Indexing a large set of reads

```
Nicolas Philippe^{1,2} Mikaël Salson^3 Thierry Lecroq^4 Martine Léonard^4 Thérèse Commes^2 Éric Rivals^1
```

10 January 2011

¹ LIRMM, CNRS and Université de Montpellier 2

² IGH, CNRS, Montpellier

³ LIFL, CNRS and Université de Lille I – INRIA Lille-Nord Europe

⁴ LITIS, Université de Rouen

Context

Next generation sequencers produce gigabytes of reads in a single run

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Read —

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Interesting questions

- lacktriangle How many reads share this factor f?
- ▶ Which reads share this factor? At which positions?

Context

Next generation sequencers produce gigabytes of reads in a single run

(Problem)

How to search efficiently any relevant information?

Interesting questions

- ightharpoonup How many reads share this factor f?
- ► Which reads share this factor? At which positions?

Why is it interesting?

- ► Genome assembly
- ► Read mapping

Fixed-length factors

Question

Should we consider every factor?

Fixed-length factors

Question

Should we consider every factor?

Remarks

- ▶ Factors of length 2 are quite uninformative
- At a certain point, increasing factor lengths does not help in identifying unique genome location ([Philippe et al., 2009])

Fixed-length factors

Question

Should we consider every factor?

Remarks

- ▶ Factors of length 2 are quite uninformative
- At a certain point, increasing factor lengths does not help in identifying unique genome location ([Philippe et al., 2009])

Conclusion

We only consider k-length factors (k-factors or k-mers), k being fixed

Queries

Queries for k-factors of a given read

Given a read, and a k-factor in that read, we would like to know:

- ${\sf Q1}$ the number of times this k-factor appears in the whole set of reads
- $\ensuremath{\mathsf{Q2}}$ the reads and the positions in the reads in which it occurs
- Q3 the number of distinct reads in which it occurs

. .

Remark

We need to search patterns in a text

Remark

We need to search patterns in a text

Classical solution

Use a text index

Remark

We need to search patterns in a text

Classical solution

Use a text index

- Suffix tree
- ► Suffix array
- ► Compressed text index (FM-index, LZ-index, ...)

Remark

We need to search patterns in a text

Classical solution

Use a text index

- Suffix tree
- ► Suffix array
- ► Compressed text index (FM-index, LZ-index, ...)

Ok, let's try a suffix array!

Reads:

Using a Suffix Array for querying reads

$$r_0 = \mathsf{ATAACG}$$
 $r_1 = \mathsf{ATAGTC}$ $r_2 = \mathsf{GATAAC}$

Reads:
$$r_0 =$$

$$r_0 = {\sf ATAACG}$$
 $r_1 = {\sf ATAGTC}$ $r_2 = {\sf GATAAC}$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$$$

$$r_0 = {\sf ATAACG}$$
 $r_1 = {\sf ATAGTC}$ $r_2 = {\sf GATAAC}$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = \frac{\mathsf{ATAACG}}{\mathsf{ATAGTCGATAGTCGATAAC}}$$

Reads:

$$r_0 = ATAACG$$
 $r_1 = ATAGTC$ $r_2 = GATAAC$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = {{\sf ATAACGATAGTCGATAAC\$} \over {r_0}}$$

Let's build the suffix array (sort suffixes in lexicographic ascending order)

- SA Suffixes
- 18 9
- 15 AAC\$
 - 2 AACGATAGTCGATAAC\$
- 16 AC\$
 - 3 ACGATAGTCGATAAC\$
 - 8 AGTCGATAAC\$
- 13 ATAAC\$
- 0 ATAACGATAGTCGATAAC\$
- 17 C\$
- 11 CGATAAC\$
 - •

Reads:

$$r_0 = ATAACG$$
 $r_1 = ATAGTC$ $r_2 = GATAAC$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = {{\sf ATAACGATAGTCGATAAC\$} \over {r_0}}$$

Let's build the suffix array (sort suffixes in lexicographic ascending order)

- SA Suffixes
- 18 9
- 15 AAC\$
 - 2 AACGATAGTCGATAAC\$
- 16 AC\$
 - 3 ACGATAGTCGATAAC\$
 - 8 AGTCGATAAC\$
- 13 ATAAC\$
- 0 ATAACGATAGTCGATAAC\$
- 17 C\$
- 11 CGATAAC\$

: :

Remark

Only the k first letters of each suffix are interesting (k = 3)

Reads:

$$r_0 = ATAACG$$
 $r_1 = ATAGTC$ $r_2 = GATAACG$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = \frac{ \begin{tabular}{cccccc} \textbf{0.1.2.3.4.5.6.7.8.9.1011} & \textbf{0.1.12131415161718} \\ \textbf{ATAACGATAGTCGATAAC\$} \\ r_0 & r_1 & r_2 \\ \end{tabular}$$

