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Abstract

In this paper, after a short return to the descrip-
tion of the classical version of the Iterated Prisoner’s
Dilemma and its application to the study of coop-
eration, we present a new strategy we have found
named gradual, which outperforms the tit-for-tat
strategy, on which are based a lot of works in the
Theory of Cooperation. Since no pure strategy is
evolutionarily stable in the IPD, we cannot give a
mathematical proof of the absolute superiority of
gradual, but we present a convergent set of facts that
must be viewed as strong experimental evidences of
the superiority of gradual over tit-for-tat in almost
every rich environment. We study in detail why this
strategy is a good one and we try to identify the dif-
ference it has with tit-for-tat. Then we show how
we have improved the strength of gradual by using
a genetic algorithm, with a genotype we have cre-
ated, which includes a lot of well-known strategies
for the IPD, such as tit-for-tat. We present our ideas
on a tree representation of the strategies space and
finally we propose a new view of evolution of coop-
eration in which complexity plays a major role.

1 The Classical Iterated Prisoner’s
Dilemma

In this paper we first present the classical version of the
Iterated Prisoner’s Dilemma which is fully described in
[29] and its application to the study of cooperation. We
insist on the importance of the pure version of this prob-
lem. Then we present a new strategy we have found
called gradual, which outperforms the tit-for-tat strat-
egy which is classically recognized as the best possible
strategy in the classical IPD.

In section 2, we present in details the gradual strategy
which has the same qualities than tit-for-tat plus a pro-
gressive retaliation and forgiveness possibilities. Two ex-
periments are reported, the first one with twelve general
strategies to show the precise behavior of it, the second
one with the results of a tournament we have organized
in the French edition of the “Scientific American”.

In section 3 we try to improve the strength of this
strategy by using a genetic algorithm, on a genotype
we have created and which includes lots of well-known
strategies (in fact our genotype can cover more than
8 x 10 strategies). We present our ideas on a tree
representation of the strategies space and finally we pro-
pose a new view of evolution of cooperation in which
complexity plays a major role.

In the last sections we describe our results and we
discuss about the natural behavior of this strategy and
its good robustness in ecological competitions.

1.1 IPD and Artificial Life

This game is issued from the Game Theory of John
von Neumann and Oskar Morgenstern and has been in-
troduced by RAND game theorists Merrill Flood and
Melvin Dresher in 1952. The idea was to introduce some
wrrationality in Game Theory, which is used as a way of
modelling interactions between individuals.

This game has been found to be a very good way of

studying cooperation and evolution of cooperation and
thus a sort of theory of cooperation based upon reci-
procity has been set in a wide literature, such as in
[2, 4, 5]. The experimental studies of the IPD and its
strategies need a lot of time computation and thus with
the progress of computers, a lot of computer-scientists
and mathematicians have studied it as they have been
able to use specific methods, like genetic algorithms, on
it, see [1, 3, 6, 9, 19, 20, 25, 26, 30, 31].
As cooperation is a topic of continuing interest for the
social, zoological and biological sciences, a lot of works
in those different fields have been made on the IPD:
7,8, 16, 17, 18, 21, 22, 24, 28, 23].

Although all people who have studied the IPD come
from different research fields, it could be said that they
are all working on the same topic, which belong to the
Artificial Life field, the bottom-up study of Life.

1.2 Recall on the IPD

Let two artificial agents have the choice between cooper-
ation and defection. They play one against the other, in
a synchronous manner, so that they do not know what



the other will play. They get a score according to the
situation of the move:

e They both cooperate and then get both the coopera-
tion reward, let evaluate it to R points;

e They both defect and then get both the selfish pun-
ishment, let evaluate it to P points;

e One chooses to defect while the other chooses to coop-
erate, then the one who has defected gets the selfish
temptation salary, let it be T points, and the one who
has cooperated gets the sucker score, let it be S points.

To have a dilemma, temptation must be better than
cooperation, which must be better than punishment,
which must be better than to be the sucker. This can be
formalised as:

T>R>P>S

Since this one-shot version of the Prisoner’s Dilemma
is not very interesting (the most rational choice is to
defect), the game is iterated, the final score being the
sum of all the moves scored. Each player does not know
how many moves there will be, thus each agent’s strategy
can be studied, to look, for instance, how each player
tries to put cooperation in the game.

