Indexing a large set of reads

Nicolas Philippe ${ }^{1,2} \quad$ Mikaël Salson ${ }^{3}$ Thierry Lecroq ${ }^{4}$ Martine Léonard ${ }^{4}$ Thérèse Commes ${ }^{2}$ Éric Rivals ${ }^{1}$
${ }^{1}$ LIRMM, CNRS and Université de Montpellier 2
${ }^{2}$ IGH, CNRS, Montpellier
${ }^{3}$ LIFL, CNRS and Université de Lille I - INRIA Lille-Nord Europe
${ }^{4}$ LITIS, Université de Rouen

10 January 2011

Introduction

Context
Next generation sequencers produce gigabytes of reads in a single run

Introduction

Context
Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Introduction

Context
Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Introduction

Context
Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Introduction

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Interesting questions

- How many reads share this factor f ?
- Which reads share this factor? At which positions?

Introduction

Context

Next generation sequencers produce gigabytes of reads in a single run

Problem

How to search efficiently any relevant information?

Interesting questions

- How many reads share this factor f ?
- Which reads share this factor? At which positions?

Why is it interesting?

- Genome assembly
- Read mapping
- ...

Fixed-length factors

Question
Should we consider every factor?

Fixed-length factors

Question
Should we consider every factor?
Remarks

- Factors of length 2 are quite uninformative
- At a certain point, increasing factor lengths does not help in identifying unique genome location ([Philippe et al., 2009])

Fixed-length factors

Question
Should we consider every factor?
Remarks

- Factors of length 2 are quite uninformative
- At a certain point, increasing factor lengths does not help in identifying unique genome location ([Philippe et al., 2009])

Conclusion
We only consider k-length factors (k-factors or k-mers), k being fixed

Queries

Queries for k-factors of a given read

Given a read, and a k-factor in that read, we would like to know:
Q1 the number of times this k-factor appears in the whole set of reads

Q2 the reads and the positions in the reads in which it occurs
Q3 the number of distinct reads in which it occurs

An immediate solution

We need to search patterns in a text

An immediate solution

Remark
We need to search patterns in a text
Classical solution
Use a text index

An immediate solution

Remark

We need to search patterns in a text
Classical solution
Use a text index

- Suffix tree
- Suffix array
- Compressed text index (FM-index, LZ-index, ...)

An immediate solution

Remark

We need to search patterns in a text
Classical solution
Use a text index

- Suffix tree
- Suffix array
- Compressed text index (FM-index, LZ-index, ...)

Ok, let's try a suffix array!

Using a Suffix Array for querying reads

Reads:

$$
\begin{aligned}
& \begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array} \\
& r_{1}=\text { A }^{7}{ }^{7} \mathrm{~A}^{8} \mathrm{~g}^{9011} \\
& r_{2}=\text { GATAAC }
\end{aligned}
$$

Using a Suffix Array for querying reads

Reads:

$$
R=r_{0} \cdot r_{1} \cdot r_{2} \cdot \$
$$

Using a Suffix Array for querying reads

Reads:

r_{0}	r_{1}	r_{2}

Using a Suffix Array for querying reads

r_{0}	r_{1}	r_{2}

Let's build the suffix array (sort suffixes in lexicographic ascending order)
SA Suffixes
18 \$
15 AAC\$
2 AACGATAGTCGATAAC\$
16 AC\$
3 ACGATAGTCGATAAC\$
8 AGTCGATAAC\$
13 ATAAC\$
0 ATAACGATAGTCGATAAC\$
17 C\$
11 CGATAAC\$

Using a Suffix Array for querying reads

$$
\begin{aligned}
& \begin{array}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718
\end{array} \\
& R=r_{0} \cdot r_{1} \cdot r_{2} \cdot \$=\text { ATAACGATAGTCGATAAC } \$
\end{aligned}
$$

r_{0}	r_{1}	r_{2}

Let's build the suffix array (sort suffixes in lexicographic ascending order)

SA Suffixes

18 \$
15 AAC\$
2 AACGATAGTCGATAAC\$
16 AC\$
3 ACGATAGTCGATAAC\$
8 AGTCGATAAC\$

Remark

Only the k first letters of each suffix are interesting ($k=3$)