Let's build the suffix array (sort suffixes in lexicographic ascending order)

- SA Suffixes
- 18 \$
- 15 AAC
 - 2 AACGATAGTCGATAAC\$
- 16 AC\$
 - 3 ACGATAGTCGATAAC\$
 - 8 AGT CGATAAC\$
- 13 ATAAC\$
- 0 ATAACGATAGTCGATAAC\$
- 17 C\$
- 11 CGATAAC\$

: :

Remark

Only the k first letters of each suffix are interesting (k = 3)

Reads:

$$r_0 = ATAACG$$
 $r_1 = ATAGTC$ $r_2 = GATAACG$

 $R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = ATAACGATAGTCGATAAC\$$

$$r_0 \qquad \qquad r_1 \qquad \qquad r_2$$

Let's build the suffix array (sort suffixes in lexicographic ascending order)

- SA Suffixes
- 18
- 15 AACS
 - **AACGATAGTCGATAACS**
- 16 AC\$
 - **ACG**ATAGT CGATAAC\$
 - AGT CGATAAC\$
- 13 **ATA**AC\$
- ATAACGATAGTCGATAAC\$
- 17 C\$
- **CGATAAC**\$ 11

Remark

Only the k first letters of each suffix are interesting (k = 3)

Remark

Factors overlapping two reads are undesirable

Reads:

$$r_0 = ATAACG$$
 $r_1 = ATAGTC$ $r_2 = GATAACG$

$$R = r_0 \cdot r_1 \cdot r_2 \cdot \$ = {{\sf ATAACGATAGTCGATAAC\$} \over {r_0}}$$

Let's build the suffix array (sort suffixes in lexicographic ascending order)

- SA Suffixes
- 18
- 15 AACS
- 2 AACGATAGTCGATAAC\$
- 16
 - 3 ACGATAGTCGATAAC\$
 - 8 AGT CGATAAC\$
- 13 ATAAC\$
- 0 ATA ACGATAGT CGATAAC\$
- 17
- 11 SATAACS

200

Remark

Only the k first letters of each suffix are interesting (k = 3)

-(Remark)

Factors overlapping two reads are undesirable

 $R = \frac{\mathsf{ATAACG}}{\mathsf{ATAGTCGATAAC\$}}$

TAACGATAGTCGATAAC\$ AACGATAGTCGATAAC\$ ACGATAGTCGATAAC\$ CGATAGTCGATAAC\$ GATAGTCGATAAC\$ ATAGTCGATAAC\$ TAGTCGATAAC\$ AGTCGATAAC\$ GTCGATAAC\$ TCGATAAC\$ CGATAAC\$ GATAAC\$ ATAAC\$ TAAC\$ AAC\$ AC\$ C \$

```
R = \frac{\mathsf{ATAACGATAGTCGATAAC\$}}{\mathsf{ATAACGATAGTCGATAAC\$}}
```

 $R = \frac{\mathsf{ATAACGATAGTCGATAAC\$}}{\mathsf{ATAACGATAGTCGATAAC\$}}$

 $R = \frac{\mathsf{ATAACG}}{\mathsf{ATAGTCGATAAC}}$

Discarding useless positions P-positions R = ATAACGATAGTCGATAAC\$

P-positions

- ► Set of positions where a *k*-factor belonging to a single read starts.
- ► This set is not a permutation

A k-factor starting at a P-position is called a P-k-factor

P-positions

- \triangleright Set of positions where a k-factor belonging to a single read starts.
- ▶ This set is not a permutation

A k-factor starting at a P-position is called a P-k-factor

Q-positions

Renumbered P-positions so that the set of Q-positions is a permutation

Generalized k-Factor Array (GkFA)

Generalized k-factor array

Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

Generalized k-Factor Array (GkFA)

Generalized k-factor array

Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

- SA Suffixes
- 18 4
- 15 AAC\$
- 2 AACGATAGTCGATAAC\$
- 16 AC\$
- 3 ACGATAGTCGATAAC\$
- 8 AGTCGATAAC\$
- 13 ATAAC\$
- 0 ATAACGATAGTCGATAAC\$
 - 6 ATAGTCGATAAC\$
- 17 C\$
- 11 CGATAAC\$
- 4 CGATAGTCGATAAC\$
- 12 GATAAC\$
- 5 GATAGTCGATAAC\$
- 9 GTCGATAAC\$
- 14 TAAC\$
- 1 TAACGATAGTCGATAAC\$
- 7 TAGTCGATAAC\$
- 10 TCGATAAC\$

Generalized k-Factor Array (GkFA) SA Suffixes

Generalized k-factor array

Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

Generalized k-Factor Array (GkFA)

Generalized k-factor array Index suffixes starting at

P-positions. Positions are renumbered to Q-positions.