To avoid the one-shot Prisoner’s Dilemma solution to
influence strategies, by giving too much importance to
temptation regarding cooperation, it is useful to add the
following restriction : 2R > T + S

With this restriction, strategies have no advantage in
alternatively cooperate and defect. The classical payoff
matrix used is shown in table 1.
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Table 1: Classical payoff rate in the IPD

To study the behavior of strategies, two kinds of com-
putation can be done.

The first one is a simple round-robin tournament, in
which each strategy meets all other strategies. Its final
score is then the sum of all scores done in each confronta-
tion. At the end, the strategy’s strength measurement
is given by its range in the tournament. This is the way
the tit-for-tat strategy has been isolated by Axelrod in
[2].

The second one is a simulated ecological evolution, in
which at the beginning there is a fixed population in-
cluding the same quantity of each strategy. A round-
robin tournament is made and then the population of
bad strategies is decreased whereas good strategies ob-
tain new elements. The simulation is repeated until the

population has been stabilised, i.e. the population does
not change anymore. This is this way that nasty strate-
gies, those who take the initiative of the first defection,
have been discovered to be not very stable, because they
are invaded by kind ones.

1.3 Why studying the IPD?

As we have just said in section 1.1 a lot of works have
been done on the IPD and from different points of view.
The common points of almost all those works are :

e they do not extensively looked for new strategies, thus
good strategies and new characteristics have perhaps
been missed.

e they study variations of the IPD, because they think
the original model is too simple. Those variations offer
more proximity to real life.

Here are examples of such studies: [1, 7, 8, 16, 20, 22,
27, 30, 31].

e they seldom call into question classical results about
tit-for-tat, which are often considered as definitive. An
exception is the paper of Boyd and Loberbaum [9]
showing that no pure strategy is evolutionarily stable
in the IPD.

To avoid confusion with works quoted in the second
point, let us call the Iterated Prisoner’s Dilemma we have
described, the Classical Iterated Prisoner’s Dilemma
(CIPD). We think that new works and new discover-
ies are possible on the CIPD and thus we look for good
strategies for it and try to understand how and why they
work. The CIPD, as a model of cooperation study, has
not been totally understood. It is still a good model for
this kind of problem because it is the simplest model and
not everything is known about it.

One more reason, if needed, to make those researches,
is that good strategies in the CIPD, are still good in a
lot of variants of the game.

2  Gradual, a good strategy for the CIPD
2.1 Behavior of gradual

During our researches we have been led to test and verify
classical results [2, 4]. Thus, in order to do so, we tried to
create a lot of strategies to look at their behaviors and to
check if they had the qualities of tit-for-tat. At this time
we were trying to increase the efficiency of strategies by
modifying their parameters little by little, and looking
at the effect of the changes in round-robin tournaments
and ecological simulations, until we were satisfied by the
results of a strategy. During these experiments we have
created many strategies including gradual and discovered
its strength.

This strategy acts as tit-for-tat, except when it is time
to forgive and remember the past. It uses cooperation on
the first move and then continues to do so as long as the



other player cooperates. Then after the first defection
of the other player, it defects one time and cooperates
two times; after the second defection of the opponent, it
defects two times and cooperates two times, ... after the
n" defection it reacts with n consecutive defections and
then calms down its opponent with two cooperations.
As we can see this strategy has the same qualities as
those described by Axelrod in [2] for tit-for-tat except
one: the simplicity. Gradual has a memory of the game
since the beginning of it.

2.2 Performance of gradual

We conducted some experiments with gradual and other
strategies. Their results show the good performance of
gradual. Other results are reported in [12].

We made two kinds of experiments with strategies:
round-robin tournaments and ecological simulation. In
the following example we have used 12 classical strate-
gies. Each game consists of 1000 moves, with the classi-
cal payoff shown in table 1. The general results do not
depend on the precise value of payoff and on the number
of move, see [12].

2.2.1 Description of the 12 strategies used
The 12 strategies are described below.

cooperate always cooperates
defect always defects
random cooperates with a probability of 0.5

tit-for-tat cooperates on the first move and then plays
what its opponent played on the previous move

spite cooperates until the opponent defects, then de-
fects all the time

per_kind plays periodically [cooperate, cooperate, de-
fect]

per_nasty plays periodically [defect, defect, cooperate]

soft_majo plays the opponent’s most used move and
cooperates in case of equality (first move considered
as equality)

mistrust has the same behavior as tit-for-tat but de-
fects on the first move

prober begins by playing [cooperate, defect, defect],
then if the opponent cooperates on the second and the
third move continues to defect, else plays tit-for-tat

gradual

pavlov cooperates on the first move and then cooper-
ates only if the two players made the same move, this
strategy was studied in [26].

