## Dynamic Suffix Array with experiments and a specific emphasis on LCP arrays

Mikaël Salson, Thierry Lecroq, Martine Léonard, Laurent Mouchard

LITIS, University of Rouen
Stringology 2009
A research workshop of the Israel Science Foundation

## Olitis

## Motivation

## Recent Advances in High-Throughput Sequencing

Indexing large dynamic texts (genomes) to speed up approximate pattern matching

## Motivation

## Recent Advances in High-Throughput Sequencing

 Indexing large dynamic texts (genomes) to speed up approximate pattern matching
## Our choice

- Updating the FM-Index:
- updating the Burrows-Wheeler Transform,
- updating the suffix array.


## Motivation

## Recent Advances in High-Throughput Sequencing

 Indexing large dynamic texts (genomes) to speed up approximate pattern matching
## Our choice

- Updating the FM-Index:
- updating the Burrows-Wheeler Transform,
- updating the suffix array.


## Updating the suffix array

## 

i $F L$ SA ISA

| 0 | $\$$ | $C$ | 6 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $C$ | $G$ | 5 | 5 |
| 2 | $C$ | $\$$ | 0 | 3 |
| 3 | $C$ | $T$ | 2 | 6 |
| 4 | $G$ | $T$ | 4 | 4 |
| 5 | $T$ | $C$ | 1 | 1 |
| 6 | $T$ | $C$ | 3 | 0 |



## Updating the suffix array

## $T=\stackrel{0}{C}^{1} T^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{GC}^{5}{ }^{6} \rightarrow T^{\prime}=\stackrel{0}{0}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{~T}^{5} \mathrm{GC}^{6} \mathrm{~S}^{7}$

i $F L$ SA ISA

| 0 | $\$$ | $C$ | 6 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $C$ | $G$ | 5 | 5 |
| 2 | $C$ | $\$$ | 0 | 3 |
| 3 | $C$ | $T$ | 2 | 6 |
| 4 | $G$ | $T$ | 4 | 4 |
| 5 | T | C | 1 | 1 |
| 6 | T | C | 3 | 0 |



We can recover ISA backwards by reading the number in each state (LF).

Updating the suffix array

## 

i F L SA ISA

| 0 | $\$$ | $C$ | 6 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $C$ | $G$ | 5 | 5 |
| 2 | $C$ | $\$$ | 0 | 3 |
| 3 | $C$ | $G$ | 2 | 6 |
| 4 | $G$ | $T$ | 4 | 4 |
| 5 | $T$ | $C$ | 1 | 1 |
| 6 | T | C | 3 | 0 |



## Updating the suffix array



| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | $C$ | 6 | 2 |
| 1 | $C$ | $G$ | 5 | 5 |
| 2 | $C$ | $\$$ | 0 | 5 |
| 3 | $C$ | $G$ | 2 | 3 |
| 4 | $G$ | $T$ | 4 | 6 |
| 5 | $G$ | $T$ | 2 | 4 |
| 6 | T | C | 1 | 1 |
| 7 | T | C | 3 | 0 |



New element is inserted at position 5 in the BWT and SA.

## Updating the suffix array



Because of the insertion, positions are shifted.
We have to increment those values.

Updating the suffix array

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | $C$ | 7 | 2 |
| 1 | $C$ | $G$ | 6 | 6 |
| 2 | $C$ | $\$$ | 0 | 5 |
| 3 | $C$ | $G$ | 3 | 3 |
| 4 | $G$ | $T$ | 5 | 7 |
| 5 | $G$ | $T$ | 2 | 4 |
| 6 | T | C | 1 | 1 |
| 7 | T | C | 4 | 0 |



Updating the suffix array

i F L SA ISA
0 \$ C 72
1 C G $6 \quad 6 \rightarrow 7$
2 C \$ 0
$\begin{array}{lllll}3 & C & G & 3 & 3 \\ 4 & G & T & 5 & 7 \\ 5 & G & T & 2 & 4 \\ 6 & T & C & 1 & 1 \\ 7 & \mathrm{~T} & \mathrm{C} & 4 & 0\end{array}$

