:

- iterative, tile/slab iterative, recursive,
- left/right looking, Crout

Search: defines the first r values of P and Q

Permutation: impacts all values of P and Q

Normalization: determines whether L or U is unit diagonal

Update: no impact on the decomposition, only in the scheduling:

- iterative, tile/slab iterative, recursive,
- left/right looking, Crout

Search: defines the first r values of P and Q

Permutation: impacts all values of P and Q

Problem (Reformulation)

Under what conditions on the **Search** and **Permutation** operations does a PLUQ decomposition algorithm reveals RowRP, CoIRP or \mathcal{R}_A ?

The Pivoting matrix

Definition (The pivoting matrix)

Given a PLUQ decomposition A = PLUQ with rank r, define

$$\Pi_{P,Q} = P \begin{bmatrix} I_r \\ \end{bmatrix} Q.$$

Locates the position of the pivots in the matrix A.

The Pivoting matrix

Definition (The pivoting matrix)

Given a PLUQ decomposition A = PLUQ with rank r, define

$$\Pi_{P,Q} = P \begin{bmatrix} I_r \\ \end{bmatrix} Q.$$

Locates the position of the pivots in the matrix A.

Problem (Rank profile revealing PLUQ decompositions) Under which conditions

•
$$\Pi_{P,Q} = \mathcal{R}_A$$

The Pivoting matrix

Definition (The pivoting matrix)

Given a PLUQ decomposition A = PLUQ with rank r, define

$$\Pi_{P,Q} = P \begin{bmatrix} I_r \\ \end{bmatrix} Q.$$

Locates the position of the pivots in the matrix A.

Problem (Rank profile revealing PLUQ decompositions) Under which conditions

$$\bullet \ \Pi_{P,Q} = \mathcal{R}_A$$

• $RowSupp(\Pi_{P,Q}) = RowSupp(\mathcal{R}_A) = RowRP(A)$ (Weaker)

• $ColSupp(\Pi_{P,Q}) = ColSupp(\mathcal{R}_A) = ColRP(A)$ (Weaker)

Various strategies depending on the context Numerical stability: find the absolute largest pivot Data locality: find pivot not too far from the main diagonal Sparsity: find pivot that minimizes/reduce fill-in

Various strategies depending on the context Numerical stability: find the absolute largest pivot Data locality: find pivot not too far from the main diagonal Sparsity: find pivot that minimizes/reduce fill-in

Search revealing rank profiles

- No stability issue over exact domains
- Intuition: must minimize some ordering of the row/col indices (notion of rank profile)

Various strategies depending on the context Numerical stability: find the absolute largest pivot Data locality: find pivot not too far from the main diagonal Sparsity: find pivot that minimizes/reduce fill-in

Search revealing rank profiles

- No stability issue over exact domains
- Intuition: must minimize some ordering of the row/col indices (notion of rank profile)

Example

Search: "Any non zero element on the topmost row":

$$A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

Various strategies depending on the context Numerical stability: find the absolute largest pivot Data locality: find pivot not too far from the main diagonal Sparsity: find pivot that minimizes/reduce fill-in

Search revealing rank profiles

- No stability issue over exact domains
- Intuition: must minimize some ordering of the row/col indices (notion of rank profile)

Example

Search: "Any non zero element on the topmost row":

$$A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad \Pi_{P,Q} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Various strategies depending on the context Numerical stability: find the absolute largest pivot Data locality: find pivot not too far from the main diagonal Sparsity: find pivot that minimizes/reduce fill-in

Search revealing rank profiles

- No stability issue over exact domains
- Intuition: must minimize some ordering of the row/col indices (notion of rank profile)

Example

Search: "Any non zero element on the topmost row":

$$A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad \Pi_{P,Q} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

$$\rightsquigarrow \mathsf{Row}\mathsf{RP}{=}\{1,2,4\}$$

Pivoting and permutation strategies

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row order: any non-zero on the first non-zero row

Pivoting and permutation strategies

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

C. Pernet (LIP, U. Grenoble Alpes)
Pivoting and permutation strategies

Pivot Search

Pivot's (i, j) position minimizes some pre-order:

