
Automated generation of various and consistent
populations in multi-agent simulations

Benoit Lacroix and Philippe Mathieu

Abstract The variety and consistency of the agents behaviors greatly influences
the realism in multi-agent simulations, and designing scenarios that simultaneously
take into account both aspects is a complex task. To address this issue, we propose
an approach to automatically create populations using sample data. It facilitates the
designers tasks, and variety as well as consistency issues are handled by the gener-
ation model. The proposed approach is based on a behavioral differentiation model
that describes the behaviors of agents using norms. To automatically configure this
model, we propose an inference mechanism based on Kohonen networks and esti-
mation distribution functions. We then introduce agents generators that can create a
specified population, and are automatically configured by the inferred norms. The
approach has been evaluated in traffic simulation, in association with a commer-
cial software. Experimental results show that it allows to accurately reproduce the
populations represented in sample data.

1 Introduction

The design of realistic scenarios in simulations is a crucial issue, as they play a key
part in the users’ immersion and the results validity. Moreover, the variety and con-
sistency of the agents behaviors greatly influences the simulation outcomes. How-
ever, the scenarios design is often a complex task: introducing a high variety of
behaviors into the simulation, while simultaneously avoiding any inconsistency, re-
quires a careful configuration. Specific tools are therefore needed to assist the de-
signer in these configuration tasks.

Such issues have been studied in the virtual reality field. For instance, Ulicny et
al. [9] proposed specific tools for the designers, based on a painting metaphor. Us-
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ing a brush, the designer can paint new pedestrians in the simulation, or behavioral
characteristics on existing ones. This approach enables to easily create agents in the
simulation and increase the variety. However, it remains focused on the graphical
part of the simulation, and is unable to automatically build a population from sample
data. Other works in crowd simulation [7] or traffic simulation [10] have focused on
the introduction of variety in agents behaviors, through variations in their graphical
or behavioral models. Nonetheless, these approaches involve complex interventions
of the designer and have to be reproduced for each scenario creation. Regarding the
simulation models, a learning-driven methodology to build them automatically was
investigated in [2]. However, this methodology does not consider the configuration
of existing models. Recent works [1] have addressed the automated validation of the
multi-agent simulations results, by using statistical analysis. This latest approach is
very complementary to ours, even though it rather focuses on the simulation valida-
tion than on the populations generation.

To address these shortcomings, we propose to automatically create agents popu-
lations in the simulations, while instantiating agents that display various and consis-
tent behaviors. We based our approach on previous works [5, 6], where a behavioral
differentiation model, representing agents behaviors using a social norm metaphor,
was presented: each norm represents a set of agents sharing similar behavioral traits.
In this paper, we propose a method to automatically configure this model using sam-
ple data, that can be either real measurements or simulated ones.

In more detail, this work advances the state of the art in the following ways:

• we present an original approach to automatically infer norms and behavioral pa-
rameters from sample data. This approach combines two unsupervised learning
techniques: the inference of agents categories using self-organizing maps [4],
and the estimation of the distribution function of the parameters. This method
automatically configures the behavioral differentiation model by constructing the
norms and their parameters.

• we present a novel technique to automate the generation of agents populations
in simulations. This method is based on three elements: agents profiles, that de-
scribe the agents behavioral characteristics using norms; time slices, that asso-
ciate a time dimension to sets of profiles; and generators, that group time slices
and environmental parameters. Easily customizable and reusable, the generators
provide a computer-based tool to assist designer during scenario creation.

• we combine the above to automatically configure the generators, in order to re-
produce sample data. We apply this technique to traffic simulation, to create pop-
ulations of vehicles. We evaluate our approach and show that the population that
was created using the inferred generators is statistically similar to the original
population, with an average difference of less than 3 %.