13 ATAAC\$
0 ATAACGATAGTCGATAAC\$
17 C\$
11 CGATAAC\$

Using a Suffix Array for querying reads

Reads:

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718
\end{array} \\
& R=r_{0} \cdot r_{1} \cdot r_{2} \cdot \$=\text { ATAACGATAGTCGATAAC }^{\mathbf{1}}
\end{aligned}
$$

r_{0}	r_{1}	r_{2}

Let's build the suffix array (sort suffixes in lexicographic ascending order)

Remark

Only the k first letters of each suffix are interesting ($k=3$)

Using a Suffix Array for querying reads

Reads:

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 & 12131415161718
\end{array}
\end{aligned}
$$

r_{0}	r_{1}	r_{2}

Let's build the suffix array (sort suffixes in lexicographic ascending order)

Remark

Only the k first letters of each suffix are interesting ($k=3$)

Remark
Factors overlapping two reads are undesirable

Using a Suffix Array for querying reads

Reads:

$$
\begin{aligned}
& \begin{array}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718
\end{array}
\end{aligned}
$$

r_{0}	r_{1}	r_{2}

Let's build the suffix array (sort suffixes in lexicographic ascending order)

SA Suffixes

15
2

3813

17
11

Remark

Only the k first letters of each suffix are interesting ($k=3$)

Remark
Factors overlapping two reads are undesirable

Discarding useless positions

TAACGATAGTCGATAAC\$ AACGATAGTCGATAAC\$ ACGATAGTCGATAAC\$ CGATAGTCGATAAC $\$$ GATAGTCGATAAC\$ ATAGTCGATAAC\$ TAGTCGATAAC\$ AGTCGATAAC\$ GTCGATAAC\$ TCGATAAC\$ CGATAAC\$ GATAAC\$ ATAAC\$ TAAC\$ AAC\$ AC\$ C\$ \$

Discarding useless positions

TAACGATAGTCGATAAC\$
$A A C G A T A G T C G A T A A C \$$
$A C G A T A G T C G A T A A C \$$
$C G A T A G T C G A T A A C \$$
$G A T A G T C G A T A A C \$$
$A T A G C G A T A A C \$$
$T A G$
$A G T G A T A C \$$
$G T C G A T A A C \$$
$T C G A T A A C \$$
$C G A T A A C \$$
$G A T A A C \$$
$A T A A C \$$
$T A A C \$$
$A A C \$$
$A C \$$
$C \$$
$\$$

Discarding useless positions

Discarding useless positions

Discarding useless positions
 $\rightarrow P$-positions

-positions

- Set of positions where a k-factor belonging to a single read starts.
- This set is not a permutation

A k-factor starting at a P-position is called a P - k-factor

Discarding useless positions

$$
\begin{aligned}
& P \text {-positions }
\end{aligned}
$$

-positions

- Set of positions where a k-factor belonging to a single read starts.
- This set is not a permutation

A k-factor starting at a P-position is called a P - k-factor

Q-positions

Renumbered P-positions so that the set of Q-positions is a permutation

Generalized k-Factor Array (GkFA)

Generalized k-factor array
Index suffixes starting at P-positions. Positions are renumbered to Q-positions.

Generalized k-Factor Array (GkFA)

$$
\begin{aligned}
\text { SA } & \text { Suffixes } \\
18 & \$ \\
15 & \text { AAC } \$ \\
2 & \text { AACGATAGTCGATAAC } \$ \\
16 & \text { AC\$ } \\
3 & \text { ACGATAGTCGATAAC } \$ \\
8 & \text { AGTCGATAAC } \$ \\
13 & \text { ATAAC } \$ \\
0 & \text { ATAACGATAGTCGATAAC } \$ \\
6 & \text { ATAGTCGATAAC } \$ \\
17 & \text { C\$ } \\
11 & \text { CGATAAC } \$ \\
4 & \text { CGATAGTCGATAAC } \$ \\
12 & \text { GATAAC } \$ \\
5 & \text { GATAGTCGATAAC } \$ \\
9 & \text { GTCGATAAC } \$ \\
14 & \text { TAAC } \$ \\
1 & \text { TAACGATAGTCGATAAC } \$ \\
7 & \text { TAGTCGATAAC } \$ \\
10 & \text { TCGATAAC } \$
\end{aligned}
$$