Row/Col order: any non-zero on the first non-zero row/col

Lex order: first non-zero on the first non-zero row

Pivoting strategies

Pivoting and permutation strategies

Pivot Search

Pivot's (i, j) position minimizes some pre-order: Row/Col order: any non-zero on the first non-zero row/col Lex/RevLex order: first non-zero on the first non-zero row/col

Pivoting strategies

Pivoting and permutation strategies

Pivot Search

Pivot's (i, j) position minimizes some pre-order: Row/Col order: any non-zero on the first non-zero row/col Lex/RevLex order: first non-zero on the first non-zero row/col Product order: first non-zero in the (i, j) leading sub-matrix

Sufficient ?

Is lexicographic ordering sufficient to reveal both rank profiles?

Example

With a lexicographic ordering

$$\mathbf{\Phi} \ A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \Pi_{P,Q}$$

Sufficient ?

Is lexicographic ordering sufficient to reveal both rank profiles?

Example

With a lexicographic ordering

$$A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \Pi_{P,Q}$$

$$But \ A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 3 & 0 \end{bmatrix} \rightsquigarrow \mathcal{R}_A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } \Pi_{P,Q} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Sufficient ?

Is lexicographic ordering sufficient to reveal both rank profiles?

Example

With a lexicographic ordering

$$A = \begin{bmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \Rightarrow \mathcal{R}_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \Pi_{P,Q}$$

$$But \ A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 3 & 0 \end{bmatrix} \rightsquigarrow \mathcal{R}_A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } \Pi_{P,Q} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

 \rightsquigarrow Pivot Swaps mix-up precedence between rows/cols.

 \rightsquigarrow **Permutations** also have to be considered

Pivoting strategies

Pivoting and permutation strategies

Pivoting strategies

Pivoting and permutation strategies

Pivot Search Permutation Pivot's (i, j) position minimizes some pre-order: Transpositions Row/Col order: any non-zero on the first non-zero row/col Cyclic Rotations Lex/RevLex order: first non-zero on the first non-zero row/col **Product order**: first non-zero in the (i, j) leading sub-matrix Cvclic rotation

Search	Row perm.	Col. perm.	RowRP	CoIRP	\mathcal{R}_A	Instance
Row order Col. order						
Lexico.						
Rev. lex.						
Product						

Search	Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance
Row order Col. order	Transposition	Transposition	<i>✓</i>			[IMH82] [JPS13]
Lexico.						
Rev. lex.						
Product						

• RowRP =
$$\begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$$

Search	Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance
Row order Col. order	Transposition Transposition	Transposition Transposition	<i>✓</i>	✓		[IMH82] [JPS13] [KG85] [JPS13]
Lexico.						
Rev. lex.						
Product						

► RowRP =
$$\begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$$

► ColRP = $\begin{bmatrix} I_r & 0 \end{bmatrix} Q \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix}^T$

Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance
Transposition Transposition	Transposition Transposition	<i>√</i>	\checkmark		[IMH82] [JPS13] [KG85] [JPS13]
Transposition	Transposition	~			[Sto00]
Transposition	Transposition		\$		[Sto00]
	Row perm. Transposition Transposition Transposition	Row perm.Col. perm.Transposition TranspositionTranspositionTranspositionTranspositionTranspositionTransposition	Row perm.Col. perm.RowRPTransposition TranspositionTransposition Transposition✓TranspositionTransposition✓TranspositionTransposition✓TranspositionTransposition✓	Row perm.Col. perm.Row RPColRPTransposition TranspositionImage: Colse permissionImage: Colse permissionImage: Colse permissionTranspositionTranspositionImage: Colse permissionImage: Colse permissionImage: Colse permissionTranspositionTranspositionImage: Colse permissionImage: Colse permissionImage: Colse permissionTranspositionTranspositionTranspositionImage: Colse permissionImage: Colse permissionTranspositionTranspositionImage: Colse permissionImage: Colse permissionImage: Colse permissionTranspositionTranspositionTmage: Colse permissionTmage: Colse permissionImage: Colse permissionTranspositionTmage: Col	Row perm.Col. perm.Row RPColRP \mathcal{R}_A Transposition TranspositionTransposition Transposition✓✓TranspositionTransposition✓✓TranspositionTransposition✓✓TranspositionTransposition✓✓TranspositionTransposition✓✓

