
Ex-Post Optimal Strategy for the Trading of a Single

Financial Asset : Definition of an Absolute Distance to the

Best Behavior

Olivier BRANDOUY1, Philippe MATHIEU2, and Iryna VERYZHENKO3

1 LEM, UMR CNRS-USTL 8179 olivier.brandouy@univ-lille1.fr
2 LIFL, UMR CNRS-USTL 8022 philippe.mathieu@lifl.fr
3 LEM & LIFL, iryna.verizhenko@univ-lille1.fr

Obtaining good (even acceptable) performances with active management strategies in finance is a
fairly hard challenge. Theoretically speaking, tenants of the efficient market hypothesis claim, with
strong arguments, that a rational investor should stick to a simple ”Buy and Hold” strategy for a
correctly diversified portfolio (see for example Sharpe (1991) or Malkiel (2004)). Said differently,
an active management, linked to hypothetical managerial skills for market timing or stock picking
would mostly generate transaction costs without real benefit. Nevertheless, this debate is far from
being closed (see for example Brock, Lakonishok, and LeBaron (1992), Shen (2003)) as well as the
whole discussion on the profitability of active versus passive portfolio management styles.4 In this
paper, we do not discuss the opportunity of such active strategies based on market timing nor
we describe an operational process allowing fund managers to find out how to identify states in
the market where ”buying” or ”selling” is particularly appropriate. We neither propose a method
that ranks various active strategies in terms of risk-return performance (although our framework
might be extended to this bi-criteria framework). We rather propose a theoretical analysis of some
absolute limits concerning the profits one can expect from the trading of financial assets.
First of all, one reason for doubting that active strategies can earn excess risk-adjusted returns is
linked to the high level of stochasticity of financial markets. In other terms, these markets are hardly
predictable. On the other hand, we stress that the realization of these excess returns is complex
task due to an additional computational issues. We especially show that even if future prices were
perfectly predictable, determining how to behave optimally with respect to this knowledge can be
extremely complicated, and, in many cases, intractable. Therefore, the bottomline of this research
is to identify an optimal strategy S∗ providing the maximum profit one can obtain in trading some
financial commodity, under a predefined set of constraints and with a complete knowledge of its
price motion.
This question will be called the S ∗ −determination problem. We show that this latter problem is
far from being trivial, even if this target immediately evokes many popular models5. We provide a
new algorithm that decreases the complexity class of this problem and propose a new method de-

4 See for example Jensen (1968) for an argumentation about why actively managed funds should be
avoided and, among others, Elton, Gruber, and Blake (1996) or Carhart (1997) for empirical arguments
or explanations that do not match exactly this argumentation

5 That most frequently prove to be completely inefficient

2 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

livering an absolute performance indicator geared towards the evaluation of a wide range of trading
strategies. This algorithm establishes, for any series of prices, a boundary in terms of maximum
profit that has not been proposed before to our knowledge.
We restrict our analysis to the evaluation of strategies involving the trading of a single asset (for
example, a market index tracker). One potential application for this algorithm could be to estimate
the ex-post performance of investment strategies or fund management principles that are formulated
ex-ante the realization of prices over which these are deployed. It also provides an alternative to
the relative rankings of investment strategies delivered by traditional methods.
We show that this best investment behavior can be defined using a linear programming framework
and solved with a Simplex approach. Nevertheless, if this method is theoretically correct, it suffers
from severe limitations in terms of computability (the underlying algorithm being non-polynomial
in the worst case). We therefore propose to embed this question in a graph theory framework and
show that the determination of the best investment behavior is equivalent to the identification of
an optimal path in an oriented, weighted, bipartite network. We illustrate these results with real
data as well as simulated algorithmic trading methods.
This paper is organized as follow. We first formalize the framework we start from and define ex-
plicitely the S ∗−determination problem. In a second section we present the mathematical frame-
works related to these questions as well as a new algorithm geared at identifying the S∗ strategy.
In a last section we illustrate this latter algorithm and provide a some practical implementations
to gauge the absolute performance of a few trading strategies.

