Dynamic Burrows-Wheeler Transform
 Prague Stringology Conference 2008

Mikaël Salson, Thierry Lecroq, Martine Léonard, Laurent Mouchard

LITIS and University of Rouen, France
1 September 2008

Olitis

Burrows-Wheeler Transform (1994)

What is it?

- Permutation of a text, that allows better compression.
- Closeness to a widely-used index (suffix array).
- Recent interest in compressed indexing.

Question

- What happens to the transform if the text changes?

Notations

Cyclic shifts

A cyclic shift of a text $T[0 \ldots n]$, of order i is denoted by $T^{[i]}=T[i \ldots n-1] T[0 \ldots i]$. The previous cyclic shift of $T^{[i]}$ is $T^{[i-1]}$.

From $T=\dot{C}^{1} T^{2} C^{2} T^{3} \dot{G}^{5} C^{\circ} \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$						
0	C	T	C	T	G	C	$\$$
1	T	C	T	G	C	$\$$	C
2	C	T	G	C	$\$$	C	T
3	T	G	C	$\$$	C	T	C
4	G	C	$\$$	C	T	C	T
5	C	$\$$	C	T	C	T	G
6	$\$$	C	T	C	T	G	C

From $T=C T C T G C \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

From $T=C T C T G C \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

L: Burrows-Wheeler Transform of $T \quad\left[\begin{array}{lllllllll}\text { C G \$ T T C C }\end{array}\right.$

From $T=\dot{C}^{1} T^{2} C^{2} T^{4} \dot{G}^{5} C^{6} \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T

$$
\left[\begin{array}{lllllll}
C & G & \$ & T & T & C & C \\
6 & 5 & 0 & 2 & 4 & 1 & 3
\end{array}\right]
$$

From $T=C T C T G C \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$			sort	ed $T^{[i]}$	L	
0	C T C T G C \$	0	\$	C T	C T G	C	6
1	T C T G C \$ C	1	C	\$ C	T C T	G	5
2	C T G C \$ C T	2		T C	T G C	\$	0
3	T G C \$ C T C	3	C	T G	C \$ C	T	2
4		4	G	C \$	C T C	T	4
5	C \$ C T C T G	5	T	C T	G C \$	C	1
6	\$ C T C T G C	6	T	G C	\$ C T	C	3

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T
ISA: Inverse Suffix Array of T
$\left[\begin{array}{ccccccc}C & G & \$ & T & T & C & C \\ 6 & 5 & 0 & 2 & 4 & 1 & 3\end{array}\right]$

$$
L[i]=T[(S A[i]-1) \bmod |T|]
$$

From $T=C T C T G \subset \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$			sort	ed $T^{[i]}$	L \downarrow	
0	C T C T G C \$	0	\$	C T	C T G	C	6
1	T C T G C \$ C	1	C	\$ C	T C T	G	5
2	C T G C \$ C T	2		T C	T G C	\$	0
3	T G C \$ C T C	3	C	T G	C \$ C	T	2
4		4	G	C \$	C T C	T	4
5	C \$ C T C T G	5	T	C T	G C \$	C	1
6	\$ C T C T G C	6	T	G C	\$ C T	C	3

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T
ISA: Inverse Suffix Array of T
$\left[\begin{array}{ccccccc}C & G & \$ & T & T & C & C \\ 6 & 5 & 0 & 2 & 4 & 1 & 3\end{array}\right]$

$$
L[i]=T[(S A[i]-1) \bmod |T|]
$$

From $T=C T C T \subset C \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$		F		ed $T^{[i]}$		L \downarrow	SA \downarrow
0	C T C T G C \$	0	\$	C T	C T	G	C	6
1	T C T G C \$ C	1	C	\$ C	T C	T	G	5
2	C T G C \$ C T	2	C	T C	T G	C	\$	0
3	T G C \$ C T C	3	C	T G	C \$	C	T	2
4	G C \$ C T C T	4	G	C \$	C T	C	T	4
5	C \$ C T C T G	5	T	C T	G C	\$	C	1
6	\$ C T C T G C	6	T	G C	\$ C	T	C	3