► RowRP =
$$\begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$$

► ColRP = $\begin{bmatrix} I_r & 0 \end{bmatrix} Q \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix}^T$

Search	Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance		
Row order Col. order	Transposition Transposition	Transposition Transposition	<i>√</i>	✓		[IMH82] [JPS13] [KG85] [JPS13]		
Lexico.	Transposition	Transposition	~			[Sto00]		
Rev. lex.	Transposition	Transposition		1		[Sto00]		
Product	Rotation	Rotation	1	\checkmark	\checkmark	[DPS13]		
$\blacktriangleright \operatorname{Row} \operatorname{RP} = \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$								
• ColRP = $\begin{bmatrix} I_r & 0 \end{bmatrix} Q \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix}^T$								
$\blacktriangleright \ \mathcal{R}_A = 1$	$\mathcal{R}_A = P \begin{bmatrix} I_r & 0 \end{bmatrix} Q$							

Search	Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance
Row order Col. order	Transposition Transposition	Transposition Transposition	✓ 	✓		[IMH82] [JPS13] [KG85] [JPS13]
Lexico.	Transposition	Transposition	<i>✓</i>			[Sto00]
Rev. lex.	Transposition	Transposition		1		[Sto00]
Product Product Product	Rotation Transposition Rotation	Transposition Rotation Rotation	\ \	5	<i>√</i>	[DPS15] [DPS15] [DPS13]
	1	r - 7	1			

$$\mathsf{Row}\mathsf{RP} = \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$$

$$\mathsf{Col}\mathsf{RP} = \begin{bmatrix} I_r & 0 \end{bmatrix} Q \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix}^T$$

$$\mathcal{R}_A = P \begin{bmatrix} I_r & \\ 0 \end{bmatrix} Q$$

Pivoting strategies

Pivoting strategies revealing rank profiles

For any type of PLUQ algorithm: iterative / block iterative / recursive

Search	Row perm.	Col. perm.	RowRP	ColRP	\mathcal{R}_A	Instance
Row order Col. order	Transposition Transposition	Transposition Transposition	<i>✓</i>	\checkmark		[IMH82] [JPS13] [KG85] [JPS13]
Lexico. Lexico.	Transposition Transposition	Transposition Rotation	<i>\</i>	1	1	[Sto00] [DPS15]
Lexico.	Rotation	Rotation	1	1	1	[DPS15]
Rev. lex. Rev. lex. Rev. lex.	Transposition Rotation Rotation	Transposition Transposition Rotation	5	\ \ \	5	[Sto00] [DPS15] [DPS15]
Product Product Product	Rotation Transposition Rotation	Transposition Rotation Rotation	\$ \$	√ √	1	[DPS15] [DPS15] [DPS13]

$$\mathsf{Row}\mathsf{RP} = \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix} P \begin{bmatrix} I_r \\ 0 \end{bmatrix}$$

$$\mathsf{Col}\mathsf{RP} = \begin{bmatrix} I_r & 0 \end{bmatrix} Q \begin{bmatrix} 1 & 2 & \dots & m \end{bmatrix}^T$$

$$\mathcal{R}_A = P \begin{bmatrix} I_r & \\ 0 \end{bmatrix} Q$$

F = **P**

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

I Split A Row-wise

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

 $\ \ \, {\rm Split} \ A \ {\rm Row-wise}$

2 Recursive call on A_1

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- $\textcircled{ \ } \textbf{Split} \ A \ \textbf{Row-wise}$
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- $\textcircled{ \ \ 0 \ \ } Split \ A \ {\sf Row-wise}$
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

$$H \leftarrow A_{22} - G \times V$$
 (MM)

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- $\ \ \, {\rm Split} \ A \ {\rm Row-wise}$
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

$$H \leftarrow A_{22} - G \times V$$
 (MM)

 \bigcirc Recursive call on H

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- ${\small \bullet} {\small \ \, {\rm Split}} \ A \ {\rm Row-wise}$
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

$$H \leftarrow A_{22} - G \times V$$
 (MM)

- \bigcirc Recursive call on H
- 6 Row permutations

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- Split A Row-wise
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

$$H \leftarrow A_{22} - G \times V$$
 (MM)

- \bigcirc Recursive call on H
- 6 Row permutations

Implements the lexicographic order search.