The rest of this paper is organized as follows. Section 2 briefly presents the char-
acteristics of the behavioral differentiation model. In Section 3, we describe the
inference mechanism. Section 4 presents the agents generators, and Section 5 de-
scribes the application to traffic simulation. Finally, Section 6 concludes and dis-
cusses the model further developments.
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Fig. 1 The designer specifies
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agents. The model agents are
used to assign parameters val-
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2 Behavioral Differentiation Model

In this section, we briefly introduce the main characteristics of the behavioral differ-
entiation model. This model enables to instantiate various and consistent behaviors
for the agents, and to produce behaviors representative of real world situations [6].
Moreover, it was developed in an industrial context, and no modification of the sim-
ulation source code is needed to integrate it in commercial softwares.

In this model, the behaviors of the simulation agents are described using a social
norm metaphor. The norms represent behavioral patterns that specify agents behav-
iors. They allow to generate the parameters values of the agents at their creation, and
to control their conformity at runtime. During scenario creation, the designer spec-
ifies norms and parameters in the behavioral differentiation model (Fig. 1). Model
agents are middlemen between the model and the simulation: at the creation of the
simulation agents, a norm is instantiated in a model agent; the values of this model
agent are then sent to the corresponding simulation agent; finally, at runtime, the
model agents are used to control the conformity of the simulation agents values.

The Parameters represent the behavioral parameters of the simulation agents in
the model. A Parameter which reference parameter is null is called a root parameter.

Definition 1. A Parameter p is a tuple (pref,Dp,vdp ,gp, fp) defined by:

• pref(p) a reference parameter,
• Dp a finite definition domain, with if pref 6= null, then Dp ⊆Dpref ,
• vdp ∈Dp a default value,
• gp a probability distribution over Dp, with by default gp a uniform distribution,
• fp : Dpref 7→ [0,1] a distance function that allows to compute the gap between a

value and p definition domain, with by default ∀x ∈Dpref , fp(x) = 0.

The Norms specify the agents behaviors. They represent a behavioral pattern,
used during agents creation and conformity checks. A Root norm holds all the root
parameters, and is used to check agents conformity with their specification.

Definition 2. A Norm N is a set {Nref,PN ,QN ,τN ,δmaxN} with:

• Nref(N) a reference norm,
• PN a finite set of parameters p,
• QN a set of properties,
• τN a violation rate of the norm, which describes the proportion of violating be-

haviors, with τN ∈ [0,1]. By default, τN = 0,
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• δmaxN a maximal gap to the norm, which describes the tolerance towards norm
violations, with δmaxN ∈ [0,1]. By default, δmaxN = 1.

Finally, the Model Agents represent the instantiation of a norm: they include all
the parameters of their reference norm, and associate a value to each of them.

Definition 3. A Model Agent am is a set {Nam ,Cam} with:

• Nam a reference norm,
• Cam = {(p,vp), p ∈PNam} a set of pairs of parameters and associated values.

Example 1. In a traffic simulation, each driver is characterized by a set of behav-
ioral parameters, like the maximal speed or the security distance. The definition of
such behavioral parameters in the behavioral differentiation model can result in the
following Parameters:

• the maximal speed vmax, defined by pref = null, Dp = [0,200] km/h, vdp =
100 km/h,

• the safety time ts, defined by pref = null, Dp = [0.1,3]s, vdp = 1.5s, which repre-
sents the security distance d (d = ts · v),

• the normal maximal speed on highway vnormal , defined by pref = vmax, Dp =
[110,130] km/h, vdp = 120 km/h, gp the normal distribution described by a mean
value µ = vdp and variance σ2 = 5 truncated at Dp bounds,

• the normal safety time tnormal , defined by pref = ts, Dp = [1,2.5]s, vdp = 1.5s.

The root norm Nroot is defined by PNroot = {vmax, ts}. The norm Nnormal, defined by
Nref = Nroot, PN = {vmax,normal , tnormal} and QN = /0, represents a normal driving
style. Simulation agents created from the model agents instantiated from Nnormal will
therefore adopt this particular driving style.

This model is associated to an algorithm inspired from fuzzy path following tech-
niques [8], and further presented in [5]. It enables to instantiate various behaviors
for the agents within the same norm.