Generalized k-Factor Array (GkFA)

Generalized k-Factor Array (GkFA)

		Suffixes	GkFA (P-positions)
	18		
	15	AAC\$	15
	2	AACGATAGTCGATAAC\$	2
		AEs	
	3	ACGATAGTCGATAAC\$	3
$R=$ ATAACGATAGTCGATAAC $\$$	8	AGTCGATAAC\$	8
	13	ATAAC\$	13
Q-position	0	ATAACGATAGTCGATAAC\$	0
	6	ATAGTCGATAAC\$	6
		Es	
		EGATAAES	
Generalized k-factor array		EGATAGTEGATAAE\$	
	12	GATAAC\$	12
Index suffixes starting at		GATAGFEGATAAEf	
P-positions. Positions are	9	GTCGATAAC\$	9
renumbered to Q-positions.	14	TAAC\$	14
	1	TAACGATAGTCGATAAC\$	1
	7	TAGTCGATAAC\$	7
		FCGATAAC§	

Generalized k-Factor Array (GkFA)

	SA	Suffixes	GkFA (P-positions)	GkFA (Q-positions)
	4			
	15	AAC\$	15	11
	2	AACGATAGTCGATAAC\$	2	2
	46	ACGATAGTCGATAAC $\$$	3	3
$R=A T A A C G A T A G T C G A T A A C \$ ~$	8	AGTCGATAAC\$	8	6
0123$\underbrace{4567}_{\downarrow}$	13	ATAAC\$	13	9
Q-positions	0	ATAACGATAGTCGATAAC\$	0	0
	6	ATAGTCGATAAC\$	6	4
		CGATAACs		
Generalized k-factor array Index suffixes starting at	12	CGATAGFEGATAARG GATAAC\$	12	8
-positions. Positions are	9	GTCGATAAC\$	9	7
renumbered to Q-positions.	14	TAAC\$	14	10
	1	TAACGATAG TCGATAAC\$	1	1
	7	TAGTCGATAAC\$	7	5
		FCGATAAC§		

Generalized k-Factor Array (GkFA)

Generalized k Count Factor Array

$$
\begin{aligned}
& R=\text { ATAACGATAGTCGATAAC } \$
\end{aligned}
$$

Generalized k Count Factor Array

GkCFA

Count the number of occurrences of a P - k-factor

Generalized k Count Factor Array

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

11 AAC
2 AAC
3 ACG
6 AGT
9 ATA
0 ATA
4 ATA
8 GAT
7 GTC
10 TAA
1 TAA
5 TAG

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read
$\begin{array}{r}11 \text { AAC } \\ 0 \quad \text { AAC } \\ \hline 3 \text { ACG }\end{array}$
6 AGT
9 ATA
0 ATA
4 ATA
8 GAT
7 GTC
10 TAA
1 TAA
5 TAG

Generalized k Count Factor Array

GkFA k-factor

GkCFA
Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

0	11	AAC
2	AAC	2
3	ACG	
6	AGT	
9	ATA	
0	ATA	
4	ATA	
8	GAT	
7	GTC	
10	TAA	
1	TAA	
5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	
6	AGT		
9	ATA		
0	ATA		
4	ATA		
8	GAT		
7	GTC		
	10	TAA	
1	TAA		
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
6	AGT		
9	ATA		
0	ATA		
4	ATA		
8	GAT		
7	GTC		
10	TAA		
1	TAA		
5	TAG		

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	
	9	ATA	
	0	ATA	
4	ATA		
	8	GAT	
7	GTC		
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
	9	ATA	
	0	ATA	
4	ATA		
	8	GAT	
7	GTC		
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
	8	GAT	
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	
7	GTC		
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
	10	TAA	
	1	TAA	
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
4	4	ATA	
5	8	GAT	1
	7	GTC	1
6	10	TAA	
1	TAA		
5	TAG		

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
	0	ATA	3
4	4	ATA	
5	8	GAT	1
	7	GTC	1
6	10	TAA	2
	1	TAA	2
5	TAG		

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
6	10	TAA	2
	1	TAA	2
	5	TAG	

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	2
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
3	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
6	10	TAA	2
	1	TAA	
7	5	TAG	1