3/9

Updating the suffix array

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | S | $C$ | 7 | 2 |
| 1 | $C$ | $G$ | 6 | 7 |
| 2 | $C$ | $\$$ | 0 | 5 |
| 3 | $C$ | $G$ | 3 | 3 |
| 4 | $G$ | $T$ | 5 | 6 |
| 5 | $G$ | $T$ | 2 | 4 |
| 6 | T | C | 4 | 1 |
| 7 | T | C | 1 | 0 |



Updating the suffix array

## 

|  | F L | SA |  |
| :---: | :---: | :---: | :---: |
| S | \$ C | 7 | $2 \rightarrow 3$ |
|  | C G | 6 | 7 |
|  | C \$ | 0 | 5 |
|  | C G | 3 | 3-1 |
| 4 | G T | 5 | 6 |
| 5 | G T | 2 | 4 |
| 6 | T C | 4 | 1 |
|  |  |  |  |

Updating the suffix array

## 

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | $C$ | 7 | 3 |
| 1 | $C$ | $G$ | 6 | 7 |
| 2 | $C$ | $G$ | 3 | 5 |
| 3 | $C$ | $\$$ | 0 | 2 |
| 4 | $G$ | $T$ | 5 | 6 |
| 5 | $G$ | $T$ | 2 | 4 |
| 6 | T | $C$ | 4 | 1 |
| 7 | T | $C$ | 1 | 0 |



## Storage

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | $C$ | 7 | 3 |
| 1 | C | G | 6 | 7 |
| 2 | C | $G$ | 3 | 5 |
| 3 | C | $\$$ | 0 | 2 |
| 4 | G | T | 5 | 6 |
| 5 | $G$ | T | 2 | 4 |
| 6 | T | C | 4 | 1 |
| 7 | T | C | 1 | 0 |

Storage

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | $C$ | 7 | 3 |
| 1 | $C$ | $G$ | 6 | 7 |
| 2 | $C$ | $G$ | 3 | 5 |
| 3 | $C$ | $\$$ | 0 | 2 |
| 4 | $G$ | $T$ | 5 | 6 |
| 5 | $G$ | $T$ | 2 | 4 |
| 6 | $T$ | $C$ | 4 | 1 |
| 7 | $T$ | $C$ | 1 | 0 |

Sorted, very limited
space consumption.

Storage

| $i$ | $F$ | $L$ | $S A$ | $I S A$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\$$ | C | 7 | 3 |
| 1 | C | G | 6 | 7 |
| 2 | C | G | 3 | 5 |
| 3 | C | $\$$ | 0 | 2 |
| 4 | G | T | 5 | 6 |
| 5 | G | T | 2 | 4 |
| 6 | T | C | 4 | 1 |
| 7 | T | C | 1 | 0 |

Sorted, very limited Compressed, space
space consumption. related to the entropy of the text.

Storage

| $i$ $F$ $L$ $S A$ $I S A$ <br> 0 $\$$ C 7 3 <br> 1 C G 6 7 <br> 2 C G 3 5 <br> 3 C $\$$ 0 2 <br> 4 G T 5 6 <br> 5 G T 2 4 <br> 6 T C 4 1 <br> 7 T C 1 0 <br> Sorted, very limited     <br> Compressed, space $8 n$ bytes.    <br> space consumption.     <br> related to the entropy     <br> of the text.     |
| :--- |

Storage


Storage


## Storage



## Storage



## Storage



## Storage



## Underlying structures

\section*{Original <br> | $i$ | $F$ |
| :--- | :--- |
| 0 | S |
| 1 | $C$ |
| 2 | $C$ |
| 3 | $C$ |
| 4 | $G$ |
| 5 | $G$ |
| 6 | T |
| 7 | T |}

## Storage of $F$

| c | Count |
| :---: | :---: |
| $\$$ | 0 |
| C | 1 |
| G | 4 |
| T | 6 |

## Underlying structures

Original
$\begin{array}{ll}i & L \\ 0 & C \\ 1 & G \\ 2 & G \\ 3 & \$ \\ 4 & T \\ 5 & T \\ 6 & C \\ 7 & C\end{array}$

Storage of $L$

$r$ : number of leaves in left subtree.
$v$ : number of letters in left subtree.