1 Elements of the game and formalizations

Consider the idealised situation in which one investor has the complete knowledge of a finite series
of financial prices −→p = {pt|t ∈ [0, n]}, for example daily closing prices for one given stock, index or
portfolio.
Let’s admit these prices, defined over a time window [t = 1, t = n], n ∈ N are those at which this
investor has the opportunity to rebalance his portfolio.
Let’s now posit a price-taker framework, i.e., agent’ decisions cannot affect these closing prices and
sufficient liquidity at these prices is assumed.
We now define the rules of a game for this investor, or said differently, a series of rules constraining
her behaviour:

• At the initialisation stage (i.e. at t = 0), the initial wealth W0 of any agent is composed of a
certain amount of cash (C0) and no stock (A0 = 0) : W0 = A0 + C0.

6

• Having the knowledge of the entire price series, the idealised investor must decide for each
t ∈ (1, n) one specific action with regards to the composition of her portfolio, “buy”, “sell”
and “stay unchanged”, resp. coded B, S and U. In other terms, the investor has to compose a
”sentence” of size n using characters in B,S,U. The interpretation of each of these actions is as
follows:
Buy: One can write B if and only if Wt−1 = Ct−1. If B is written at date t, all the investor’s

cash is converted into assets (delivering a new quantity for At 6= 0). Assuming transaction
costs at a c% rate,

6 At date t = 1 –beginning of the game we posit C1 to be equal to the first price of the considered time
series.

Title Suppressed Due to Excessive Length 3

At =
Wt−1

pt × (1 + c)

Additionally, the first character in any sentence must be a B.
Sell : if and only if At−1 6= 0, the investor can write S and convert his position into cash.

Considering an identical rate of transaction costs c,

Ct = At−1 × (pt × (1− c))

Stay unchanged: Whatever the nature of Wt−1 (cash or assets), she can also decide to write U

and let her position unchanged at date t : Wt = Wt−1.
• This ”sentence” is one investment strategy Si over −→p chosen in a set of strategies {S}.7

Each instance Si can be gauged in terms of relative performance with respect to an other strategy
Sj,j 6=i (and reciprocally). What we propose here is to determine an absolute performance indicator
for each of these instances with respect to the best possible strategy in {S} in terms of maximum
profit Wt+n−Wt. As we will show later, this best strategy, denoted S∗, is relatively easy to identify
when transaction costs are not implemented. On the contrary, when transaction costs alter profits,
this identification is far more complex.

A trivial method to solve this identification problem when transaction costs are implemented
is to generate all possible sentences and to compute the net earning one can obtain with these to
identify S∗. This set is of finite size 2n, thus exponential. As we will show now, there are at least
two ways to improve efficiently the computation of the optimal strategy S∗, whatever the level of
transaction costs is. One is based on a simplex method, the other is based on the search of an
optimal path in an oriented bipartite network.

2 Mathematical models : linear programming method and search in

graphs

In this section, we show that the identification of S∗ can be described as a linear programming
problem with a classical Simplex solution. Unfortunately, this approach is relatively inefficient
since the Simplex algorithm is non-polynomial in the worst case (i.e., one can lack the necessary
computing resources to obtain a result as soon as the size of −→p becomes important.)

2.1 Initial simplification

Before formal results are presented, we introduce two theorems that are necessary to find the
solution of the problem. These preliminary elements aims at simplifying the solution we propose.

First simplification : filtering the price sequence.

Let’s consider the price vector −→p consisting of three consecutive prices pt, pt+1, pt+2 and the
function

R(x, y) = y(1− c)− x(1 + c) (1)

7 Notice that in this framework, Card{S} = 2n

4 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

In equation 1, the R(x, y) function computes net earnings of successive buy and sell actions with
c% transaction costs. In this equation, x denotes the price at which one buys and y the price at
which one sells. By definition, y appears later in the time sequence than x. We show that S∗ in −→p ,

as defined page 2, can be identified in a subset of −→p denoted
−→
fp8 consisting of the extreme points

in the price sequence (peaks and troughs) ignoring any intermediary points (here, pt+1).
We assume pt+2 ≥ pt+1 ≥ pt. Therefore R(pt, pt+2) > R(pt, pt+1) and R(pt, pt+2) > R(pt+1, pt+2).
In this latter case, pt+2 is a ”peak” while pt is a trough.

Theorem 1 Ignoring intermediary points: To identify S∗, pt+1 can be ignored.