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T
ISA: Inverse Suffix Array of T
$\left[\begin{array}{ccccccc}C & G & \$ & T & T & C & C \\ 6 & 5 & 0 & 2 & 4 & 1 & 3\end{array}\right]$

$$
L[i]=T[(S A[i]-1) \bmod |T|]
$$

From $T=\dot{C}^{1} T^{2} C^{2} T^{3} \dot{G}^{5} C^{6}$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$				ed $T^{[i]}$		L	
0	C T C T G C \$	0	\$	C T	C T	G	C	6
1	T C T G C \$ C	1	C	\$ C	T C	T	G	5
2	C T G C \$ C T	2	C	T C	T G	C	\$	0
3	T G C \$ C T C	3	C	T G	C \$	C	T	2
4		4	G	C \$	C T	C	T	4
5	C \$ C T C T G	5	T	C T	G C	\$	C	1
6	\$ C T C T G C	6	T	G C	\$ C	T	C	3

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T
ISA: Inverse Suffix Array of T
$\left[\begin{array}{ccccccc}C & G & \$ & T & T & C & C \\ 6 & 5 & 0 & 2 & 4 & 1 & 3\end{array}\right]$

$$
L[i]=T[(S A[i]-1) \bmod |T|]
$$

From $T=\dot{C}^{1} T^{2} C^{2} T^{3} \dot{G}^{5} C^{6} \$$ to $B W T, S A$ and $I S A$

Burrows-Wheeler Transform and Suffix Array

	unsorted $T^{[i]}$				ed $T^{[i]}$		L	
0	C T C T G C \$	0	\$	C T	C T	G	C	6
1	T C T G C \$ C	1	C	\$ C	T C	T	G	5
2	C T G C \$ C T	2	C	T C	T G	C	\$	0
3	T G C \$ C T C	3	C	T G	C \$	C	T	2
4		4	G	C \$	C T	C	T	4
5	C \$ C T C T G	5	T	C T	G C	\$	C	1
6	\$ C T C T G C	6	T	G C	\$ C	T	C	3

L: Burrows-Wheeler Transform of T
SA: Suffix Array of T
ISA: Inverse Suffix Array of T
$\left[\begin{array}{ccccccc}C & G & \$ & T & T & C & C \\ 6 & 5 & 0 & 2 & 4 & 1 & 3\end{array}\right]$

$$
L[i]=T[(S A[i]-1) \bmod |T|]
$$

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.
Example

							F
	\downarrow		sorted	$T^{[i]}$		\downarrow	
0	$\$$	C	T	C	T	G	C
1	C	$\$$	C	T	C	T	G
2	C	T	C	T	G	C	$\$$
3	C	T	G	C	$\$$	C	T
4	G	C	$\$$	C	T	C	T
5	T	C	T	G	C	$\$$	C
6	T	G	C	$\$$	C	T	C

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example
$\|$ F \downarrow sorted $T^{[i]}$ \downarrow 0 $\$$ C T C T G C 1 C $\$$ C T C T G 2 C T C T G C $\$$ 3 C T G C $\$$ C T 4 G C $\$$ C T C T 5 T C T G C $\$$ C 6 T G C $\$$ C T C

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

	ample
	$\|$$F$ \downarrow sorted $T^{[i]}$ \downarrow
	\$ C T C T G C
	C \$ C T C T G
	C T C T G C \$
	C T G C \$ C T
	G C \quad \$ C C T C
5	$\begin{array}{lllllll}\text { T } & C & T & G & C & \$ & C \\ T & G & C & \$ & C & T & C\end{array}$

From BWT back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.
Example

	F						
	\downarrow		sorted	$T^{[i]}$		\downarrow	
0	$\$$	C	T	C	T	G	C^{\prime}
1	C	$\$$	C	T	C	T	G
2	C	T	C	T	G	C	$\$$
3	C	T	G	C	$\$$	C	T
4	G	C	$\$$	C	T	C	T
5	T	C	T	G	C	$\$$	C
6	T	G	C	$\$$	C	T	C