3 Automated Configuration of the Model

In this section, we present a method to automatically configure the behavioral differ-
entiation model using sample data. The objectives are to ease the designers work and
facilitate the use of the model. To avoid any need for user supervision and preserve
genericity, we chose to combine two unsupervised learning techniques: Kohonen
networks [4], also called self-organizing maps, and distribution function estimation.

Algorithm 1 presents the procedure used. First, a Kohonen network of rectangu-
lar topology is created. To minimize user configuration, the number of clusters (ie.
of neurons) is dynamically computed, function of the dimension d of the input vec-
tors: here, k = (d +1)2. For each of the k clusters, a norm Nk and d parameters pk,i
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Algorithm 1 Automated creation of norms
Require: a set of inputs E = {e} with d the dimension of the input vectors e
1: create the Kohonen network K of rectangular topology with k = (d +1)2 neurons of weights

Wi = (wi, j) (i ∈ [1,k] and j ∈ [1,d]) ; train K with the set of examples E
2: for all i ∈ [1,k] do
3: create a Norm Ni such that QNi = /0, τNi = 0, δmaxNi

= 1, and Nre f (Ni) = Nroot

4: for all j ∈ [1,d] do
5: create a Parameter pi, j
6: save the weight value wi, j of the neuron i as the default value of pi, j : vd(pi, j)← wi, j
7: end for
8: end for
9: for all e ∈ E do

10: classify the example e using the network K . Let Wi be the weights of the triggered neuron
11: for all j ∈ [1,d] do
12: if wi, j is greater than the maximum or lower than the minimum of Dpi, j , update the cor-

responding bound of the domain
13: add the value e j to the distribution estimator of the Parameter pi, j
14: end for
15: end for

(i ∈ [1,d]) are created. This norm represents the inferred cluster, and the parameters
represent the different dimensions of the input data.

The set of example E is then used to train the Kohonen network. The outputs are
the values vector Wk of the k neurons. By construction, for each k, each value wk,i of
Wk matches the parameter pk,i of Nk. These values define the default value of each
of the parameters: ∀i ∈ [1,d], vd(pk,i) = wk,i.

We still have to determine the definition domain of each of the parameters, as
well as the associated probability distribution. To compute these elements, the Ko-
honen network trained during the previous steps is used to classify the sample data.
For each k, Ek ⊂ E is the set of inputs in cluster k. The bounds of the definition
domain of the parameter pk,i are the extremes values taken by this dimension in Ek:
if Dpk,i = [ai,bi], then ai = minEk{ei} and bi = maxEk{ei}. We combine this step
with an estimation of the distribution function representing these data. Without loss
of generality, we suppose that the data follow a normal distribution function. Using
a method based on the maximum likelihood, we estimate the normal distribution
parameters.

This procedure automatically creates a set of norms representing the sample data.
It provides a method to easily parameterize a model to reproduce observed situa-
tions. For instance, in crowd or traffic simulations, data can be recorded in the real
world, and can then be used to infer a set of norms. The same method can be used
with data recorded during a simulation run. We can then reproduce an experimental
setting by creating a situation similar to the recorded one.
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4 Generation of Agents Populations

In this section, we describe a method to easily populate a database with agents,
while specifying precisely the composition of the population. To achieve this goal,
the proposed tool combines profiles, time slices and generators.

A Profile is associated to a Norm, to specify the behavioral pattern of the agents
it will create. It also includes a set of properties: in traffic simulation, one of these
can be an itinerary, to create origin/destination traffic demands. The set of profiles
is noted Pr.

Definition 4. A Profile p is a defined by:

• a norm Np,
• a set of characteristics Qp.

A Time Slice holds a set of profiles. It is active permanently or during a specific
time interval, and specifies the properties of the population created during that pe-
riod: the profiles that will be used, the proportion of each of them, and the frequency
of agents creation. The set of time slices is noted Ts.

Definition 5. A Time slice t is defined by:

• a duration dt , with dt = [tstart , tstop]. If tstart = tstop = 0, t is permanently active,
• a set Pt of profiles, associated to the relative percentage of this profile in the

population: Pt = {(p, pc), p ∈Pr, pc ∈ [0,1]and ∑p∈Pt pc = 1},
• a frequency of generation ft (in s−1).