Proof. Reductio ad absurdum / proof by contradiction:
If it were not the case, since it is not allowed to buy and sell at the same date : R(pt+1, pt+2) >
R(pt, pt+2)
Therefore: pt+2(1 − c)− pt+1(1 + c) > pt+2(1− c)− pt(1 + c)
Which can be simplified: −pt+1 > −pt

Thus, pt+1 < pt since, by definition pt+1 > pt

Q.E.A >

Notice that the same demonstration can be made by analogy in the case where pt+2 ≤ pt+1 ≤ pt.
As a consequence, if pt+1 is an intermediary point as exposed previously, it can be ignored to iden-
tify S∗. In other terms, if one considers a complete price sequence −→p , only peaks and trough should

be selected to identify S∗ (that is,
−→
fp).

Lemma 1

No inclusion of losses : To identify S∗, one can ignore all situations in which R(x, y) < 0

Litteraly, no trade with negative net earnings can be included in the best strategy which also ex-
cludes a situation where the so-called ”buy and hold” strategy is not profitable.

Determining two vectors of prices for potential ”buy” and ”sell” actions.

From theorem 1 we know that it is necessary and sufficient for determining S∗ to focus on extremum

points in the price sequence. We now show that
−→
fp can itself be sliced in two separate sub-vectors

of ”peaks” and ”troughs” corresponding to two independent potential ”buy” and ”sell” positions

in −→p (resp. denoted
−−→
fpB and

−−→
fpS).

Let’s consider four consecutive prices pt, pt+1, pt+2, pt+3 such as pt+1 > pt, pt+3 > pt+2 and
pt+2 < pt+1.

9

Theorem 2 To identify S∗, none of the
−−→
fpB can receive a S and none of the

−−→
fpS can receive a B .

8 i.e.
−→
fp for “filtered −→p ”

9 In this latter case, we do not consider the situation in which pt+2 > pt+1 since it is equivalent to the
initial simplification case exposed previously.

Title Suppressed Due to Excessive Length 5

Proof. (i) Since pt+1 > pt, it is obvious that R(pt, pt+3) > R(pt+1, pt+3). Then pt ← B ≻ pt+1 ← B

(ii) Similarly, since pt+2 < pt+1 it is obvious that R(pt+2, pt+3) > R(pt+1, pt+3). Then pt+2 ← B ≻
pt+1 ← B

From lemma 1 we know that the situation in which pt+3 < pt can be ignored; Therefore, from (i),
(ii) and lemma 1 :
– whether pt ← B and pt+1 ← U from (ii); thus pt+2 ← {U and pt+3 ← {U or S}
– or pt ← U and pt+1 ← U; thus pt+2 ← {U or B} and pt+3 ← {U or S}

(pt, pt+2)← {U or B};
−−→
fpB = {pt, pt+2}

(pt+1, pt+3)← {U or S};
−−→
fpS = {pt+1, pt+3}

Q.E.D �

This theorem does not state where to buy or to sell in the subsets
−−→
fpB and

−−→
fpS to identify S∗.

It uniquely states that it is not worth buying in any element of
−−→
fpB and selling in any element of

−−→
fpS.

2.2 A linear programming method for the identification of S∗

A first way to solve the S∗ determination problem is to use a linear programming method. The
basic idea here is to maximize an objective function subject to a set of constraints formalizing the
rules in which this problem is embedded. We now expose how this program should be written.

Let denote a(i, j) the potential benefit one can obtain if pi ∈
−−→
fpB and pj ∈

−−→
fpB. Notice a(i, j)

is computed using equation 1. Let x(i, j) be a dummy variable coding 0 or 1 that will be used to
ignore (resp. to identify) transitions between any two prices pi and pj . If pi ← (S or U) or pj ← U

then x(i, j) = 0, else x(i, j) = 1. Using these notations, the identification of S∗ can be done solving
the following linear problem:

max
∑

(i,j)∈
−−→
fpB∪

−−→
fpS

a(i, j)x(i, j) (2)

∑

(i,j)∈S∗

x(i, j) ≤ n (3)

∑

j

x(j, i) + x(i, j) ≤ 1, ∀i ∈
−−→
fpB (4)

x(i, j) +

j
∑

k=1

+x(i + 1, k) ≤ 1, ∀i ∈
−−→
fpB, j ∈

−−→
fpS (5)

x(i, j) +

n
∑

k=j+1

x(i + 1, k) ≤ 2, ∀i ∈
−−→
fpB, j ∈

−−→
fpS (6)