Generalized k-Factor Array (GkFA)

Generalized k-factor array Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

SA Suffixes GkFA GkFA (P-positions) (Q-positions) AAC\$ 15 11 AACGATAGTCGATAAC\$ 2 ACGATAGTCGATAAC\$ 3 AGTCGATAAC\$ 8 ATAAC\$ 13 13 ATAACGATAGTCGATAAC\$ n ATAGTCGATAAC\$ GATAAC\$ 12 GTCGATAAC\$ 14 TAAC\$ 14 10 TAACGATAGTCGATAAC\$ 1 TAGTCGATAAC\$

GkFA

Generalized k-Factor Array (GkFA) SA Suffixes

Generalized k-factor array Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

	٥,,	Junixes	(Q-positions)
\$	10	<u> </u>	
	15	AAC\$	11
	2	AACGATAGTCGATAAC\$	2
	16	AC\$	
	3	ACGATAGTCGATAAC\$	3
	8	AGTC <mark>GATAAC</mark> \$	6
	13	ATAAC\$	9
	0	ATAACGATAGTCGATAAC\$	0
	6	ATAGTC <mark>GATAAC</mark> \$	4
	17	C \$	
	11	CGATAAC\$	
	4	CG ATAG T CGATAAC\$	
	12	GATAAC\$	8
	5-	GATAGTCGATAAC\$	
	9	GTCGATAAC\$	7
	14	TAAC\$	10
	1	TAACGATAGTCGATAAC\$	1
	7	TAGTCGATAAC\$	5
	10	TEGATAAC\$	

Generalized k Count Factor Array

$$R = \mathop{\rm AT}_{\rm 0~1~2~3} \mathop{\rm ACGATA}_{\rm 4~5~6~7} \mathop{\rm AGTC}_{\rm 8~9~1011} \mathop{\rm AC\$}_{\rm 0.011}$$

$$R = \mathop{\rm AT}_{\rm 0~1~2~3} \mathop{\rm ACG}_{\rm 4~5~6~7} \mathop{\rm AGTC}_{\rm 8~9~1011} \mathop{\rm AC\$}_{\rm 0.01}$$
 $_{\rm Q-positions}$

GkCFA

Count the number of occurrences of a P-k-factor

$$R = \underset{\text{0 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}} \\ \underset{Q\text{-positions}}{\text{4 5 6 7}} \\ \text{C} \\ \text{S} \\ \text{S}$$

GkCFA

Count the number of occurrences of a P-k-factor

Purpose

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

GkFA	k-factor
11	AAC
2	AAC
3	ACG
6	AGT
9	ATA
0	ATA
4	ATA
8	GAT
7	GTC
10	TAA
1	TAA
5	TAG

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}} \\ \underset{Q\text{-positions}}{\text{A T A G T C G A T A A C \$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	$\emph{k}\text{-}factor$
0	11 2	AAC AAC
_	3	ACG
	6	AGT
	9	ATA
	0	ATA
	4	ATA
	8	GAT
	7	GTC
	10	TAA
	1	TAA
	5	TAG

$$R = \underset{\text{0 1 2 3}}{\text{ATAACSATAGTCGATAAC\$}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}} \underset{\text{8 9 1011}}{\text{4 C\$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	<i>k</i> -tacto	or
	11	AAC	
0	2	AAC	2
	3	ACG	
	6	AGT	
	9	ATA	
	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}} \\ \underset{Q\text{-positions}}{\text{A T A G T C G A T A A C \$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-facto	or
^	11	AAC	_
0	2	AAC	2
1	3	ACG	
	6	AGT	
	9	ATA	
	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}} \\ \underset{Q\text{-positions}}{\text{4 5 6 7}} \\ \text{C} \\ \text{S} \\ \text{S}$$

GkCFA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
-	11	AAC	
0	2	AAC	2
1	3	ACG	
	6	AGT	
	9	ATA	
	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}} \\ \underset{Q\text{-positions}}{\text{A T A G T C G A T A A C \$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	$k ext{-factor}$
0	11	AAC
_	2	AAC
1	3	ACG
12	6	AGT
	9	ATA
	0	ATA
	4	ATA
	8	GAT
	7	GTC
	10	TAA
	1	TAA
	5	TAG

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

GkFA		k-fact	or
_	11	AAC	
0	2	AAC	2
1	3	ACG	1
1 2	6	AGT	-
	9	ATA	
	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-facto	or
0	11	AAC	2
U	2	AAC	
1	3	ACG	1
2_	6	AGT	1
	9	ATA	
3	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
0	11	AAC	
U	2	AAC	
1	3	ACG	1
<u>1</u> _2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or —
0	11	AAC	
	2	AAC	
1_2	3	ACG	
2	6	AGT	
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