CTCTGC\$

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example	
	F
	\downarrow sorted $T^{[i]}$
0	\$ C T C T G C
1	C \$ C T C T G
2	C T C T G C \$
3	C T G C \$ C T
4	G C \$ C T C T*
5	T C T G C \$ C
6	T G C \$ C T C
	CTCTGC\$ $=T$

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.
Example

	F						
	\downarrow		sorted	$T^{[i]}$			
0	$\$$	C	T	C	T	G	C
1	C	$\$$	C	T	C	T	G
2	C	T	C	T	G	C	$\$$
3	C	T	G	C	$\$$	C	T
4	G	C	$\$$	C	T	C	T
5	T	C	T	G	C	$\$$	C
6	T	G	C	$\$$	C	T	C

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.
Example

	F							
	\downarrow		sorted	$T^{[i]}$		\downarrow	$L F$	
0	$\$$	C	T	C	T	G	C	
1	C	$\$$	C	T	C	T	G	1
2	C	T	C	T	G	C	$\$$	
3	C	T	G	C	$\$$	C	T	
4	G	C	$\$$	C	T	C	T	
5	T	C	T	G	C	$\$$	C	
6	T	G	C	$\$$	C	T	C	

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From $B W T$ back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From BWT back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From BWT back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From BWT back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

From BWT back to T

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T?

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Property

Since cyclic shifts are sorted, $T^{[i]}[n]=T[i-1]$ appears as many times

- in L from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

So, L can be used instead of T

L contains all the information that is needed for recovering the original T.
$T=\dot{C}^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \stackrel{G}{\mathrm{G}}^{5} \mathrm{~S}^{6} \rightarrow T^{\prime}=\stackrel{\circ}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$$

What is the impact of a single insertion of G at position $i=2$?

		uns
0		C T C T G C
		T C T G C \$
2		C T G C \$ C
3		T G C \$ C T
4		G C \$ C T C
		C \$ C T C T
		\$ C T C T G

	unsorted						$C S$	of

$T=\dot{C}^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \stackrel{G}{C}^{5} \mathrm{C}^{6} \rightarrow T^{\prime}=\dot{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \mathrm{C}^{7}$

What is the impact of a single insertion of G at position $i=2$?

| | F | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \downarrow | sorted | CS of | T | \downarrow | \downarrow | | |
| 0 | $\$$ | C | T | C | T | G | C | 6 |
| 1 | C | $\$$ | C | T | C | T | G | 5 |
| 2 | C | T | C | T | G | C | $\$$ | 0 |
| 3 | C | T | G | C | $\$$ | C | T | 2 |
| 4 | G | C | $\$$ | C | T | C | T | 4 |
| 5 | T | C | T | G | C | $\$$ | C | 1 |
| 6 | T | G | C | $\$$ | C | T | C | 3 |

F									L SA		
						of					\downarrow
0	\$			T	G	C	T	G	C		7
1	C	\$	\$	C	T	G	C	T	C		6
2	C	T	T	G	C	\$	C	T	C		3
3	C	T	T	G	C	T	G	C	\$		0
4	G	C	C	\$	C	T	G	C			5
5	G		C	T	G	C	\$	C			2
6	T	G	G	C	\$	C	T	G	C		4
7	T		G	C	T	G	C	\$	C		1

$$
T=\stackrel{0}{C}^{1} T^{2} \mathrm{C}^{3} \mathrm{G}^{4} \mathrm{C}^{5}{ }^{6} \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$
$$

What are we observing?

Stage 1: $T^{\prime[j]}$ for all $j>i+1$
 Cyclic shifts where the inserted letter G appears after $\$$ and before L.

$$
T=\stackrel{0}{C}^{1} T^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{C}^{5} \${ }^{6} \rightarrow \stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$
$$

What are we observing?