## Underlying structures

Original
$\left.\begin{array}{ll}i & L \\ 0 & C \\ 1 & G \\ 2 & G \\ 3 & \$ \\ 4 & T\end{array}\right] 0$

Storage of $L$
González and Navarro, 2008

$r$ : number of leaves in left subtree.
$v$ : number of letters in left subtree.

## Underlying structures

Original
$\left.\begin{array}{ll}i & L \\ 0 & C \\ 1 & G \\ 2 & G \\ 3 & \$ \\ 4 & T\end{array}\right] 0$

Storage of $L$
González and Navarro, 2008

$r$ : number of leaves in left subtree.
$v$ : number of letters in left subtree.

Underlying structures

## Original

| $i$ | $I S A$ |
| :--- | :--- |
| 0 | 3 |
| 1 | 7 |
| 2 | 5 |
| 3 | 2 |
| 4 | 6 |
| 5 | 4 |
| 6 | 1 |
| 7 | 0 |

## Storage of ISA




Underlying structures

## Original

| $i$ | ISA |
| :---: | :---: |
| 0 | 3 |
| 1 | 7 |
| 2 | 5 |
| 3 | 2 |
| 4 | 6 |
| 5 | 4 |
| 6 | 1 |
| 7 | 0 |

## Storage of ISA



Underlying structures

## Original

$\left.\begin{array}{ll}i & I S A \\ 0 & 3 \\ \hline 1 & 7 \\ \hline 2 & 5 \\ 3 & 2 \\ 4 & 6 \\ 5 & 4 \\ 6 & 1 \\ 7 & 0\end{array}\right]$

## Storage of ISA



Underlying structures

## Original

| $i$ | $I S A$ |
| :--- | :--- |
| 0 | 3 |
| 1 | 7 |
| 2 | 5 |
| 3 | 2 |
| 4 | 6 |
| 5 | 4 |
| 6 | 1 |
| 7 | 0 |

## Storage of ISA



## Experiments

## Remarks

- We can handle deletions and substitutions as well.
- We can extend our approach to factors.
- Structures are dynamic and suffer from a logarithmic factor in comparison to static structures.
- The reordering stage of the algorithm may be time-consuming.


## Question

Is the algorithm efficient in practice?

## Experiments

Chromosome 8, human genome


Experiments
Random text ( $\sigma=100$ )


## About the time complexity

## Reminder

In the worst-case, on very specific texts, we may have $O(n)$ elements to reorder.

## Remarks

The previous experiments have been conducted on several thousands random examples on a given text.

It's not sufficient to conclude our algorithm is efficient for those types of text.
$\rightarrow$ Let's go back to the general case.

About the time complexity

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

| $j$ | $F$ |  |  |  |  |  |  | $L$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ |
| 1 | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ |
| 2 | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ |
| 3 | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ |
| 4 | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ |
| 5 | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ |
| 6 | T | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ |
| 7 | T | G | C | $\$$ | C | T | G | C |

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

| $j$ | $F$ |  |  |  |  | $L$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $j=6, i=1$ |
| 1 | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $L C P[6]=3$ |
| 2 | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $L C P[6]$ |
| 3 | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ |  |
| 4 | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ |  |
| 5 | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ |  |
| 6 | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ |  |
| 7 | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ |  |
|  |  |  |  |  |  |  |  |  |  |

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

| $j$ | $F$ |  |  |  |  |  | $L$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $j=6, i=1$ |
| 1 | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ |  |
| 2 | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $L C P[6]=3$ |
| 3 | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ |  |
| 4 | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ |  |
| 5 | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ |  |
| 6 | T | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ |  |
| 7 | T | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ |  |