GLC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
0	11	AAC	
U	2	AAC	2
$\overline{1}$	3	ACG	1
<u>1</u> _2	6	AGT	-
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}}$$

$$\underset{\text{8 9 1011}}{\text{C A T A A C \$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
٥	11	AAC	_
0	2	AAC	2
1	3	ACG	1
1 2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5_	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

CLCEA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
0	11	AAC	
0	2	AAC	2
1	3	ACG	1
1 2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
4 5	7	GTC	1
	10	TAA	
	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

GkFA		k-fact	or
0	11	AAC	
U	2	AAC	2
1	3	ACG	1
12	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
6	10	TAA	
U	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

G	kFA	k-fact	or
0	11 2	AAC AAC	2
1	3	ACG	1
1_2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5_	7	GTC	1
6	10	TAA	2
0_	1	TAA	
	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC\$}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}} C \underset{\text{8 9 1011}}{\text{ATAAC\$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

GkFA		k-fact	or
0	11	AAC	2
U	2	AAC	
1	3	ACG	1
12	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5_	7	GTC	1
6	10	TAA	
O	1	TAA	2
7_	5	TAG	

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC\$}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}} C \underset{\text{8 9 1011}}{\text{ATAAC\$}}$$

GkC FA

Count the number of occurrences of a P-k-factor

Purpose

GkFA		k-fact	or
0	11	AAC	2
	2	AAC	_
1	3	ACG	1
1_2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
6	10	TAA	
U	1	TAA	2
7	5	TAG	1

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{Q\text{-positions}}{\text{4 5 6 7}} \underset{\text{8 9 1011}}{\text{CGATAAC}}$$

GkFA k-factor

GkCFA

Count the number of occurrences of a P-k-factor

Purpose

Compute the read coverage of a given region *inside* a read

0	11	AAC	2
U	2	AAC	_
12	3	ACG	1
2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	┖
4	8	GAT	1
4 5	7	GTC	1
6	10	TAA	2
U	1	TAA	_
7_	5	TAG	T_1

GkCFA

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

 GkFA k-factor

GkCFA

Count the number of occurrences of a P-k-factor

Purpose

Compute the read coverage of a given region *inside* a read

0	11	AAC	\bigcirc
U	2	AAC	
1	3	ACG	1
1_ 2	6	AGT	$\lceil 1 \rceil$
	9	ATA	TI
3	0	ATA	3
	4	ATA	
4	8	GAT	$\lceil 1 \rceil$
5	7	GTC	T_1
6	10	TAA	T_2
U	1	TAA	
7	5	TAG	T1 J
			_

IDs

GkCFA

$$R = \mathop{\rm ATAAAC}_{\rm 0~1~2~3} \mathop{\rm ATAAGTC}_{\rm 4~5~6~7} \mathop{\rm AGTC}_{\rm 8~9~1011} \mathop{\rm AC\$}_{\rm 0-positions}$$

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

$$R = \mathop{\rm ATAAACS}_{{\bf 0}~{\bf 1}~{\bf 2}~{\bf 3}} \mathop{\rm CGATAGTC}_{{\bf 4}~{\bf 5}~{\bf 6}~{\bf 7}} \mathop{\rm CGATAACS}_{{\bf 8}~{\bf 9}~{\bf 1011}} \mathop{\rm AC}_{{\bf 5}~{\bf 0}} \mathop{\rm Sitions}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{\text{O-positions}}{\text{A 5 6 7}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

(3kFA	$\emph{k}\text{-}factor$	i	GkIFA
0	11	AAC	0	
U	2	AAC	1	
1	3	ACG	2	
1_ 2	6	AGT	3	
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
O	1	TAA	10	
7_	5	TAG	11	

$$R = \underset{\text{O-positions}}{\mathsf{ATAACTAGTCGATAAC\$}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

_	kFA	k-factor	i	GkIFA
G	кга	κ-ractor	ι	GKIFA
0	11	AAC	0	
U	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
4 5	7	GTC	8	
6	10	TAA	9	
Ü	1	TAA	10	
7_	5	TAG	11	0

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{\text{O-positions}}{\text{ATAGTCGATAAC}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

(GkFA	k-factor	i	GkIFA
0	11	AAC	0	
U	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
U	1	TAA	10	
7	5	TAG	11	0

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$\underset{\text{O-positions}}{\text{ATAGTCGATAAC}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

G	kFA	$k ext{-}factor$	i	GkIFA
0	11	AAC	0	
U	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
U	1	TAA	10	
7_	5	TAG	11	0
<u></u>		170		U

$$R = \underset{\text{0 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

(skFA	k-factor	i	GkIFA
0	11	AAC	0	3
U	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	_1
	9	ATA	4	3
3	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	3
U	1	TAA	10	
7_	5	TAG	11	0