Stage 1: $T^{\prime[j]}$ for all $j>i+1$
 Cyclic shifts where the inserted letter G appears after $\$$ and before L.

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \stackrel{6}{\$} \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2}{ }^{3} \mathrm{C}^{4} \mathrm{~T}^{5} \mathrm{G}^{\circ}{ }^{\circ} \$
$$

What are we observing?

Stage 1: $T^{[j]}$ for all $j>i+1$

Cyclic shifts where the inserted letter G appears after $\$$ and before L.

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{7} \$
$$

Stage 1: $T^{[j]}$ for all $j>i+1$

Cyclic shifts where the inserted letter G appears after $\$$ and before L.

Impact on M : none
The respective ranking of these cyclic shifts is preserved.
F : no direct modification.
L : no direct modification.

What are we observing?

$$
T=\stackrel{0}{C}^{1} \mathrm{C}^{2} \mathrm{~T}^{3} \stackrel{4}{G}^{5}{ }^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$
$$

What are we observing?

Stage 2: $T^{[i+1]}$

The cyclic shift where the inserted letter G appears in L.

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{7} \$
$$

What are we observing?

How can we compute the position of the modification?

We are looking for the position of $T^{\prime[3]}$ (corresponding to $T^{[2]}$).

$$
\begin{array}{llllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { ISA } & 2 & 5 & 3 & 6 & 4 & 1 & 0
\end{array}
$$

$$
T=\stackrel{0}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{\top} \$
$$

What are we observing?

Stage 2: $T^{\top[i+1]}$

The cyclic shift where the inserted letter G appears in L.

How can we compute the position of the modification?

We are looking for the position of $T^{[3]}$ (corresponding to $T^{[2]}$).

ISA | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 6 | 4 | 1 | 0 |

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{4} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{\circ} \$
$$

What are we observing?

Stage 2: $T^{1[i+1]}$

The cyclic shift where the inserted letter G appears in L.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T^{\prime[1]}$).

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{4} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{\circ} \$
$$

What are we observing?

Stage 2: $T^{1[i+1]}$

The cyclic shift where the inserted letter G appears in L.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T^{\prime[1]}$).

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{4} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{\circ} \$
$$

What are we observing?

Stage 2: $T^{[i+1]}$

The cyclic shift where the inserted letter G appears in L.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T^{\prime[1]}$).
$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

What are we observing?

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T^{\prime[1]}$).
$\rightarrow L F(3)=5$, we store 5 in previous_cs.

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{7} \$
$$

Stage 2: $T^{\prime}[i+1]$
The cyclic shift where the inserted letter G appears in L.

Impact on M : substitution

F : no direct modification.
L : substitution T (stored) $\rightarrow G$.

What are we observing?

$$
T=\stackrel{0}{C}^{1} \mathrm{C}^{2} \mathrm{~T}^{3} \stackrel{4}{G}^{5}{ }^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$
$$

What are we observing?

	F		
	\$	C	\$C
	C	G	C\$
	C	\$	
	C		CT
	G		G
		C	
			TGC\$C

$T=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \mathrm{C}^{7} \$$

What are we observing?

Stage 3: $T^{\prime[i]}$

The cyclic shift where the inserted letter G appears in F.

	F	L	cyclic shifts
0	$\$$	C	\$CTGCTGC
1	C	G	C\$CTGCTG
2	C	$\$$	CTCTGC\$
3	C	G	CTGC\$CTG
4	G	T	GC\$CTGCT
5	T	C	TCTGCSC
6	T	C	TGC\$CTGC

Where does the insertion take place?

- We know the position of $T^{\prime[3]}$ (we have just modified it).
- Now, we need the position of the new cyclic shift $T^{\prime[2]}=$ GCTGC\$CT.
- That's what LF computes: the position of the previous cyclic shift!
$T=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \mathrm{C}^{7} \$$

What are we observing?

Stage 3: $T^{\prime[i]}$

The cyclic shift where the inserted letter G appears in F.

Where does the insertion take place?