0 ≤ x(i, j) ≤ 1, ∀i ∈
−−→
fpB, j ∈

−−→
fpS (7)

Literally, the objective function (2) states one seeks to maximize the total benefits in trading (that
is, to identify S∗). Constraint (3) implies that S∗ cannot be composed of more than n prices while
constraint (4) imposes the uniqueness of the solution. Constraints (5)- (6) do not allow backwards
in the price series with respect to their sequential ordering. Constraint (7) requires that x(i, j) = 1

6 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

if a trade occurs between position i and j in
−→
fp, otherwise, x(i, j) = 0. This latter constraint means

that the problem can be solved by simplex method.

However, it is virtually impossible to explicitly enumerate all these constraints when
−→
fp is of

moderate size. It is also recognized that the simplex algorithm is exponential even if it can be solved
for certain cases in polynomial time.

We now propose to develop an alternative approach for this problem allowing an efficient so-
lution. We tackled the S∗ determination problem as the identification of an optimal path in an
oriented bipartite network.

2.3 Embedding the identification of S∗ in a Graph structure

Let each price in
−→
fp be depicted as a vertex in a network. Card(

−→
fp = k). Each vertex is indexed with

an integer with respect to its place in the price series. We show now how to construct a bipartite,

oriented and weighted network N
(

E,
−−→
fpB,

−−→
fpS

)

connecting points in
−−→
fpB and

−−→
fpS .

Definition: Let ℵX the subset of vertices succeeding vertex X . The network N is defined by
the successors of each vertex.

Graph construction:

The initial situation from which we start is : ∀X ∈
−→
fp,ℵX = ∅. From this situation, two different

kind of edges can be build :

Trading edge (TEi,j): for any two vertices i ∈
−−→
fpB and j ∈

−−→
fpS, vertex j ∈ ℵi if and only if :

1. j > i (which ensure temporal consistency)
2. c being the rate of transaction costs,

Ri,j = pj(1 − c)− pi(1 + c) ≥ 0 (8)

Forward edge (FEm,n): for any two vertices m ∈
−−→
fpS and n ∈

−−→
fpB, n ∈ ℵm if and only if :

1. n > m (which ensure temporal consistency)
2. ℵn 6= ∅

Notice we impose a “time consistency rule”10 to avoid backward connections in this bipartite
oriented graph. This means that a starting vertex pt+k cannot be connected to a ending vertex pt+l

with k ≥ l.
The rule presented in equation 8 obviously determines a profit as in equation 1. For any two vertices,
these profits11 can be analyzed as weights for the corresponding edges of N .
Consequently, we receive a balanced, bipartite, weighted and directed network. We propose to
interpret weights computed with 8 as distances between two vertices in the following proposition:

Proposition 1

S∗ in this framework is a longest path problem.

10 Similar to equations 5 end 6
11 Provided these are positive.

Title Suppressed Due to Excessive Length 7

Theorem 3 For c > 0 and any 4 consecutive prices pt, pt+1, pt+2, pt+3 in a filtered price series

such as
−→
fp (see section 2.1) with R(t, t + 1) > 0, R(t, t + 3) > 0, R(t + 2, t + 3) > 0 :

R(t, t + 1) + R(t + 2, t + 3) > R(t, t + 3)

Proof. −pt(1 + c) + pt+1(1− c)− pt+2(1 + c) + pt+3(1− c) > −pt(1 + c) + pt+3(1− c)
pt+1(1− c) > pt+2(1 + c)
pt+1/pt+2 > (1 + c)/(1− c)
c > 0⇒ (1 + c)/(1− c) > 1⇒ pt+1/pt+2 > 1 by definition.
Q.E.D �

In the construction of N , one can notice that the number of edges depends upon the level of
transaction costs c:

• The greater c the fewer the number of edges in N and the easier the solution of the problem as
well.
• When c ; 0, the graph tends to be more and more connected. For a specific threshold θ, N is

fully connected (with respect to the time consistency rule). θ can be computed linearly; for any

two consecutive prices in → fp, pt ∈
−−→
fpB and pt+1 ∈

−−→
fpS :

θ = min(pt+1 − pt)/(pt+1 + pt) (9)

In the example provided section ?? (see table ??), this threshold is 3%.