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{\text{O-positions}}{\text{A 5 6 7 C G A T A A C \$}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

	G	ikFA	$k ext{-}factor$	i	GkIFA
	0	11	AAC	0	3
		2	AAC	1	
	1	3	ACG	2	0
	2	6	AGT	3	1
		9	ATA	4	3
	3	0	ATA	5	
		4	ATA	6	2
	4	8	GAT	7	
	5	7	GTC	8	4
	6	10	TAA	9	3
		1	TAA	10	
	7_	5	TAG	11	0

$$R = \underset{\text{O 1 2 3}}{\text{ATAACGATAGTCGATAAC}}$$

$$R = \underset{\text{O-positions}}{\text{ATAAC}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

	G	ikFA	$\emph{k}\text{-}factor$	i	GkIFA
	0	11	AAC	0	3
		2	AAC	1	
	1	3	ACG	2	0
	2	6	AGT	3	1
	3	9	ATA	4	3
		0	ATA	5	
		4	ATA	6	2
	4	8	GAT	7	5
	5	7	GTC	8	4
	6	10	TAA	9	3
	U	1	TAA	10	
	7_	5	TAG	11	0

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{\text{O-positions}}{\text{A 5 6 7}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

	GkFA		$k ext{-}factor$	i	GkIFA
	^	11	AAC	0	3
	0	2	AAC	1	6
	1	3	ACG	2	0
	2	6	AGT	3	1
	3	9	ATA	4	3
		0	ATA	5	
		4	ATA	6	2
	4	8	GAT	7	5
	5	7	GTC	8	4
	6	10	TAA	9	3
		1	TAA	10	6
	7_	5	TAG	11	0

$$R = \underset{\text{O 1 2 3}}{\text{A T A A C G A T A G T C G A T A A C \$}}$$

$$\underset{\text{O-positions}}{\text{A 5 6 7}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

GkFA		$k ext{-}factor$	i	GkIFA
_	11	AAC	0	3
0	2	AAC	1	6
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	7
	4	ATA	6	2
4	8	GAT	7	5
5	7	GTC	8	4
6	10	TAA	9	3
0	1	TAA	10	6
7_	5	TAG	11	0

$$R = \underset{\text{O-positions}}{\mathsf{ATAACTGATAAC\$}}$$

GkIFA

- ▶ "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

GkFA		$k ext{-}factor$	i	GkIFA
0	11	AAC	0	3
U	2	AAC	1	6
1_	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	7
	4	ATA	6	2
4	8	GAT	7	5
4_ 5	7	GTC	8	4
6	10	TAA	9	3
O	1	TAA	10	6
7_	5	TAG	11	0

Using Gk arrays (I)

 $R = \mathop{\rm ATAAAA}_{\rm 0.1~2~3~3} \mathop{\rm ATAAAC}_{\rm 4.5~6~7~8~9~101112131415161718}_{\rm 4.5~6~7~8~9~1011}$

Using Gk arrays (I)

$$R = \mathop{\rm ATAAAA}_{\rm 0.1~2~3~3} \mathop{\rm ATAAAC}_{\rm 4.5~6~7~8~9~101112131415161718}_{\rm 4.5~6~7~8~9~1011}$$

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT

$$R = \mathop{\rm ATAAAA}_{0\ 1\ 2\ 3} \mathop{\rm AFAAAC}_{4\ 5\ 6\ 7} \mathop{\rm R}_{6\ 7} \mathop{\rm CGATAAAC}_{8\ 9\ 1011} \mathop{\rm ATAAC}_{112131415161718}$$

$$Q\text{-positions}$$

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT

 r_2 at position 0

 $R = \mathop{\rm ATAAAA}_{0\ 1\ 2\ 3} \mathop{\rm AFAAAC}_{4\ 5\ 6\ 7} \mathop{\rm R}_{6\ 7} \mathop{\rm CGATAAAC}_{8\ 9\ 1011} \mathop{\rm ATAAC}_{112131415161718}$ Q-positions

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT

 $egin{pmatrix} r_2 & \mathsf{at} \\ \mathsf{position} \\ 0 \end{bmatrix}$ Read length: 6

 $R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{4\ 5\ 6\ 7} \mathop{\rm AGT}_{6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm ATAAC}_{12131415161718}$

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT

$$R = \mathop{\rm ATAAA}_{0\ 1\ 2\ 3} \mathop{\rm ATAAAC}_{4\ 5\ 6\ 7} \mathop{\rm R}_{6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm 12131415161718}_{1213}$$