- We know the position of $T^{\prime[3]}$ (we have just modified it).
- Now, we need the position of the new cyclic shift $T^{\prime[2]}=$ GCTGC\$CT.
- That's what LF computes: the position of the previous cyclic shift!

What are we observing?

Where does the insertion take place?

- We know the position of $T^{\prime[3]}$ (we have just modified it).
- Now, we need the position of the new cyclic shift $T^{\prime[2]}=$ GCTGC\$CT.
- That's what LF computes: the position of the previous cyclic shift!

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{\circ}{C}^{1} \mathrm{~T}^{2}{ }^{3} \mathrm{C}^{4} \mathrm{~T}^{5} \mathrm{G}^{\circ}{ }^{7} \$
$$

What are we observing?

Stage 3: $T^{\prime[i]}$

The cyclic shift where the inserted letter G appears in F.

$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

Stage 3: $T^{\prime[i]}$

The cyclic shift where the inserted letter G appears in F.

Impact on M : insertion
A new row starting with the inserted letter G and ending with the stored T is inserted.
F : inserted letter G.
L : (stored) T.

What are we observing?

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \stackrel{6}{\$} \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2}{ }^{3} \mathrm{C}^{4} \mathrm{~T}^{5} \mathrm{G}^{\circ}{ }^{\circ} \$
$$

What are we observing?

	F	L	cyclic shifts
0	$\$$	C	\$CTGCTGC
1	C	G	C\$CTGCTG
2	C	$\$$	CTCTGC\$
3	C	G	CTGC\$CTG
4	G	T	GC\$CTGCT
5	G	T	GCTGC\$CT
6	T	C	TCTGC\$C
7	T	C	TGC\$CTGC

$$
T=\stackrel{0}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5}{ }^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2}{ }^{3} \mathrm{C}^{4} \mathrm{~T}^{5} \mathrm{G}^{6}{ }^{\circ} \$
$$

What are we observing?

	F	L	cyclic shifts	
0	$\$$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	$\$$	CTGCTGC\$	\leftarrow
3	C	G	CTGC\$CTG	
4	G	T	GC\$CTGCT	
5	G	T	GCTGC\$CT	
6	T	C	TGCTGC\$C	\leftarrow
7	T	C	TGC\$CTGC	

$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

How to reorder cyclic shifts?

- Reordering from right to left (from $j=i-1$ downto 0)
- Comparison between the actual position (value of previous_cs) and the position computed with LF.

What are we observing?

	F	cyclic shifts	
0	$\$$	C	\$CTGCTGC
1	C	G	C\$CTGCTG
2	C	$\$$	CTGCTGC\$
3	C	G	CTGC\$CTG
4	G	T	GC\$CTGCT
5	G	T	GCTGC\$CT
6	T	C	TGCTGC\$C
7	T	C	TGC\$CTGC

$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position previous_cs $=6$.
Is this the correct position for $T^{\prime[1]}$? $L F$ can tell us!

What are we observing?

	F	L	cyclic shifts	
0	$\$$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	$\$$	CTGCTGC\$	
3	C	G	CTGC\$CTG	
4	G	T	GC\$CTGCT	
5	G	T	GCTGC\$CT	$T^{\prime[2]}$
6	T	C	TGCTGC\$C	$T^{\prime[1]}$
7	T	C	TGC\$CTGC	

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position previous_cs $=6$.
Is this the correct position for $T^{\prime[1]}$? $L F$ can tell us! $T^{\prime[2]}$ has just been inserted \rightarrow its location is correct.
$T^{\prime[2]}$ is at position 5 , let's compute $L F(5)$.

What are we observing?

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position previous_cs $=6$.
Is this the correct position for $T^{\prime[1]}$? $L F$ can tell us! $T^{\prime[2]}$ has just been inserted \rightarrow its location is correct.
$T^{\prime[2]}$ is at position 5 , let's compute $L F(5)$.

What are we observing?

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position previous_cs $=6$.
Is this the correct position for $T^{\prime[1]}$? $L F$ can tell us! $T^{\prime[2]}$ has just been inserted \rightarrow its location is correct.
$T^{\prime 2]}$ is at position 5 , let's compute $L F(5)$.