Finally, a Generator includes a set of time slices and specifies the position at
which the agents will be generated in the environment. Only one time slice may be
active at the same time, and, by default, the agents are created at a random position
in the environment. The set of generators is noted G .

Definition 6. A Generator g is defined by:

• a set of time slices Tg, with ∀t1, t2 ∈T 2
g , t1 6= t2⇒ dt1 ∩dt2 = /0,

• a function fg : A →ℜ3 associating a position in space to an agent.

Example 2. In addition to the norm Nnormal defined in Example 1, we suppose that
a norm Naggressive describing aggressive drivers, adopting higher maximal speeds
and lower security distances, is defined. We specify two time slices representing the
traffic characteristics at different hours during the day:

• t1 represents the rush-hour, when drivers are aggressive and the circulation dense:
d = [7,9]h, Pt1 = {(paggressive, 0.2), (pnormal , 0.8)} and f = 1 (dense flow of
3600 veh/h)

• t2 represents the remaining of the morning period, when only normal drivers are
present: d =]9,12]h, Pt2 = {(pnormal , 1.0)} and f = 0.2 (flow of 720 veh/h)

We then define the generator g1 with Tg1 = {ts1 , ts2} and fg1 : A → (0,0,0). It
creates a population following the specified characteristics at the position (0,0,0).
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Algorithm 2 Creation of the agents by the generators.
Require: t the current timestep, G the set of generators
1: for all g ∈ G do
2: if ∃t ∈Tg, such that t ∈ dt then {the time slice t is active}
3: α ← uniform random([0,1]) ; β ← 0
4: for all (p, pc) ∈Pt do
5: if β ≤ α < β + pc then {select this profile}
6: generate an agent using the behavioral differentiation model and norm Np
7: end if
8: β ← β + pc
9: end for

10: end if
11: end for

The algorithm 2 describes how the agents are created by the generators. At each
time step, we check for each generator if it includes an active time slice. If so, we
randomly select one of the profiles held in this time slice, using the probability pc
to balance this choice. An agent matching this profile is then automatically created
using the behavioral differentiation model and the specified norm.

Moreover, by combining the generators with the inference mechanism presented
in Section 3, generators can be automatically configured. To do so, a profile is cre-
ated for each of the inferred norms. This set of profiles is associated to a single
time slice, permanently active, and the percentage of each profile is set at the corre-
sponding proportion of agents matching this norm in the sample data set. Finally, a
generator holding this time slice is created. The user only has to specify the position
he wants the agents to be created at, if a random position does not suits his needs.

The agents generators enable to easily create a varied and consistent population
in the simulation.

5 Experimental Evaluation

In this section, we apply the presented method to traffic simulation in driving simu-
lators. Driving simulators are used for instance in the automotive industry for design
studies, or to develop driving aid systems. Our study is based on the software de-
veloped and used at Renault, SCANeRTM [3], which is co-developed and distributed
by Oktal. In SCANeRTM, the design of scenarios involves complex configuration
steps: each vehicle has to be individually created, and each of its behavioral pa-
rameters manually modified. We therefore integrated the proposed approach with
SCANeRTM, to automate this configuration. To validate the approach, we propose
here a first evaluation based on data recorded from the simulation.
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5.1 Experimental Protocol

The evaluation is based on a database representing an highway, on a 11 km long
section. In SCANeRTM, the behavior of the drivers is influenced by different behav-
ioral parameters: the maximal speed, the safety time, an overtaking risk, and factors
denoting the respect of speed limits, road signs and priorities. We simulated induc-
tion loop detector in the database at kilometer 6.6, and recorded the vehicles data. In
the real world, such detectors provide elements about the vehicles speed and safety
times. Therefore, we based this analysis on these two parameters. To evaluate the
proposed approach, we used the following protocol:

1. generation of a population of vehicles in the database, using pre-configured gen-
erators. These generators create a flow of 3000 vehicles per hour, with 10 % of
cautious drivers, 10 % of aggressive ones, and 80 % of normal ones,

2. recording of the data of the vehicles crossing the detector, during one hour after
the simulation has reached a steady state. This provides the data set E1,

3. norms inference based on E1 and construction of the associated generator,
4. generation of a population using the generator constructed in step 3,
5. recording of the data, which provides the data set E2,
6. comparison of the two populations using statistical analysis.