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT

$$R = \mathop{\rm AT}_{\rm 0.1.2.3} \mathop{\rm AA}_{\rm A.6} \mathop{\rm CG}_{\rm A.7} \mathop{\rm AA}_{\rm A.6} \mathop{\rm CTC}_{\rm S.6.7} \mathop{\rm ATA}_{\rm 8.9.1011} \mathop{\rm ATA}_{\rm 12131415161718} \mathop{\rm AC.\$}_{\rm 4.5.6.7}$$
 _Q-positions

Searching a k-factor of a given read

Read r_2 at position $0 o \mathsf{GAT}$

Position 0 in read r_2 corresponds to Q-position 8


```
R = \mathop{\rm ATAAA}_{0\ 1\ 2\ 3} \mathop{\rm AFAAAC}_{4\ 5\ 6\ 7} \mathop{\rm R}_{6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm 112131415161718}_{1213} R = \mathop{\rm ATAAAC}_{0\ 1\ 2\ 3} \mathop{\rm AFAAC}_{4\ 5\ 6\ 7} \mathop{\rm Cg-positions}_{Q-positions}
```

Searching a k-factor of a given read

Read r_2 at position 0 ightarrow GAT Position 0 in read r_2 corresponds to Q-position 8

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{4\ 5\ 6\ 7} \mathop{\rm AA}_{6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm 11213}_{1213} \mathop{\rm 1415}_{161718} \mathop{\rm 1718}_{1213} \mathop{\rm AAC}_{1213} \mathop{\rm AAC}_{1213}$$

Searching a k-factor of a given read

Read r_2 at position $0 \to \mathsf{GAT}$ Position 0 in read r_2 corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	1	9	10
10	6	U	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm ATAAAA \atop 0\ 1\ 2\ 3}_{\ 4\ 5\ 6\ 7} \mathop{\rm ATAAAA \atop 4\ 5\ 6\ 7}_{\ Q\ {\rm positions}} \mathop{\rm GATAAAC}_{\ 8\ 9\ 1011}$$

Searching a k-factor of a given read

Read r_2 at position $0 o \mathsf{GAT}$ Position 0 in read r_2 corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6	U	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm ATAAACS}_{0\ 1\ 2\ 3} \mathop{\rm AAACS}_{0\ 1\ 2\ 3}$$

Searching a k-factor of a given read

Read r_2 at position 0 \rightarrow GAT Position 0 in read r_2 corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	<u>→</u> 4	1	7	8
8	4	5	1	8	7
9	3		1	9	10
10	6	U	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{4\ 5\ 6} \mathop{\rm CG}_{1\ 2\ 3} \mathop{\rm AT}_{4\ 5\ 6} \mathop{\rm GT}_{7\ 8\ 9\ 1011} \mathop{\rm 1112131415161718}_{13\ 14\ 15\ 16\ 1718}$$

$$_{0\ 1\ 2\ 3} \mathop{\rm AF}_{4\ 5\ 6} \mathop{\rm CG}_{7\ 8\ 9\ 1011}$$

Searching a k-factor of a given read

Read r_2 at position $0 o \mathsf{GAT}$ Position 0 in read r_2 corresponds to Q-position 8

i	GkIFA		b	GkCFA	j	GkFA
0	3		n	2	0	11
1	6		U	2	1	2
2	0		1	1	2	3
3	1	·-	2	1	3	6
4	3	•			4	9
5	7		3	3	5	0
6	2				6	4
7	5		4	1	7	8
8	4 -		5	1	8	7
9	3	·-	6	2	9	10
10	6		0	2	10	1
11	0	-	7	1	11	5

(Information)

There is only 1 P-k-factor GAT in R.

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{4\ 5\ 6\ 7} \mathop{\rm AF}_{6\ 7} \mathop{\rm AF}_{6\ 7} \mathop{\rm CGATA}_{6\ 1\ 2\ 3} \mathop{\rm ATA}_{4\ 5\ 6\ 7} \mathop{\rm CGATA}_{8\ 9\ 1011}$$

Searching a k-factor of a given read

Read r_1 at position $0 o \mathsf{ATA}$

 r_1 at position 0

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3}^{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1011122131415161711}_{4\ 5\ 6\ 7\ C\ G\ A\ T\ A\ A\ C\ \$}$$

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA

```
egin{pmatrix} r_1 & \mathsf{at} \\ \mathsf{position} \\ 0 & & & & \\ \end{bmatrix} Read length: 6
```

Searching a k-factor of a given read

Read r_1 at position $0 o \mathsf{ATA}$

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{4\ 5\ 6\ 7} \mathop{\rm AA}_{6\ 7} \mathop{\rm CGATAAC}_{6\ 7\ 8\ 9\ 1011} \mathop{\rm 1213}_{1213} \mathop{\rm 1415}_{1415} \mathop{\rm 16171}_{171}$$

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AAC}_{4\ 5\ 6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm AAC}_{9\ 1011}$$