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

	11	AAC	2
0	2	AAC	2
1	3	ACG	1
2	6	AGT	1
	9	ATA	
3	0	ATA	3
	4	ATA	
4	8	GAT	1
5	7	GTC	1
6	10	TAA	2
7	1	TAA	2
	5	TAG	1

GkCFA

Generalized k Count Factor Array

GkFA k-factor

GkCFA

Count the number of occurrences of a P - k-factor

Purpose

Compute the read coverage of a given region inside a read

0	11	AAC	2
1	2	AAC	2
2	3	ACG	1
3	9	AGT	1
	0	ATA	
	4	ATA	3
4	8	GAT	1
5	7	GTC	1
6	10	TAA	2
7	1	TAA	2

IDs

Generalized k Inverse Factor Array (GkIFA)

$$
\begin{aligned}
& R=A T A A C G A T A G T C G A T A A C \$ ~ \\
& \begin{array}{l}
4-5 \quad 6 \quad 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	
	2	AAC	1	
1	3	ACG	2	
2	6	AGT	3	
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
	1	TAA	10	
7	5	TAG	11	

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	
	9	ATA	4	
3	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
3	9	ATA	4	
	0	ATA	5	
	4	ATA	6	
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
3	9	ATA	4	
	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
3	9	ATA	4	3
	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	
5	7	GTC	8	
6	10	TAA	9	3
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	
5	7	GTC	8	4
6	10	TAA	9	3
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	
1	3	ACG	2	0
2	6	AGT	3	1
3	9	ATA	4	3
	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	5
5	7	GTC	8	4
6	10	TAA	9	3
	1	TAA	10	
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	6
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	
	4	ATA	6	2
4	8	GAT	7	5
5	7	GTC	8	4
6	10	TAA	9	3
	1	TAA	10	6
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	6
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	7
	4	ATA	6	2
4	8	GAT	7	5
5	7	GTC	8	4
6	10	TAA	9	3
	1	TAA	10	6
7	5	TAG	11	0

Generalized k Inverse Factor Array (GkIFA)

GkIFA

- "Inverse" of GkFA
- Given a Q-position in R, stores the id associated to the corresponding k-factor

Purpose

Quickly find the id associated to a k-factor coming from a read

GkFA		k-factor	i	GkIFA
0	11	AAC	0	3
	2	AAC	1	6
1	3	ACG	2	0
2	6	AGT	3	1
	9	ATA	4	3
3	0	ATA	5	7
	4	ATA	6	2
4	8	GAT	7	5
5	7	GTC	8	4
6	10	TAA	9	3
	1	TAA	10	6
7	5	TAG	11	0

Using Gk arrays (I)

$$
\begin{aligned}
& 0 \text {. } \\
& R=\text { ATAACGATAGTCGATAAC } \$ \\
& \begin{array}{ll}
4 & 5 \\
Q & 6 \\
Q
\end{array}
\end{aligned}
$$

Using Gk arrays (I)

$$
\begin{aligned}
& \begin{array}{llll}
4 & 5 & 6 & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT

Using Gk arrays (I)

$$
\begin{aligned}
& R=\mathrm{A}^{1} \mathrm{~T}^{2} \mathrm{~A}^{3} \mathrm{~A}^{4} \mathrm{C}^{5} \mathrm{G}^{6} \mathrm{~T}^{8} \mathrm{~A}^{9} \mathrm{G}^{101112131415161718} \\
& \begin{array}{llll}
4 & 5 & 6 & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT

$r_{2} \mathrm{at}$
position
0

Using Gk arrays (I)

$$
\begin{aligned}
& R=\mathrm{A}^{1} \mathrm{~T}^{2} \mathrm{~A}^{3} \mathrm{~A}^{4} \mathrm{C}^{5} \mathrm{G}^{6} \mathrm{~T}^{8} \mathrm{~A}^{9} \mathrm{G}^{101112131415161718} \\
& \begin{array}{llll}
4 & 5 & 6 & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT

Using Gk arrays (I)

$$
\begin{aligned}
& \begin{array}{llll}
4 & 5 & 6 & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT

| r_{2} at
 position
 0 | Read length: 6 |
| :---: | :---: | | P-position |
| :---: |
| $2 \times 6+0=12$ in R |