5.2 Results

After the generation and the recording of a first population of vehicles (steps 1 and
2 of the protocol), we obtain the sample data set E1 (3471 examples). Using the Al-
gorithm 1, we automatically infer 9 different norms. Figure 2 graphically represents
these norms, using a diamond shape placed at the coordinates of the default value
of their parameters. Around each of these points, a rectangular shape represents the
definition domain of the parameters, and the grayscale filling of these rectangles
denotes the proportion of agents belonging to this norm in the population. Then,
we create a generator g based on the inferred norms. This generator include a single
time slice, permanently active, associated to the frequency f = 3471/3600 (recorded
flow of 3471 veh/h). This time slice includes 9 profiles, each one associated to one
of the inferred norms. Their proportion is set to the relative value of the population
matching this norm in the sample data set E1. Another simulation is then launched,
where the vehicles are created using the generator g at the same position as in step
1. The vehicles data are recorded, which provides the data set E2 (3487 examples).

To statistically compare the two populations represented in the data sets E1 and
E2, we infer the norms using the sample data E2, and compare these with the norms
obtained with E1 in step 3. The results are the following (no significant variation
was observed among different simulation runs). When comparing each cluster with
the closest one (Fig. 3), the default values of the parameters do not differ of more
than 2.3 % (on average 0.3 % and 0.8 % for speed and safety time, respectively).
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Fig. 2 The norms are represented by the default values and the definition domains of their param-
eters. The gray scale of the rectangles representing the definition domains denotes the proportion
of examples belonging to this norm in the input data set.

The bounds of the definition domains remain within a 1.7 % limit, on average, with
a maximum of 8.32 %. The repartition of the population in the closest clusters varies
up to a maximum of 10.2 % (average at 4.7 %). However, this shift in the population
repartition produces an average speed of the vehicles of 102.5 km/h (population E1),
instead of 113 km/h (population E2).

Fig. 3 Comparison of the
differences between the char-
acteristics of each the 9 norms
inferred from E1 and from
E2. Parameters vary from less
than 2.3 %, and the population
affected to each of the norm
from less than 10.2 % (4.7 %
on average).

The clusters inferred from the first and second populations are therefore very sim-
ilar, which shows the robustness of the proposed mechanism. Moreover, the popula-
tion created using the inferred norms expresses the same behavioral characteristics
as the sample population. However, the difference in the repartition of the popula-
tion in the different clusters produces a more “careful” population than the initial
one. Those results show that the proposed approach enables to automatically create
generators that reproduce a population statistically close to the initial one.
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6 Conclusion

We have presented a method to automatically generate populations of agents from
sample data. Based on a description of agents behaviors using a social norm
metaphor, this method combines two elements. First, it infers the configuration of
the behavioral differentiation model using Kohonen networks and an estimation of
the parameters distribution functions. Second, generators automatically create pop-
ulations of agents that display various and consistent behaviors, by taking advantage
of the behavioral differentiation model. We combined these two elements and ap-
plied them to traffic simulation in driving simulators. After integrating the model
into a commercial simulator, we showed that the proposed approach enabled us to
create agents population statistically close to the sample data sets.

Additionally, this approach can be used in any simulation where the agents be-
haviors can be defined as parameters and norms, e.g. pedestrians behaviors in crowd
simulations.

Future works will evaluate the approach with data recorded from the real world,
and to improve the inference mechanism to automatically minimize the number
of inferred norms. Finally, the evolution of the norms during time could lead to
the definition of different time slices, associated to specific norms sets. This would
provide another interesting tool for the user, and bridge the gap with current works
on the automated observation of complex simulations.
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