Searching a k-factor of a given read ${}^{\circ}$

Read r_1 at position $0 o \mathsf{ATA}$

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm ACG}_{4\ 5\ 6\ 7} \mathop{\rm AF}_{0\ 1\ 2\ 3} \mathop{\rm CSG}_{4\ 5\ 6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011}$$

Searching a k-factor of a given read

Read r_1 at position $0 o \mathsf{ATA}$

Position 0 in read r_1 corresponds to Q-position 4

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3}^{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1011122131415161711}_{4\ 5\ 6\ 7\ C\ G\ A\ T\ A\ A\ C\ \$}$$

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA Position 0 in read r_1 corresponds to Q-position 4

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA Position 0 in read r_1 corresponds to Q-position $\ref{4}$

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6	0	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3}^{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1011112231415161718}^{1\ 1\ 1\ 2\ 3\ A\ C\ G\ A\ T\ A\ G\ C\ S}_{4\ 5\ 6\ 7\ Q\mbox{-positions}}^{4\ 5\ 6\ 7\ R\ 9\ 10111}$$

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA Position 0 in read r_1 corresponds to Q-position $\ref{4}$

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3		2	9	10
10	6	0	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm ATAAACS}_{0\ 1\ 2\ 3} \mathop{\rm ATAACS}_{4\ 5\ 6\ 7} \mathop{\rm R}_{8\ 9\ 10111} \mathop{\rm 1213}_{12131415161718} \mathop{\rm 1815}_{12131} \mathop{\rm AACS}_{12131415161718}$$

Searching a k-factor of a given read

Read r_1 at position 0 ightarrow ATA Position 0 in read r_1 corresponds to Q-position $\ref{4}$

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3 -			4	9
5	7	\rightarrow 3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6	U	2	10	1
11	0	7	1	11	5

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AA}_{1\ 2\ 3} \mathop{\rm CG}_{4\ 5\ 6\ 7} \mathop{\rm AF}_{7\ A} \mathop{\rm AC}_{1\ 2\ 3} \mathop{\rm CG}_{4\ 5\ 6\ 7} \mathop{\rm CG}_{8\ 9\ 1011} \mathop{\rm AT}_{12131415161718} \mathop{\rm AC}_{1718} \mathop{\rm CG}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm CG}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm CG}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm CG}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm CG}_{1718} \mathop{\rm AC}_{1718} \mathop{\rm A$$

Searching a k-factor of a given read

Read r_1 at position $0 \to ATA$ Position 0 in read r_1 corresponds to Q-position \P

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	U	4	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3 -			4	9
5	7	\rightarrow 3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6	0	2	10	1
11	0	7	1	11	5

- Information

There are 3 P-k-factors ATA in R. But...where are they?

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm ACG}_{4\ 5\ 6\ 7} \mathop{\rm AF}_{7\ 8\ 9\ 1011} \mathop{\rm 1213}_{1213} \mathop{\rm 1415}_{161718} \mathop{\rm 1718}_{1718} \\ \mathop{\rm ATA}_{2\ 3} \mathop{\rm ACG}_{4\ 5\ 6\ 7} \mathop{\rm ACS}_{8\ 9\ 1011} \mathop{\rm 1011}_{213} \mathop{\rm 1415}_{16161718} \mathop{\rm 1415}_{161718} \mathop{\rm 1415}_{1718} \mathop{\rm 1415}_{1718}$$

Searching a k-factor of a given read ${}^{\circ}$

Read r_1 at position $0 \to ATA$ Position 0 in read r_1 corresponds to Q-position \P

i	GkIFA	b)	GkCFA	j		GkFA
0	3	0		2	0	1	11
1	6	Ū	,	2	1		2
2	0	1		1	2		3
3	1	2	2	1	3		6
4	3 -				→ 4		9
5	7	\rightarrow 3	;	3	5		0
6	2				6		4
7	5	4	ļ	1	7		8
8	4	5	,	1	8		7
9	3	6		2	9	1	10
10	6	0	,	2	10	1	1
11	0		,	1	11		5

- Information

There are 3 P-k-factors ATA in R. But...where are they?

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm ACG}_{4\ 5\ 6\ 7} \mathop{\rm AF}_{4\ 5\ 6\ 7} \mathop{\rm CGATAAC}_{8\ 9\ 1011} \mathop{\rm ACS}_{12\ 3}$$

Searching a k-factor of a given read

Read r_1 at position $0 \to ATA$ Position 0 in read r_1 corresponds to Q-position \P

i	GkIFA		b	GkCFA	j	GkFA
0	3		Λ	2	0	11
1	6		U	2	1	2
2	0	-	1	1	2	3
3	1	_	2	1	3	6
4	3 -				4	9
5	7	\rightarrow	3	3	5	0
6	2				6	4
7	5	-	4	1	7	8
8	4		5	1	8	7
9	3	-	6	2	9	10
10	6		U	2	10	1
11	0	-	7	1	11	5

(Information)

There are 3 P-k-factors ATA in R. But...where are they?