2.2.2 Some results

Results of round-robin tournament and of a simple eco-
logical simulation are presented in tables 2, 3 and fig-
ure 1.

They show that gradual clearly outperforms all other
opponents and especially tit-for-tat, in round-robin as
well as in ecological evolution. In this latter type of
computation we have noticed that gradual and tit-for-
tat have the same type of evolution, with the difference
of quantity in favor of gradual, which is far away in front
of all other survivors when the population is stabilised.

We notice that gradual is relatively strong, compared
to other strategies, when opposed to clever, or proba-
bilistic strategies like prober or random, but the most
significant point is that gradual has never, or not often,
bad scores: in almost all cases, it has been able to install
cooperation with its opponents.

strategy final score
gradual 33416
tit-for-tat 31411
soft_majo 31210
spite 30013
prober 29177
pavlov 28910
mistrust 25921
cooperate 25484
per_kind 24796
defect 24363
per_nasty 23835
random 22965

Table 3: Ordered final score in Round-robin

Numerous other experiments (with for example ran-
dom subsets of strategies) confirm the conclusion that
gradual is more robust and obtain better score than tit-
for-tat in almost all contexts (exceptions especially con-
structed are obviously possible but are seldom and not
easy to obtain).

A systematic study of the dynamic evolution of pop-
ulations with 3 strategies confirms the conclusions of [9]
that very complex phenomenon may sometimes occur in
the IPD [15].

2.3 The experiment with “Pour La
Science”

We have been surprised by those results and then with
the help of “Pour La Science”, the french edition of the
“Scientific American”, we have organized a tournament.
Each reader was invited to submit his own strategy. A
description of this tournament and its results can be
found in [11, 13, 13]. The tournament did not used the
CIPD, but a variant in which each player had the ability
to give up in a definitive way with its opponent.
However the winner was a strategy which is a vari-
ant of gradual, adapted to the game with renunciation



coop def rand tft spite p-nst p-kn sft_mj mist prob grad pav
coop | 3000 0 1481 | 3000 | 3000 999 2001 3000 2997 6 3000 | 3000
def | 5000 | 1000 | 3003 | 1004 | 1004 2332 3668 1004 1000 | 1008 | 1340 | 3000
rand | 4012 499 2228 | 2250 505 1667 2824 1980 2240 | 1581 940 2239
tft | 3000 999 2248 | 3000 | 3000 1998 2667 3000 2500 | 2999 | 3000 | 3000
spite | 3000 999 3010 | 3000 | 3000 2331 3663 3000 1003 | 1007 | 3000 | 3000
p-nst | 4334 667 2502 | 2003 671 1666 3335 671 1999 | 2006 979 3002
p-kn | 3666 333 2024 | 2667 343 1665 2334 3666 2664 | 2664 767 2003
sft_mj | 3000 999 2380 | 3000 | 3000 2331 2001 3000 2500 | 2999 | 3000 | 3000
mist | 3002 | 1000 | 2244 | 2500 | 1003 1999 2669 2500 1000 | 3000 | 3001 | 2003
prob | 4996 998 2522 | 2999 | 1002 1996 2669 2999 2095 | 1004 | 2999 | 1998
grad | 3000 915 2815 | 3000 | 3000 2219 3472 3000 2996 | 2999 | 3000 | 3000
pav | 3000 500 2244 | 3000 | 3000 1332 2833 3000 1998 | 2003 | 3000 | 3000
Table 2: Round-Robin 2 by 2 scores
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Figure 1: Ecological evolution

and with a different progressive function for retaliation
(N(N +1)/2 instead of N, with N the number of op-
ponent’s previous defections). This fact makes us think
that gradual has something tit-for-tat has not and that
classical interpretation of tit-for-tat results concerning
simplicity must be revisited.