What are we observing?

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position previous_cs $=6$.
Is this the correct position for $T^{\prime[1]}$? $L F$ can tell us! $T^{\prime[2]}$ has just been inserted \rightarrow its location is correct.
$T^{[2]}$ is at position 5 , let's compute $L F(5)$.
$T=\stackrel{\circ}{C}^{1} T^{2} C^{3} T^{4} G^{5} C^{6} \$ T^{\prime}=\stackrel{0}{C}^{1} T^{2} G^{3} C^{4} T^{5} G^{6} C^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

Reordering $T^{\prime[1]}$

$T^{[1]}$ is at position 6 but should be at position 7.
$T=\stackrel{\circ}{C}^{1} T^{2} C^{3} T^{4} G^{5} C^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} T^{2} G^{3} C^{4} T^{5} G^{6} C^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

	F	L	cyclic shifts
0	\$	C	\$CTGCTGC
1	C	G	C\$CTGCTG
2	C	\$	CTGCTGC\$
3	C	G	CTGC\$CTG
4	G	T	GC\$CTGCT
5	G	T	GCTGC\$CT
6	T	C	TGCTGC\$C
7	T	C	TGC\$CTGC

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position 6 but should be at position 7 .
Before moving $T^{\prime[1]}$, we compute the actual position of $T^{\prime[0]}$ and store it in previous_cs.
$T=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{C}^{5} \mathrm{C}^{6} \$ T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \mathrm{C}^{7}$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position 6 but should be at position 7 .
Before moving $T^{\prime[1]}$, we compute the actual position of $T^{\prime[0]}$ and store it in previous_cs.
$T=\stackrel{0}{C}^{1} T^{2} C^{3} T^{4} G^{5} C^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} T^{2} G^{3} C^{4} T^{5} G^{6} C^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position 6 but should be at position 7 .
Before moving $T^{\prime[1]}$, we compute the actual position of $T^{\prime[0]}$ and store it in previous_cs.

What are we observing?

Reordering $T^{\prime[1]}$

$T^{[1]}$ is at position 6 but should be at position 7.
Before moving $T^{\prime[1]}$, we compute the actual position of $T^{[0]}$ and store it in previous_cs.
$T=\stackrel{\circ}{C}^{1} T^{2} C^{3} T^{4} G^{5} C^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} T^{2} G^{3} C^{4} T^{5} G^{6} C^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

	F	L	cyclic shifts	
0	$\$$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	$\$$	CTGCTGC $\$$	$T^{\prime}[0]$
3	C	G	CTGC\$CTG	
4	G	T	GC\$CTGCT	
5	G	T	GCTGC\$CT	
6	T	C	TGC\$CTGC	
7	T	C	TGCTGC\$C	$T^{\prime[1]}$

Reordering $T^{\prime[1]}$

$T^{\prime[1]}$ is at position 6 but should be at position 7 .
Before moving $T^{\prime[1]}$, we compute the actual position of $T^{\prime[0]}$ and store it in previous_cs.
$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

What are we observing?

Stage 4: $T^{[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

Reordering $T^{[0]}$

Now, let's compute the correct position of $T^{[0]}$ using $\operatorname{LF}(7)$ (7 is the correct position of $\left.T^{\prime[1]}\right)$.
$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

What are we observing?

Reordering $T^{[0]}$

Now, let's compute the correct position of $T^{\prime[0]}$ using $\operatorname{LF}(7)$ (7 is the correct position of $\left.T^{\prime[1]}\right)$.

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5} \mathrm{C}^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{C}^{7} \$
$$

What are we observing?

```
l|ll|llll
```


Reordering $T^{[0]}$

Now, let's compute the correct position of $T^{\prime[0]}$ using $L F(7)$ (7 is the correct position of $\left.T^{\prime[1]}\right)$.

What are we observing?