When c < θ, N in fully connected. In this situation, we can derive from theorem 3 the following
corollary:

Corollary 4

No backtracking: ∀c < θ, S∗ =
∑k−1

i=1 TEi,j=(i+1)

In other terms, when c < θ, it is proved that S∗ is the path connecting all the edges as they
appear in sequential order (see figure 1(a)). S∗ connect all the vertices. When c > θ, this result
cannot be established. For example, in figure 1(b), we posit c such as R(t + 2, t + 3) < 0; one

pt

pt+1

pt+2

pt+3

pt+4

pt+5

(a) Complete Bipartite Network : no back-
tracking

pt

pt+1

pt+2

pt+3

pt+4

pt+5

(b) Uncomplete Bipartite Network : back-
tracking

Fig. 1. Illustration of the ”No Backtracking Theorem”

cannot follow a path in the price series connecting all vertices : many potential interesting paths
can be discovered (see figure 1(b)) 12 and therefore must be compared to determine S∗. One way

12 Two of these paths are presented, one with plain lines, the other with hash lines. As soon as a TE between
consecutive vertices is missing this kind of situation may occur

8 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

to tackle this backtracking problem could be to compute all possible paths, which would deliver an
exponential algorithm.

We now show how we decrease the complexity class of this problem using a new algorithm to
determine S∗ in this graph formalism.

2.4 The S ∗ −determination algorithm

In this section we develop a new algorithm adapted to the determination of S∗ in the graph frame-
work. This algorithm derives from a technique exposed by Floyd (1969). Floyd originally developped
this algorithm for finding a shortest path between every pair of vertices in a graph. This algorithme
is transformed and adapted to fit our constraints.

We first introduce some notations and present the Floyd shortest-path algorithm; then we ex-
pose the S ∗ −determination algorithm itself.

Identifying the shortest path in N with the Floyd algorithm

Let dk
ij denote the length of a shortest path from vertex i to vertex j, where only the first k

vertices are allowed to be intermediate vertices. If no such path exists, then let dk
ij = ∞. Using

this definition of dk
ij , it follows that d0

ij denotes the length of a shortest path from i to j that uses
no intermediate vertices.
Let d0

ii = 0 for all vertices i. Furthermore,dn
ij represents the length of a shortest path from i to j.

Let Dk denote the n × n matrix whose i, jth element is dk
ij . If we know the length of each edge

in the graph, then we can determine matrix D0. Ultimately, we wish to determine Dn, the matrix
of shortest path lengths. The Floyd shortest-path algorithm starts with D0 and computes D1 from
D0. Then, the algorithm calculates D2 from D1. This process is iterated until Dn is computed
from Dn−1. Notice that only the elements of matrix Dk − 1 are needed to compute the elements
of Dk.Moreover, these computations can be performed without reference to the underlying graph
(see Minieka (1978)).
Therefore, the Floyd shortest-path algorithm can be expressed in pseudo-code as in Figure 2.

for k=1 to n

for i=1 to n

for j=1 to n

path[i][j]=min (path[i][j], path[i][k]+path[k][j])

Fig. 2. Floyd Algorithm

It is well known that the total amount of computation required by the Floyd algorithm is
therefore proportional to 2n3, which means that the Floyd algorithm requires O(n3) running time.

Title Suppressed Due to Excessive Length 9

Operating the S ∗ −determination algorithm

If the Floyd algorithm is performed with a maximisation procedure instead of a minimisation
operation, this latter algorithm will produce the maximum longest path which corresponds, in our
formalism, to S∗.
The pseudo-code of the S ∗ −determination algorithm is presented Figure 3.

for k=1 to n

for j=k to n

path[0][j]=max (path[0][j], path[0][k]+path[k][j])

Fig. 3. S ∗ −determination algorithm

We now present in details how the S ∗ −determination algorithm can be used for finding the

longest path between the initial edge in
−−→
fpB to any other edge in N .