2.4 Comparison with tit-for-tat

With the same approach to all these results as Axel-
rod made on tit-for-tat, we can say that the most three
important qualities of gradual are: kindness (it does not
begin to defect), reactivity (it defects when the opponent
has defected) and forgiveness (it comes back to cooper-
ation after punishment). These ones are well known to
be good, but in gradual, unlike in tit-for-tat, they are not
joined by simplicity. In fact the main difference between
tit-for-tat and gradual is their view of the past, the for-
mer has a short one and the latter the biggest possible,
since it has to know the full history of the current game

to decide what to do on the next move. We can say that
gradual is much more compler than tit-for-tat. Let us
recall an analyse of Axelrod in [2, page 110]:

The advice takes the form of four simple suggestions
for how to do well in a durable Iterated Prisoner’s
Dilemma:

1. Don’t be envious,

2. Don’t be the first to defect,

3. Reciprocate both cooperation and defection,
4. Don’t be too clever.

When Axelrod writes that, he states that a strategy
has to be understandable, hence simple, mainly for its
opponents to understand that all it wants is to establish a
cooperation period. He thinks that if the strategy clearly
announces how it will act, then the other player will be
able to cooperate more quickly.

We have previously discussed this point in [14], for
the Iterated Prisoner’s Dilemma with Renunciation. We



agree with Axelrod but we think that having a clear be-
havior is not always a good idea, for instance against
complex-clever-and-nasty or random strategies. The re-
sults of gradual confirm us in this opinion.

2.5 Natural inspiration of gradual

Finally we think that gradual presents a natural behav-
ior, which we can find in our daily life, which is, for
instance, used by some creditors with their debtors. Let
us think of the government and the taxpayers or an elec-
tricity company and their bad customers.

This behavior can however be interpreted in two ways:

e The player is very offensive and wants to force his
opponent to cooperate and thus clearly shows him that
he will be more and more aggressive, so that its best
choice is to cooperate.

e The player is very defensive and does not want to be
exploited and thus he looks less and less for coopera-
tion, which is risky, but plays more and more the ra-
tional choice of the single round Prisoner’s Dilemma,
to insure its score. However as it is not a single round
game, he retries sometimes to reinstall cooperation.

Those two interpretations are two ways of looking at
the game, as we have two ways of looking at our relation-
ships with other people in real life. In the first case it
tries to explain to the opponent what is the better choice
for both of them, whereas in the second case it tries to
protect itself. This is a kind of choice between opening
or closing its relationship with the opponent, knowing
none of the real made choice. It is clear that in real life
this is not a simple choice to do. We think that gradual,
instead of tit-for-tat, offers this type of complexity to the
player and thus that Axelrod’s idea about simplicity is
not generally true.

2.6 Is gradual strong enough 7

Gradual’s behavior, its performance, its inspiration of
the “Pour la science” tournament winner and its natural
roots, suggest that it is a strong strategy which truly out-
performs tit-for-tat. The point that we found a strategy
stronger than tit-for-tat and that its superiority comes
from a more complex behavior is enough to think that
there is maybe another more complex strategy which is
better than gradual. Gradual may be improved and in
order to know if it can be the case, one of the solutions
is to use optimization tools on it.

3 Looking for better strategies using
Genetic Algorithms

In order to try to improve gradual’s performances, we
have chosen to use a genetic algorithm to optimize grad-
ual, so we have constructed a genotype and a fitness
function evaluating the quality of strategies.

With this genetic algorithm we thought we would be
able to run into the space of described strategies, looking
for good ones, especially the ones better than gradual.

3.1 Genotype description

Here is the description of the genotype we have set up,
using extensions of gradual’s ideas, to describe a big fam-
ily of strategies.

The extensions we have added to gradual are:

e ability to parameter the time it took the strategy to
react at a defection;

e ability to take into account the defection made during
a punishment period;

e ability to use defection, or score, threshold, to begin a
punishment;

e ability to forgive randomly;
e ability to defect randomly;
e ability to modify the vision of the past.