Reordering $T^{[0]}$

Now, let's compute the correct position of $T^{[[0]}$ using $\operatorname{LF}(7)$ (7 is the correct position of $T^{\prime[1]}$).
$T^{\prime[0]}$ should be at position 3.

What are we observing?

Reordering $T^{\prime}[0]$

Now, let's compute the correct position of $T^{[0]}$ using $\operatorname{LF}(7)$ (7 is the correct position of $\left.T^{/[1]}\right)$.
$T^{[0]}$ should be at position 3.
$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6}{ }^{7} \$$

What are we observing?

Stage 4: $T^{\prime[j]}$ for all $j<i$

Cyclic shifts where the inserted letter G appears after F and before $\$$.

	F	L	cyclic shifts	
0	$\$$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	G	CTGC\$CTG	
3	C	$\$$	CTGCTGC\$	$T^{\prime}[0]$
4	G	T	GC\$CTGCT	
5	G	T	GCTGC\$CT	
6	T	C	TGC\$CTGC	
7	T	C	TGCTGC\$C	$T^{\prime[1]}$

Reordering $T^{[0]}$

Now, let's compute the correct position of $T^{[0]}$ using $\operatorname{LF}(7)$ (7 is the correct position of $\left.T^{[1]}\right)$.
$T^{\prime 0]}$ should be at position 3.
Position of $T^{[0]}$ is correct \rightarrow all cyclic shifts are well ordered.
$T=\stackrel{\circ}{C}^{1} T^{2} C^{3} T^{4} G^{5} C^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} T^{2} G^{3} C^{4} T^{5} G^{6} C^{7} \$$

Stage 4: $T^{\prime[j]}$ for all $j<i$
Cyclic shifts where the inserted letter G appears after F and before $\$$.

Impact on M : reordering

Depending on the inserted letter, rows might locally rotate.
F : no modification.
L: possible local reorderings.

What are we observing?

	F	L	cyclic shifts	
0	$\$$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	G	CTGC\$CTG	
3	C	$\$$	CTGCTGC\$	$T^{\prime}[0]$
4	G	T	GC\$CTGCT	
5	G	T	GCTGC\$CT	
6	T	C	TGC\$CTGC	
7	T	C	TGCTGC\$C	$T^{\prime[1]}$

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5}{ }^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{G}^{2} \mathrm{G}^{3} \mathrm{~T}^{4} \mathrm{G}^{5}{ }^{6} \$
$$

What are we using?

L	ISA	
0	C	2
1	G	
2	$\$$	
3	T	6
4	T	
5	C	
6	C	0

Explanations

(1) L and a subsampling of $I S A$;
(2) rank $_{c}(L, i)$;
(3) F and Count;
(4) $L F(i)=\operatorname{rank}_{1 \text { ria }}(L, i)+\operatorname{Count}(L[i])-1$;

$$
T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \stackrel{4}{G}^{5}{ }^{5} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{G}^{2} \mathrm{G}^{3} \mathrm{~T}^{4} \mathrm{G}^{5}{ }^{6} \$
$$

What are we using?

	L ISA		
	C	2	
	G		$\mathrm{rank}_{c}(L, i)$
2	\$		$\begin{array}{ccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \$ & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$
3	T	6	$\$$ 0
4	T		G $\begin{aligned} & 0\end{aligned} 1 \begin{aligned} & 1 \\ & 1\end{aligned} 111111111$
5	C		T 0001222
6	C	0	T0001222

Explanations

(1) L and a subsampling of $I S A$;
(2) $\operatorname{rank}_{c}(L, i)$;

$T=\stackrel{\circ}{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3} \mathrm{G}^{4} \mathrm{C}^{5} \mathrm{C}^{6} \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \$$

What are we using?

Explanations

(1) L and a subsampling of $I S A$;
(2) $\operatorname{rank}_{c}(L, i)$;
(3) F and Count;
(4) $L F(i)=\operatorname{rank}_{L[i]}(L, i)+\operatorname{Count}(L[i])-1$;

What are we using?