Col/Row Transpositions : Computes the ColRP

Slab Recursive LU [IMH82, KG85, Sto00, JPS13]

- Split A Row-wise
- **2** Recursive call on A_1

$$G \leftarrow A_{21}U_1^{-1} \text{ (trsm)}$$

$$H \leftarrow A_{22} - G \times V$$
 (MM)

- \bigcirc Recursive call on H
- 6 Row permutations

Implements the lexicographic order search.

- ► Col/Row Transpositions : Computes the ColRP
- Row Rotations : Computes \mathcal{R}_A [DPS15]

 2×2 block splitting

Dumas, P. and Sultan 13

Recursive call

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

Dumas, P. and Sultan 13

TRSM: $B \leftarrow L^{-1}B$

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

2 independent recursive calls (compatible with the product order)

Dumas, P. and Sultan 13

 $\texttt{TRSM:} \ B \leftarrow BU^{-1}$

Dumas, P. and Sultan 13

TRSM: $B \leftarrow L^{-1}B$

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

Dumas, P. and Sultan 13

The tiled recursive algorithm

Dumas, P. and Sultan 13

Recursive call

The tiled recursive algorithm

Dumas, P. and Sultan 13

Puzzle game (block rotations)

The tiled recursive algorithm

Dumas, P. and Sultan 13

- $O(mnr^{\omega-2})$ (2/3 n^3 for $\omega = 3$)
- fewer modular reductions than slab algorithms
- rank deficiency introduces parallelism

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

Iterative algorithms

- Unefficient with large problems
- Good for base case implementations (faster in-cache computation)

Iterative algorithms

- Unefficient with large problems
- Good for base case implementations (faster in-cache computation)

Which base case algorithm?

- Formerly [DPS13]: product order iterative algorithm
 - X many permutations
 - X many modular reductions

Iterative algorithms

- Unefficient with large problems
- Good for base case implementations (faster in-cache computation)

Which base case algorithm?

- Formerly [DPS13]: product order iterative algorithm
 - X many permutations
 - X many modular reductions

- r j r U i L V
- [DPS15]: Simply use the schoolbook algorithm (Lexico+Rotations)
 - ✓ fewer permutations
 - ✓ modular reductions delayed more easily
 - Crout variant: better data access pattern

45 / 51

- ► > 2 Gfops improvement
- Implemented in FFLAS-FFPACK (kernel of LinBox).

LUP and PLU decompositions

LUP

If A has generic RowRP

▶ *LUP*(*A*) with Lex order and col. rot.:

In particular, if A has full row rank and m = n:

LUP and PLU decompositions

LUP

If A has generic RowRP

▶ *LUP*(*A*) with Lex order and col. rot.:

In particular, if A has full row rank and m = n:

PLU

If A has generic CoIRP

▶ *PLU*(*A*) with RevLex order and row rot.

In particular, if A has full column rank and m = n:

$$P^{I_r}_{0} = \mathcal{R}$$

 $\rightsquigarrow \stackrel{I_r}{}_0 P = \mathcal{R}_A$ $\rightsquigarrow P = \mathcal{R}_A$

\bigwedge and m = n: $\rightsquigarrow P = \mathcal{R}_A$

 \rightarrow

Echelon forms

C. Pernet (LIP, U. Grenoble Alpes)

Computing the Rank Profile Matrix

JNCF, Cluny, 2 nov. 2015 47 / 51

When $r\ll m,n,$ $O(mnr^{\omega-2})$ can be too expensive. (Compressed sensing applications)

[Cheung Kwok Lau'12]: Compute the rank r and r linearly independent rows in $O(r^\omega + mn)$ probabilistic

When $r \ll m,n, \, O(mnr^{\omega-2})$ can be too expensive. (Compressed sensing applications)

[Cheung Kwok Lau'12]: Compute the rank r and r linearly independent rows in $O(r^\omega + mn)$ probabilistic

[Storjohann Yang'14:] Rank profile in $O(r^3 + mn)$ probabilistic.