1. Setting-up D0

(i) Number the vertices of N 1, ..., n.
(ii) Determine the matrix D0 whose i, jth element equals the length of the longest arc from

vertex 1 to vertex j if any.
(iii) If no such arc exists, let d0

i j = −∞.
(iv) Let d0

i i = 0 for each i.
2. Recursive computations of Dk

(i) For k = 1, ..., n successively determine the elements of Dk form elements of Dk−1 using the
following recursive formula:

dk
i j = max{dk−1

ik + dk−1
kj , dk−1

ij } (10)

(ii) As each element is determined, record the path that is represents.
3. Upon termination, the i, jth element of matrix Dn represents the length of a longest path from

vertex i to vertex j.

The optimality of this algorithm follows inductively from the fact that the length of a longest
path from i to j allowing only the first k vertices to be intermediate vertices must be the bigger of
(i) the length of a longest path from i to j allowing only the first k − 1 vertices to be intermediate
vertices and (ii) the length of a longest path from i to j that allows only the first k vertices as
intermediate vertices and uses the kth vertex once as an intermediate vertex.

The complexity of the S ∗ −determination algorithm has now to be established. One must
remember the Simplex solution is exponential and so is the simple enumeration of all possible paths
in the network. In our case, the longest path from vertex 1 to every other vertex is searched. During
the first iteration one must go over n− 1 vertices. Hence, n− 1 additions and n− 1 minimisations
have to be processed. Thereby, the first iteration consists of 2(n − 1) operations. Similarly, it is
possible to show that the second iteration consists of 2(n− 2) operations and so on.

10 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

i=n
∑

i=1

2(n− i) = n(n− 1) (11)

Thereby, the S ∗ −determination algorithm requires O(n2) running time and therefore ∈
PSPACE.

Notice we should also build other longest-path algorithms able to take into account the con-
straints we face on solutions such as the one proposed by Dantzig (1966) or Shier (1973). The first
solution is similar to Floyd (1969) although the order in which the calculations are performed is
different. The second algorithm, known as the double-sweep algorithm, finds the k shortest path
lengths between a specified vertex and all other vertices in the graph and can also be tuned to our
problem.

3 Numerical Illustrations and conclusive remarks

We now propose one application of the S ∗ −determination algorithm with the daily Dow-jones
index at the daily frequency level from 2/12/1980 to 20/02/2009 (i.e. 7156 observations). No one
can seriously defend the idea that one particular economic agent could be able to predict with
some accuracy the next 7156 closing prices of the Dow-Jones Index by Dec., 2nd, 1980. Notice that
even if it were possible (which is most imporbable), taking advantage of this knowledge under the
constraints enumerated in section 1 would also be extremely difficult if simply possible without
using the S ∗−determination algorithm. With this algorithm, we determine the best behavior with
transaction costs c respectively at 0% and 5%. The maximum wealth one should obtain in these
two cases is bigger than 1.10E+015 in the first case and bigger than 1.83E+010 in the second
case. These figures seem extraordinarily high : one must keep in mind they are simply impossible
to obtain because of the global impredictibility of the market motions at date t with regards to
the available information at this date. In figure 4 we present the evolution of an investor’s wealth
adopting S∗ in both contexts.

Nevertheless, on shorter horizons, some agents claim they can produce such predictions or at
least detect specific dates where it is worth enterring the market or shorting their positions. For
example, technical traders claim they can detect signals in past prices (based on patterns) associated
with potential market reversals.
Among others, one popular model for technical traders consists in comparing two moving averages
based on past prices.13 One is computed over a long range period L, the other on a short time
window s. If MMs crosses MML from the top to the bottom, technical traders would predict a
further decrease in stock prices and try to sell immediately their holdings. On the contrary, if these
moving average cross from the bottom to the top, the signal will be interpretated as ”buy” signal.
In Figures 5 we generated such signals using the same data as previously; we also computed portfolios
managed with respect to the signals. For this purpose the artificial investor is endowed with an
amount of cash equal to the Dow-Jones index value at date 1 (974.40). Notice that the ”moving
averages” strategies provide an example of the ”rules of the game” presented in section 1. Concerning
the signals sub-figures, we only present a limited time window for graphical clarity reasons. The
portfolio subfigures report the evolution of an investor’s wealth using these signals in context of 0%
transaction costs.