Q-positions of ATA

- 9 r_2 , position 1
- 0 r_0 , position 0
- 4 r_1 , position 0

$$R = \mathop{\rm AT}_{0\ 1\ 2\ 3} \mathop{\rm AAC}_{4\ 5\ 6\ 7} \mathop{\rm AAC}_{6\ 1\ 2\ 3} \mathop{\rm AAC}_{4\ 5\ 6\ 7} \mathop{\rm CAT}_{8\ 9\ 1011} \mathop{\rm 1213}_{12131415161714} \mathop{\rm AAC}_{1212} \mathop{\rm AAC}_{1212}$$

Searching a k-factor of a given read

Read r_1 at position $0 \to ATA$ Position 0 in read r_1 corresponds to Q-position 4

i	GkIFA		b	GkCFA (kCFPS	j	GkFA
0	3		0	2)	0	11
1	6		U	2		1	2
2	0		1	1	3	2	3
3	1	_	2	1	4	3	6
4	3				<i>→</i>	4	9
5	7	\rightarrow	3	3	7	5	0
6	2					6	4
7	5	_	4	1	8	7	8
8	4		5	1	9	8	7
9	3	_	6	2	11	9	10
10	6		U	2	11	10	1
11	0	=	7	1	12	11	5

Information

There are 3 P-k-factors ATA in R. But...where are they?

Q-positions of ATA

- 9 r_2 , position 1
- 0 r_0 , position 0
- 4 r_1 , position 0

Problem

What if a P-k-factor occurs many times in the same read?

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

(Modified)	Exampl	е	
GkCFA	i	GkFA	
	•	:	
	4	11	
	5	0	
3	6	4	
	7	9	
	:	:	

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

Solutions for counting reads

 Use a mask to known which read have already been counted

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

Solutions for counting reads

- Use a mask to known which read have already been counted
- ➤ Sort the entries (when querying or at construction).

Problem

What if a P-k-factor occurs many times in the same read?

 \Rightarrow The number of reads in which occurs a $P\text{-}k\text{-}\mathrm{factor}$ is not its total number of occurrences in R

Solutions for counting reads

- Use a mask to known which read have already been counted
- ➤ Sort the entries (when querying or at construction).

Complexities

Space complexities

GkFA, GkIFA Number of entries: Number of reads \times (Read length -k+1) GkCFA Number of entries: Number of distinct P-k-factors

Complexities

Space complexities

GkFA, GkIFA Number of entries: Number of reads \times (Read length -k+1) GkCFA Number of entries: Number of distinct P-k-factors

Time complexities

- Q1 (counting P-k-factors) O(1)Q2 (retrieving positions in reads) O(occ)
- Q3 (counting reads) O(occ)

where occ is the number of occurrences of the P-k-factor in the reads.

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Space complexities

Three arrays containing (number of reads imes length of the reads) elements each

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Space complexities

Three arrays containing (number of reads imes length of the reads) elements each

Time complexities

```
egin{array}{ll} {f Q1} & ({
m counting} \ P\hbox{-}k\hbox{-factors}) & O(occ_R) \ {f Q2} & ({
m retrieving positions in reads}) & O(occ_R) \ \end{array}
```

Q3 (counting reads) $O(occ_R + number of reads)$

where occ_R is the number of occurrences of the k-factors in R.

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Space complexities

Three arrays containing (number of reads imes length of the reads) elements each

Time complexities

- Q1 (counting P-k-factors) $O(occ_R)$
- **Q2** (retrieving positions in reads) $O(occ_R)$
- Q3 (counting reads) $O(occ_R + number of reads)$

where occ_R is the number of occurrences of the k-factors in R.

Improvements over a SA-based solution

Space At least $(3 \times (k-1) \times \text{number of reads})$ elements

Time No dependency on the number of reads, no dependency on the number of occurrences in ${\cal R}$

Time and space construction in practice

Data

- ► Fruit fly sequences from a Genome Analyzer II
- ▶ 7,000,000 reads
- ▶ read length: 75

Time and space construction in practice

Time and space construction in practice

Gk arrays

Query time

Classical

Query time

Query time

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Efficiency

 $\operatorname{\mathsf{Gk}}$ arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in ${\cal R}$

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in ${\cal R}$

Compressing Gk arrays

Can we adapt compression techniques to Gk arrays?

 \rightarrow new space/time tradeoff

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in ${\cal R}$

Compressing Gk arrays

Can we adapt compression techniques to Gk arrays?

ightarrow new space/time tradeoff

Updating Gk arrays

Can we efficiently update Gk arrays?

 \rightarrow read correction