When $r \ll m, n, \; O(mnr^{\omega-2})$ can be too expensive. (Compressed sensing applications)

[Cheung Kwok Lau'12]: Compute the rank r and r linearly independent rows in $O(r^{\omega} + mn)$ probabilistic [Storjohann Yang'14:] Rank profile in $O(r^3 + mn)$ probabilistic. [Storjohann Yang'15:] Rank profile in $O(r^{\omega} + mn)$ probabilistic.

- When $r \ll m, n, \; O(mnr^{\omega-2})$ can be too expensive. (Compressed sensing applications)
- [Cheung Kwok Lau'12]: Compute the rank r and r linearly independent rows in $O(r^{\omega} + mn)$ probabilistic [Storjohann Yang'14:] Rank profile in $O(r^3 + mn)$ probabilistic. [Storjohann Yang'15:] Rank profile in $O(r^{\omega} + mn)$ probabilistic.

Can the rank profile matrix be computed in similar complexities?

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- ▶ its inverse A⁻¹_s
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.

The small rank case

[Storjohann Yang'14] Linear System Oracle

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.
- **1** Use A_s^{-1} to find the next row and column to append to A_s .

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.
- **1** Use A_s^{-1} to find the next row and column to append to A_s .

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.
- **1** Use A_s^{-1} to find the next row and column to append to A_s .

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.
- **1** Use A_s^{-1} to find the next row and column to append to A_s .

Sketch of the $O(r^3 + mn)$ algorithm

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.

Sketch of the $O(r^3 + mn)$ algorithm

Incrementally for s = 1..rank(A), maintain

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.
- Q Use A_s⁻¹ to find the next row and column to append to A_s. → O(sn)
 Q Compute A_{s+1}⁻¹ by rank 1 updates → O(s²)

 Use the vector b to compress row linear dependency information

Sketch of the $O(r^3 + mn)$ algorithm

Incrementally for s = 1..rank(A), maintain

- an $s \times s$ invertible sub-matrix A_s of A.
- its inverse A_s^{-1}
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.

Q Use A_s⁻¹ to find the next row and column to append to A_s. → O(s log n)
 Q Compute A_{s+1}⁻¹ by rank 1 updates → O(s²)

- Use the vector b to compress row linear dependency information
- Improved by linear independence oracles

The small rank case

[Storjohann Yang'14] Linear System Oracle

Sketch of the $O(r^3 + mn)$ algorithm

Incrementally for s = 1..rank(A), maintain

- an $s \times s$ invertible sub-matrix A_s of A.
- ▶ its inverse A⁻¹_s
- a partial solution $A_s x_s = b_s$ to a linear system Ax = b.

Q Use A_s⁻¹ to find the next row and column to append to A_s. → O(s log n)
 Q Compute A_{s+1}⁻¹ by rank 1 updates → O(s²)

- Use the vector b to compress row linear dependency information
- Improved by linear independence oracles Lexico. search with rotations \rightsquigarrow computes \mathcal{R}_A

JNCF, Cluny, 2 nov. 2015 49 / 51

Sketch of the algorithm: RowRP in $O(r^{\omega} + mn)$

- Insted of building A_s^{-1} iteratively $(O(r^3))$, use an asymptotically fast relaxation scheme $O(r^{\omega})$.
- 2 Requires to deal with only r columns in generic column RP.
- Insured by a call to [Cheung Kwok Lau'12] + Toeplitz preconditionner
- 4 Returns the row rank profile

Sketch of the algorithm: RowRP in $O(r^{\omega} + mn)$

- Insted of building A_s^{-1} iteratively $(O(r^3))$, use an asymptotically fast relaxation scheme $O(r^{\omega})$.
- 2 Requires to deal with only r columns in generic column RP.
- Insured by a call to [Cheung Kwok Lau'12] + Toeplitz preconditionner
- eturns the row rank profile

Problem: step 3 loses information required for the \mathcal{R}_A .