Using Gk arrays (I)

$$
\begin{aligned}
& \begin{array}{llll}
4 & 5 & 6 & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT

r_{2} at position 0		P-position $2 \times 6+0=12$ in R

Using Gk arrays (I)

$$
\begin{aligned}
& Q \text {-positions }
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

r_{2} at position 0	Read length: 6	P-position $2 \times 6+0=12$ in R	

Using Gk arrays (I)

$$
\begin{aligned}
& \begin{array}{lll}
4 & 5 & 6 \\
Q & 7 \\
Q \text {-positions }
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

Using Gk arrays (I)

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3		2	0	11
$\mathbf{1}$	6		$\mathbf{1}$	2	
2	0	$\mathbf{1}$	1	$\mathbf{2}$	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6		7	1	10
11	0			11	5

Using Gk arrays (I)

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3		2	0	11
$\mathbf{1}$	6		$\mathbf{1}$	2	
2	0	$\mathbf{1}$	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6		7	1	10
11	0			11	5

Using Gk arrays (I)

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6		1	2	
2	0	$\mathbf{1}$	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	5	0	
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6		7	1	10
11	0			11	5

Using Gk arrays (I)

Searching a k-factor of a given read

Read r_{2} at position $0 \rightarrow$ GAT
Position 0 in read r_{2} corresponds to Q-position 8

i	GkIFA	b	GkCFA	j	GkFA
0	3		2	0	11
1	6		$\mathbf{1}$	2	
2	0	$\mathbf{1}$	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	5	0	
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6		7	1	10
11	0			11	5

Information
There is only 1 P - k-factor GAT in R.

Using Gk arrays (II)

Using Gk arrays (II)

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& Q \text {-positions }
\end{aligned}
$$

Searching a k-factor of a given read
Read r_{1} at position $0 \rightarrow$ ATA

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA

```
r}1\mathrm{ at
position
    0
```


Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

Using Gk arrays (II)

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 101112131415161718
\end{array}
\end{aligned}
$$

Searching a k-factor of a given read
Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6		1	2	
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	5	0	
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3		6	2	9
10	6	7	1	10	
11	0			11	5

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

i	GkIFA	b	GkCFA	j	GkFA
0	3		2	0	11
1	6		1	2	
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	5	0	
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6		7	1	10

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

i	GkIFA	b	GkCFA	j	GkFA
0	3	0	2	0	11
1	6	0	2	1	2
2	0	1	1	2	3
3	1	2	1	3	6
4	3			4	9
5	7	3	3	5	0
6	2			6	4
7	5	4	1	7	8
8	4	5	1	8	7
9	3	6	2	9	10
10	6	6	2	10	1
11	0	7	1	11	5

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4

Using Gk arrays (II)

Searching a k-factor of a given read

Read r_{1} at position $0 \rightarrow$ ATA
Position 0 in read r_{1} corresponds to Q-position 4
i GkIFA
$\begin{array}{rr}0 & 3 \\ 1 & 6 \\ 2 & 0 \\ 3 & 1 \\ 4 & 3 \\ 5 & 7 \\ 6 & 2 \\ 7 & 5 \\ 8 & 4 \\ 9 & 3 \\ 10 & 6 \\ 11 & 0\end{array}$
b GkCFA GkCFPS ${ }^{j}$ GkFA

0	2	$2 \begin{aligned} & 0 \\ & 1\end{aligned}$	11
1	1	32	3
2	1	43	6
3	3	4	9
		75	0
		6	4
4	1	87	8
5	1	98	7
6	2		10
	2		1
7	1	1211	5

Information

There are 3
P - k-factors ATA in R. But. . . where are they?
Q-positions of ATA
$9 r_{2}$, position 1
$0 r_{0}$, position 0
$4 r_{1}$, position 0

Multiplicity of P - k-factors

Problem
What if a P - k-factor occurs many times in the same read?