The 19 different genes of the genotype and their mean-
ings are given now :

begin the first move to do;
alea the number used to determine random defection;

calcul_type the type of detection used to launch a pun-
ishment period;

threshold the threshold above which punishment is
launched;

forgive the number used to determine random forgive-
ness move;

blind the ability to update the evolution during a
reaction-punishment-lull period;

vision the length of the past the strategy can see (0
being from the beginning);

punishment_evolution the type of punishment length
evolution (polynomial or log.);

Ay, By, Cp the coefficients of punishment length evo-
lution;

reaction_evolution the type of reaction length evolu-
tion (polynomial or log.);

A,, B,, C, the coefficients of reaction length evolu-
tion;

lull_evolution the type of lull length evolution (poly-
nomial or log.);

Ay, By, C; the coefficients of lull length evolution;



Strategies described in this way play as follows: af-
ter the first move, which is begin, they defect with a
probability of p = 1/alea. If they do not defect then
they decide if a reaction-punishment-lull period has to
be launch, according to calcul_type, threshold and vi-
sion parameters. If such a period has to be launch, it is
done with a probability of p = 1 — 1/forgive. Parame-
ters of such a period, i.e. reaction, punishment and lull
length are computed according to the number of done
punishments (let it be N) in one of those two manners,
according, respectively, to reaction_evolution, pun-
ishment_evolution, lull_evolution: If the computa-
tion has to be polynomial the value will be:

A;N? + B;N +C;
and in the logarithmic case it will be

log(N)
"log(B;)

+O¢ (Bz > 1)

with ¢ € {r,p,l} and N updated at each move if it is not
blind.

The most new parameter here is the vision one, which
makes a big difference in the description of strategies to
be used in genetic algorithms, as they have been done
for now in [3, 19, 20], where strategies are limited to a
small view of the past (3 or 4 moves in general).

3.2 A big space

The space of described strategies, is greatly open and
depends on the way individuals are generated at the be-
ginning of the genetic algorithms.

This space is so open that it includes almost every well
known strategies:

gradual Cooperate, 0, Defection, 1, 0, Yes, 0, Polyno-
mial, 0,1,0, Polynomial, 0,0,0, Polynomial, 0,0,2

tit-for-tat Cooperate, 0, Defection, 1, 0, Yes, 1, Poly-
nomial, 0,0,1, Polynomial, 0,0,0, Polynomial, 0,0,0

defect Defect, 1, whatever you wish

cooperate Cooperate, 0, Defections, 0, Yes, 0, Polyno-
mial, 0,0,0, Polynomial, 0,0,0, Polynomial, 0,0,0

With this approach, tit-for-tat could be seen as a de-
generated strategy coming from this family and thus
from gradual. 1t is a degenerated gradual, because some
of its parameters are erased, in comparison to gradual.

Hence there is a chance that gradual could also be a
degenerated strategy, coming from some X strategy, with
this X better and more complex than gradual and then
than tit-for-tat.

Our idea is that there is no limitation to this affiliation
between good strategies and that the space of strategies
is full of complex good ones, which have not been found
now.

The complexity could be such that the full strategies
space might be seen as a tree, where the large space of
strategies described here with our genotype is only one
branch of it. Maybe on another branch there are other
strategies better than tit-for-tat, or gradual built with
other ideas.

4 Results
4.1 How we have obtained it

The genotype we have created defines a space of 8.64 x
105 different strategies. We have used a simple Genetic
Algorithm, using uniform cross-over (resp. mutation) to
cross over two elements of the population (resp. to mute
one of it). The algorithm chooses randomly a vector
of 19 bits, one bit for each gene and then swaps the
genes of the two individuals (resp. mutes the gene of the
individual) when there is a 1 at the gene’s position in
the vector.

To compute the fitness of a strategy we have used a
simple idea: to be good a strategy needs to beat, in a
simple round-robin tournament as those used by Axel-
rod, the best known strategies at this time, as well as
some special ones like the simplest ones (Cooperate, De-
fect, Random, ...). It is however clear that this is not
sufficient and that there may be more complex ways to
appreciate the quality of strategies, using, for instance,
its behavior in ecological simulation.

So we have chosen a selection of 34 strategies found in
previous works, trying to have an heterogeneous selec-
tion of behaviors and we compute the fitness of a strat-
egy as its rank in a round-robin tournament including
the quoted 34 strategies and itself.

The initial population was made by 150 randomly gen-
erated strategies.

We have obtained some results which are easy to un-
derstand as every gene has a clearly defined contribution
in the behavior of the strategy.

4.2 Remarkable values of genes

Some genes have converged to remarkable values, which
give the ability to precise some of our ideas and to in-
firm, or confirm, some of classical ideas about qualities
a strategy needs to have to be good.