Sketch of the algorithm: RowRP in $O(r^{\omega} + mn)$

- Insted of building A_s^{-1} iteratively $(O(r^3))$, use an asymptotically fast relaxation scheme $O(r^{\omega})$.
- 2 Requires to deal with only r columns in generic column RP.
- Ensured by a call to [Cheung Kwok Lau'12] + Toeplitz preconditionner
- eturns the row rank profile

Problem: step 3 loses information required for the \mathcal{R}_A .

Solution for \mathcal{R}_A in $O(r^{\omega} + mn)$

- **(1)** Compute the RowRP \mathcal{I} by [Storjohann Yang'15] on A
- 2 Compute the ColRP $\mathcal J$ by [Storjohann Yang'15] on A^T

Sketch of the algorithm: RowRP in $O(r^{\omega} + mn)$

- Insted of building A_s^{-1} iteratively $(O(r^3))$, use an asymptotically fast relaxation scheme $O(r^{\omega})$.
- 2 Requires to deal with only r columns in generic column RP.
- Sensured by a call to [Cheung Kwok Lau'12] + Toeplitz preconditionner
- eturns the row rank profile

Problem: step 3 loses information required for the \mathcal{R}_A .

Solution for \mathcal{R}_A in $O(r^{\omega} + mn)$

- ① Compute the RowRP $\mathcal I$ by [Storjohann Yang'15] on A
- **2** Compute the CoIRP \mathcal{J} by [Storjohann Yang'15] on A^T
- **3** Extract the $r \times r$ submatrix $A_r = A_{\mathcal{I},\mathcal{J}}$
- **4** Compute the LUP decomp of A_r with col. rotations

Sketch of the algorithm: RowRP in $O(r^{\omega} + mn)$

- Insted of building A_s^{-1} iteratively $(O(r^3))$, use an asymptotically fast relaxation scheme $O(r^{\omega})$.
- 2 Requires to deal with only r columns in generic column RP.
- Sensured by a call to [Cheung Kwok Lau'12] + Toeplitz preconditionner
- eturns the row rank profile

Problem: step 3 loses information required for the \mathcal{R}_A .

Solution for \mathcal{R}_A in $O(r^{\omega} + mn)$

- ① Compute the RowRP $\mathcal I$ by [Storjohann Yang'15] on A
- ② Compute the ColRP ${\mathcal J}$ by [Storjohann Yang'15] on A^T
- **③** Extract the $r \times r$ submatrix $A_r = A_{\mathcal{I},\mathcal{J}}$
- **4** Compute the LUP decomp of A_r with col. rotations
- Solution Recover \mathcal{R}_A by inflating $\mathcal{R}_{A_r} = P$ with zeroes.

Conclusion

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

So far, floating point arithmetic delivers best speed

Conclusion

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS
 - \rightsquigarrow harnesses floating point efficiency
 - → embarrassingly easy parallelization (and fault tolerance)

Conclusion

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

- So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 Arrnesses floating point efficiency

 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms
 ~~ architecture oblivious vs aware algorithms [Gustavson 07]
Conclusion

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

- ► So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 Arrnesses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]
- New pivoting strategies revealing all rank profile informations violation tournament pivoting? [Demmel, Grigori and Xiang 11]

Conclusion

Design framework for high performance exact linear algebra Asymptotic reduction > algorithm tuning > building block implementation

- ► So far, floating point arithmetic delivers best speed
- Medium size arithmetic: RNS

 Arrnesses floating point efficiency
 embarrassingly easy parallelization (and fault tolerance)
- Favor tiled recursive algorithms

 ~~~ architecture oblivious vs aware algorithms [Gustavson 07]
- New pivoting strategies revealing all rank profile informations violation tournament pivoting? [Demmel, Grigori and Xiang 11]

Thank you