Multiplicity of P - k-factors

Problem
What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R

Multiplicity of P - k-factors

Problem

What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R
(Modified) Example

GkCFA	i	GkFA
	\vdots	\vdots
	4	11
	5	0
3	6	4
	7	9

Multiplicity of P - k-factors

Problem

What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R
(Modified) Example

GkCFA	i	GkFA
	\vdots	\vdots
	4	$11 \longrightarrow$ read 2
	5	$0 \longrightarrow$ read 0
3	6	$4 \longrightarrow$ read 1
	7	$9 \longrightarrow$ read 2

Multiplicity of P - k-factors

Problem

What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R

(Modified) Example

GkCFA	i	GkFA
	\vdots	\vdots
	4	$11 \longrightarrow$ read 2
	5	$0 \longrightarrow$ read 0
3	6	$4 \longrightarrow$ read 1
	7	$9 \longrightarrow$ read 2

Solutions for counting reads

- Use a mask to known which read have already been counted

Multiplicity of P - k-factors

Problem

What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R

(Modified) Example

GkCFA	i	GkFA
	\vdots	\vdots
	4	$11 \longrightarrow$ read 2
	5	$0 \longrightarrow$ read 0
3	6	$4 \longrightarrow$ read 1
	7	$9 \longrightarrow$ read 2

Solutions for counting reads

- Use a mask to known which read have already been counted
- Sort the entries (when querying or at construction).

Multiplicity of P - k-factors

Problem

What if a P - k-factor occurs many times in the same read?
\Rightarrow The number of reads in which occurs a P - k-factor is not its total number of occurrences in R

(Modified) Example

GkCFA	i	GkFA
	\vdots	\vdots
	4	$0 \longrightarrow$ read 0
	5	$4 \longrightarrow$ read 1
3	6	$9 \longrightarrow$ read 2
	7	$11 \longrightarrow$ read 2

Solutions for counting reads

- Use a mask to known which read have already been counted
- Sort the entries (when querying or at construction).

Complexities

Space complexities
GkFA, GkIFA Number of entries: Number of reads \times (Read length $-k+1$)
GkCFA Number of entries: Number of distinct P - k-factors

Complexities

Space complexities

GkFA, GkIFA Number of entries: Number of reads \times (Read length $-k+1$) GkCFA Number of entries: Number of distinct P - k-factors

Time complexities

```
Q1 (counting P-k-factors)
O(1)
Q2 (retrieving positions in reads)
O(occ)
Q3 (counting reads)
O(occ)
```

where occ is the number of occurrences of the P - k-factor in the reads.

Complexities with the classical solution

SA-based solution
Build the suffix array of R, the inverse suffix array and the LCP array.

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.
Space complexities
Three arrays containing (number of reads \times length of the reads) elements each

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Space complexities

Three arrays containing (number of reads \times length of the reads) elements each

Time complexities

Q1 (counting P - k-factors) $O\left(o c c_{R}\right)$
Q2 (retrieving positions in reads) $O\left(o c c_{R}\right)$
Q3 (counting reads) $O\left(o c c_{R}+\right.$ number of reads)
where $o c c_{R}$ is the number of occurrences of the k-factors in R.

Complexities with the classical solution

SA-based solution

Build the suffix array of R, the inverse suffix array and the LCP array.

Space complexities

Three arrays containing (number of reads \times length of the reads) elements each

Time complexities

Q1 (counting P - k-factors) $O\left(o c c_{R}\right)$
Q2 (retrieving positions in reads) $O\left(o c c_{R}\right)$
Q3 (counting reads) $O\left(o c c_{R}+\right.$ number of reads)
where $o c c_{R}$ is the number of occurrences of the k-factors in R.
Improvements over a SA-based solution
Space At least $(3 \times(k-1) \times$ number of reads) elements
Time No dependency on the number of reads, no dependency on the number of occurrences in R

Time and space construction in practice

Data

- Fruit fly sequences from a Genome Analyzer II
- 7,000,000 reads
- read length: 75

Time and space construction in practice

Time and space construction in practice

Query time

Query time

What are the occurrence positions of f in the reads?

Query time

Conclusions and Perspectives

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Conclusions and Perspectives

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in R

Conclusions and Perspectives

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in R

Compressing Gk arrays
Can we adapt compression techniques to Gk arrays?
\rightarrow new space/time tradeoff

Conclusions and Perspectives

Efficiency

Gk arrays allow to query more reads in less time than a suffix array-based method

Variable-length reads

We can deal with variable-length reads by adding a bit vector for identifying the end of reads in R

Compressing Gk arrays
Can we adapt compression techniques to Gk arrays?
\rightarrow new space/time tradeoff
Updating Gk arrays
Can we efficiently update Gk arrays?
\rightarrow read correction