13 The moving average with i lags MMi is equal to (1/i)
P

i
(p(t−i+1))

Title Suppressed Due to Excessive Length 11

1e
+

03
1e

+
06

1e
+

09
1e

+
12

1e
+

15

Date

P
or

tfo
lio

 V
al

ue

1980 1985 1990 1995 2000 2005 2010

S*_00

S*_05

Dow−Jones

Fig. 4. S∗ with resp. c = 0% and c = 0.5% and Dow-Jones Index (y axis in log scale)

In Figure 5(a), MMs is based on 10 days while MML is based on 90 days. With these values we
can generate 135 signals in the complete time window, which delivers the portfolio evolution. In
Figure 5(c), these moving averages are respectivly based on 5 and 20 trading days which delivers
469 signals. Notice none of these strategies is interesting in any manner

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0

2007 2008 2009

Date

V
al

ue

MMA10

MMA90

(a) Excerpt
of the signals,
MM10 v.s. MM90

10
00

20
00

30
00

40
00

1980 1985 1990 1995 2000 2005 2010

Date

V
al

ue

(b) Counter-
part portfolio,
MM10 v.s. MM90

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0

2007 2008 2009

Date

V
al

ue

MMA5

MMA20

(c) Excerpt of
the signals,
MM5 v.s. MM20

10
00

15
00

20
00

25
00

1980 1985 1990 1995 2000 2005 2010

Date

V
al

ue

(d) Counter-
part portfolio,
MM5 v.s. MM20

Fig. 5. Two investment strategies based on moving averages techniques

One can easily rank these strategies in term of overall profitability : MM10 v.s. MM90 seems
to perform better than MM5 v.s. MM20 in this price sample since the first one bears an overall
profitability of +299% (terminal value of the portfolio = 3886.36) against +70% for the second
(terminal value : 1657.18). In any case, one can also measure how far these two strategies ar from
the optimum S∗. In other terms, whatever the relative performance of any trading strategy, S∗ can

12 Olivier BRANDOUY, Philippe MATHIEU, and Iryna VERYZHENKO

be used to gauges its absolute performance.14

Resolving the S ∗−determination problem does not give insights on the kind of signals one should
feed automatic trading systems with, nor indicate a plausible behavior for any real-world investor. It
simply establishes a boundary that was, to our opinion, largely unknown, and proposes a reference
in terms of maximum-profit trajectory against which any population of investment trajectories can
be gauged.

References

Brock, W., J. Lakonishok, and B. LeBaron (1992): “Simple Technical Trading Rules and the Stochastic
Properties of Stock Returns,” Journal of Finance, 47(5), 1731–1764.

Carhart, M. M. (1997): “On Persistence in Mutual Fund Performance,” Journal of Finance, 52(1), 57–82.
Dantzig, G. (1966): “All Shortest Routes in a Graph,” in Theory of Graphs, International Symposium,

Rome, pp. 91–92. Gordon and Breach, New York.
Elton, E. J., M. J. Gruber, and C. R. Blake (1996): “The Persistence of Risk-Adjusted Mutual Fund

Performance,” Journal of Business, 69(2), 133–57.
Floyd, R. (1969): “Algorithm 97, Shortest Path Algorithms,” Operations Research, 17, 395–412.
Jensen, M. C. (1968): “The performance of mutual funds in the period,” Journal of Finance, 23, 389–416.
Malkiel, B. (2004): “Can Predictable Patterns in Market Returns be Exploited Using Real Money?,”

Journal of Portflio Management, 30, 131–141.
Minieka, E. (1978): Algorithms for Networks and Graphs. Marcel Dekker.
Sharpe, W. F. (1991): “The Arithmetic of Active Management,” The Financial Analysts’ Journal, 47(1),

7–9.
Shen, P. (2003): “Market timing strategies that worked – based on the E/P ratio of the S&P 500 and

interest rates.,” Journal of Portfolio Management, 29, 57–68.
Shier, D. (1973): “Iterative Methods for Determining the k Shortest Paths in a Network,” Networks, 6,

205–230.

14 In our example, both MM10 v.s. MM90 and MM5 v.s. MM20 were poor performing strategies. A simple
Buy and Hold behavior ”buying” the market at date 1 and selling it at date 7156 perfoms far better than
these two moving average techniques. Nevertheless, one can suppose some automatic trading strategies
could perform better than this B&H strategy, especially in the context of high frequency data.