The less surprising result is that in almost all our ex-
periments, the begin gene has converged very quickly
to the Cooperate value, which means that good strate-
gies, we were looking for, would not be too aggressive
and have great chances to be kind ones.

This idea has been encouraged by the convergence of
the alea gene.

Like the begin gene, the alea gene has converged very
quickly to the 0 value, which in our experiments is inter-
preted as: never defect randomly.

Since the begin gene has converged almost at the
same time to the Cooperate value, it is clear that strate-



gies we were looking for have to be kind ones. That
did not sound surprising since the idea that to be good,
strategies have to be kind, is widely accepted.

Nevertheless this is a new way of confirming one of
Axelrod’s idea, using a different method than the one he
has used to find it.

The forgive gene had also converged in almost all
cases to the 0 value, which means that strategies must
not forgive any of its opponent defection.

This is closely in relation with the fitness we have
used, i.e. without any ecological simulation and thus
push some known strategies back, like for instance the
generous tit-for-tat family , which is however included in
the strategies space described by our genotype.

The fitness we use is not dedicated to the creation of
strategies which have to be strong in ecological simula-
tion. That could be an explanation of the convergence
of this gene, which eliminates some good strategies in
ecological simulation.

The last remarkable convergence is the blind gene
convergence, which has converged to the No value, which
means that strategies we were running to would not
forget to count opponents defection during reaction-
punishment-lull periods, which is not, for instance, the
case of gradual.

This convergence clearly shows that good strategies
would be a little bit more clever, thus more complex,
than gradual and thus more than tit-for-tat. This fact
confirms our idea and thus goes against the generally
accepted ideas about the relation between efficiency and
simplicity.

The convergence of this gene is another confirmation
that simplicity does not mean strength in the CIPD.

4.3 One generated strategy which
outperforms gradual

Just for the illustration, here is the description of one of
the strategies we have found with the help of the genetic
algorithm we have used on our genotype:

Cooperate, 0, Defection, 1, 0, No, 5, Polynomial,
1,1,3, Polynomial, 0,0,0, Polynomial, 15,8.4

This strategy beats gradual and thus tit-for-tat, in
round-robin tournament, as well as in an ecological sim-
ulation. In the two cases it has finished first just in front
of gradual, tit-for-tat being two or three places behind,
with a big gap in the score, or in the size of the stabilised
population.

All those results have been found with the 34 strategies
chosen for the fitness computation and where confirmed
with an experiment involving 300 strategies.

5 Conclusions and further works

As we said, the IPD is a good model in the study of coop-
eration, but it has not been often studied in its classical

version. While a lot of works try to discuss, or to find
how to improve the model itself, we choose to go deeper
in the CIPD by looking for good strategies and by trying
to understand what make those strategies strong, know-
ing that every results on the CIPD, can often be ported
in other variations of the IPD.

We have found a strategy which leads us to reformu-
late some of the classical results about simplicity and
then have two purposes:

1. trying to find more complez-and-good strategies;
2. trying to find what makes those strategies good.

For the former, we have used a genetic algorithm to
look for strategies in a big space of strategies, which we
have described with a genotype we have created. For the
latter we just have to study the results of the experiments
done by the genetic algorithm.

The first result we have found enables us to think that
simplicity is not a good quality for a strategy, but that
like in real-life, complexity may be advantageous.

We also think that this complexity can be so important
that maybe there is not a classical linear evolution in the
strength of strategies, but that the space of strategies
can be seen as a tree with lots of branches. Then each
branch is a large space of strategies, with good and bad
ones and with some connections between branches, so
that there is not a finite set of quality for a strategy to
be good, but rather that particular combination of some
qualities make the strength of a strategy.

We are now working on those two purposes by improv-
ing the fitness of the genetic algorithm, hoping that we
could find stronger strategies; and by trying to create
other genotypes, to explore other branches of the total
space of strategies, hoping we could then find other com-
binations of qualities.

The former work implies that methods to measure the
strength of a strategy have to be set, whereas the latter
could reinforce our ideas about the natural emergence of
the complexity in the CIPD.

A simulation software with many strategies is al-
ready available for Unix, Dos or Windows by web
at http://www.lifl.fr/"mathieu/ipd or by anony-
mous ftp on the following site ftp.lifl.fr in
pub/users/mathieu/soft
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