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

$$
\begin{array}{llllllllll}
j & F & & & & c & L \\
0 & \$ & C & \text { T } & G & C & \text { T } & G & C & \\
1 & C & \$ & C & \text { T } & G & C & \text { T } & G & j=2, i=2 \\
2 & C & \text { T: } & G & C & \text { T } & \text { G } & C & \mathbb{S} & L C P[2]=4
\end{array}
$$

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

| $j$ | $F$ |  |  |  |  |  | $L$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $j=2, i=2$ |
| 1 | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ |  |
| 2 | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $L C P[2]=4$ |
| 3 | $C$ | $T$ | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ |  |
| 4 | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ | $T$ |  |
| 5 | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ | $T$ |  |
| 6 | T | $G$ | $C$ | $\$$ | $C$ | $T$ | $G$ | $C$ |  |
| 7 | T | $G$ | $C$ | $T$ | $G$ | $C$ | $\$$ | $C$ |  |

About the time complexity.

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Sketch of the proof

| j | F |  |  |  |  |  |  | L |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | \$ | $C$ | T | G | C | T | G | C | $j=0, i=3$ |
| 1 | C | \$ | C | T | G | C | T | G | $j=0, i=3$ |
| 2 | C | T | G | C | \$ | C | T | G | $L C P[0]=0$ |
| 3 | C | T | G | C | T | G | C | \$ |  |
| 4 | G | C | \$ | C | T | G | C | T |  |
| 5 | G | C | T | G | C | \$ | C | T |  |
| 6 | T | G | C | \$ | C | T | G | C |  |
| 7 | T | G | C | T | G | C | \$ | C |  |

## About the time complexity

## Property

If the element at position $j$ in the table is the $i$-th one to be moved down, $L C P[j] \geq i$.

## Remarks

- The median LCP value is an upper-bound of the number of reorderings in $50 \%$ of the cases.
- Let $L C P_{\text {ave }}$ and $L C P_{\text {max }}$ be the average and the maximal $L C P$ values.

|  | Our algorithm's upper bounds |
| :--- | :---: |
| Average case | $L C P_{\text {ave }} \times \log n(1+\log \sigma / \log \log n)$ |
| Worst case | $L C P_{\max } \times \log n(1+\log \sigma / \log \log n)$ |

LCP values

Human genome

| Texts | Size | Median | Average | Max |
| :--- | ---: | ---: | ---: | ---: |
| chr1 | $226,212,984$ | 14 | 40 | 67,631 |
| chr2 | $237,898,220$ | 14 | 26 | 43,034 |
| chr8 | $143,330,736$ | 14 | 74 | 124,099 |
| chr10 | $131,738,012$ | 14 | 32 | 30,751 |
| chr14 | $88,290,585$ | 13 | 16 | 1,292 |
| chr15 | $81,926,261$ | 13 | 40 | 25,713 |
| chr17 | $79,617,833$ | 13 | 29 | 15,692 |
| chr19 | $56,037,509$ | 13 | 21 | 3,412 |
| chr20 | $59,505,253$ | 13 | 15 | 866 |
| chr22 | $35,058,650$ | 12 | 19 | 2,331 |
| chrX | $152,577,922$ | 14 | 52 | 51,821 |
| chrY | $25,652,954$ | 13 | 98 | 11,501 |

## LCP values

## Natural languages

| Texts | Size | Median | Average | Max |
| :--- | ---: | ---: | ---: | ---: |
| Gutenberg | $91,349,446$ | 11 | 14 | 2,971 |
| Wikipedia (afrikaans) | $68,989,658$ | 13 | 66 | 34,205 |
| Wikipedia (occitan) | $70,250,160$ | 17 | 64 | 11,003 |

## Result

Efficient update for suffix arrays and FM-Index.

## Publications

围
M. Salson, T. Lecroq, M. Léonard, and L. Mouchard (2009). Dynamic extended suffix arrays. JDA. doi:10.1016/j.jda.2009.02.007.

## Current work

Compressed bit vectors for improving the overall space consumption of the resulting index (Mäkinen and Navarro 2008).

## Perspectives

LZ factorization
Indexing large sequences subject to local modifications.