	F	L	$I S A$
0	\$	C	2
1	C	G	
2	C	$\$$	
3	C	T	6
4	G	T	
5	T	C	
6	T	C	0

Explanations

(1) L and a subsampling of $I S A$;
(2) $\operatorname{rank}_{c}(L, i)$;
(3) F and Count;
(9) $L F(i)=\operatorname{rank}_{L[i]}(L, i)+\operatorname{Count}(L[i])-1$;
rank $_{L i j}(L, i)$ returns the number of times, $t, L[i]$ appears in L from position 0 to i.
Therefore, $\operatorname{rank}_{L[i]}(L, i)+\operatorname{Count}(L[i])-1$ returns the position of the t-th $L[i]$ in F.
$T=$ C $^{1} \mathrm{~T}^{2} \mathrm{C}^{3} \mathrm{~T}^{4} \mathrm{G}^{5} \mathrm{C}^{6} \$ \rightarrow T^{\prime}=\stackrel{0}{C}^{1} \mathrm{~T}^{2} \mathrm{G}^{3} \mathrm{C}^{4} \mathrm{G}^{5} \mathrm{G}^{6} \$$

What are we using?

$F L I S A$		
	\$ C	2
1	C G	
2	C \$	
3	C T	6
4	G T	
5	T C	
6	T C	0

$\mathrm{rank}_{c}(L, i)$	
	0 12345
	0011111
	1111123
	011111
	001222
	Count
	\$ C G T
	014

Explanations

(1) L and a subsampling of $I S A$;
(2) $\operatorname{rank}_{c}(L, i)$;
(3) F and Count;
(4) $L F(i)=\operatorname{rank}_{L[i]}(L, i)+\operatorname{Count}(L[i])-1$;

Note that $\operatorname{rank}_{c}(L, i)$ gives L and Count gives F, so storing and maintaining these two functions is normally sufficient...
Note also that $\operatorname{rank}_{c}(L, i)$ is stored in a more efficient way!

From Theory to Practice

The reordering step of our algorithm requires at most n iterations.
How our Algorithm Behaves in Practice?

- Is the reordering step too time-consuming?
- Is it quicker to update the BWT than recomputing it entirely?
- Is the algorithm slowed down because of the dynamic structures?

Experiments on Human Genome

Experiments on a Fibonacci Word

Reconstruction using dynamic structures
Reconstruction using static structures
Insertion of a 500-letter block

Dynamic Burrows-Wheeler Transform

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.
$O(n)$ iterations of the algorithm Reorder
Worst-case scenario ($\mathrm{A}^{n} \$ \rightarrow \mathrm{~A}^{n} \mathrm{C} \$$)

The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1+\log \sigma / \log \log n))$. Overall worst-case complexity: $O(n \log n(1+\log \sigma / \log \log n))$

- Dynamic FM-index (using SA, ISA subsamples)
- Dynamic suffix array + LCP
- Dynamic suffix tree

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.

Complexity

$O(n)$ iterations of the algorithm Reorder. Worst-case scenario ($\mathrm{A}^{n} \$ \rightarrow \mathrm{~A}^{n} \mathrm{C} \$$).

The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1+\log \sigma / \log \log n))$.
Overall worst-case complexity: $O(n \log n(1+\log \sigma / \log \log n))$.

- Dynamic FM-index (using SA, ISA subsamples)
- Dynamic suffix array + LCP
- Dynamic suffix tree

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.

Complexity

$O(n)$ iterations of the algorithm Reorder. Worst-case scenario ($\mathrm{A}^{n} \$ \rightarrow \mathrm{~A}^{n} \mathrm{C} \$$).

The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1+\log \sigma / \log \log n))$.
Overall worst-case complexity: $O(n \log n(1+\log \sigma / \log \log n))$.

Perspectives

- Dynamic FM-index (using SA, ISA subsamples)
submitted to JDA
- Dynamic suffix array + LCP submitted to JDA
- Dynamic suffix tree
work in progress

UNIVERSTÉ DE ROUEN

