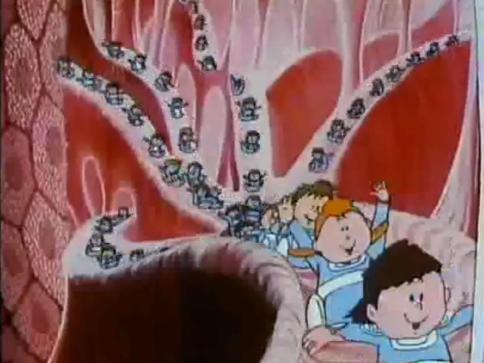
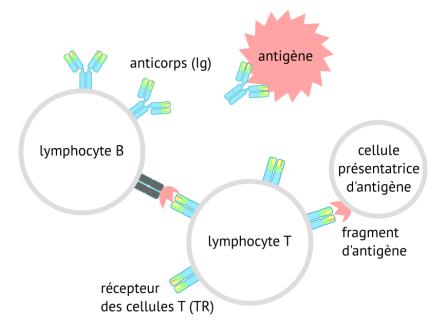
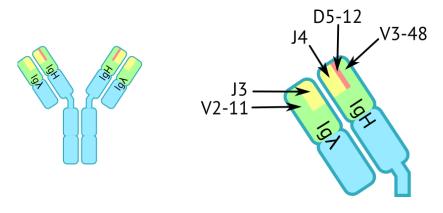
From alignment-free heuristics to an interactive visualization: V(D)J repertoire analysis in the Vidjil platform

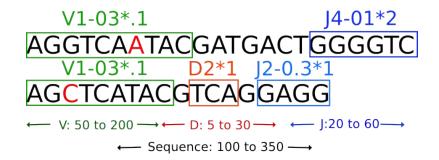
Mathieu Giraud, Ryan Herbert, Mikaël Salson, Florian Thonier






Bonsai bioinformatics, CRIStAL (Université Lille, CNRS) VidjilNet consortium, Inria

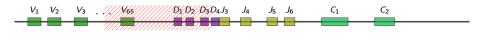
The Adaptive Immune System

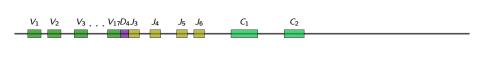


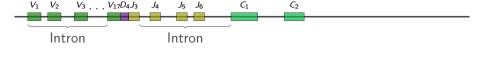
TCR and Antibody Specificity – V(D)J Recombination

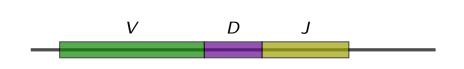
... GGAAGGGCAGAATTA ... V2-11 GGATGGG GAATTA J3

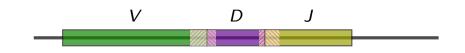
TCR and Antibody Specificity – V(D)J Recombination

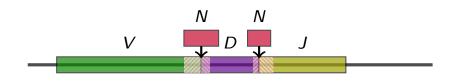


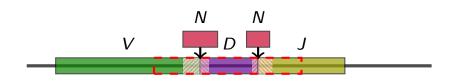


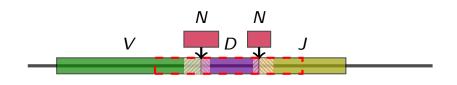

$V(\mathsf{D})\mathsf{J}$ recombinations are responsible for receptor diversity

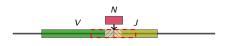







 $V(\mathsf{D}) J \ recombinations \ are \ responsible \ for \ receptor \ diversity$


 $V(\mathsf{D})\mathsf{J}$ recombinations are responsible for receptor diversity

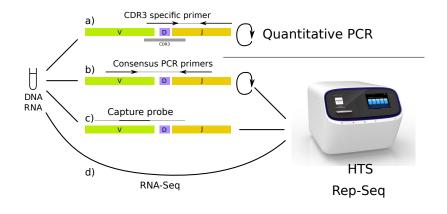


Diversity region

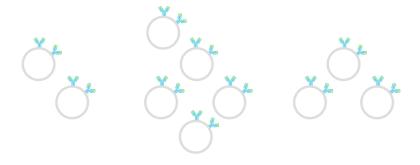
Diversity region

TCR and Antibody Specificity – V(D)J Recombination

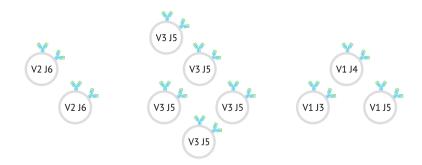
```
V1-03*.1 J4-01*2


AGGTCAATACGATGACTGGGGTC

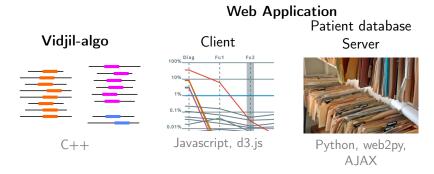
V1-03*.1 D2*1 J2-0.3*1

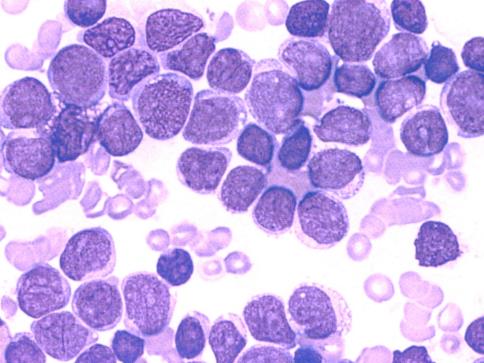

AGCTCATACGTCAGGAGG

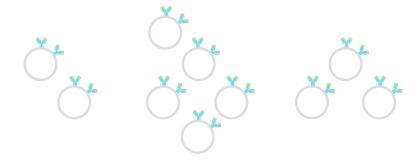
\leftarrow V: 50 to 200 \rightarrow \leftarrow D: 5 to 30 \rightarrow \leftarrow J:20 to 60 \rightarrow \leftarrow Sequence: 100 to 350 \rightarrow
```

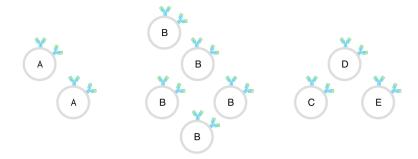

Strategies – Sequencing millions of V(D)J recombinations from T-cells or B-cells

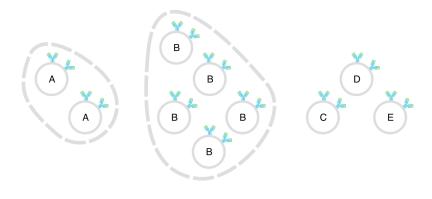
Identification of all VDJ recombinations


Identification of all VDJ recombinations

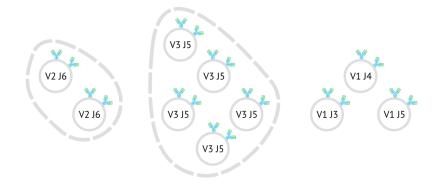

Identification of all VDJ recombinations




Vidjil
High-throughput Repertoire Sequencing (RepSeq) analysis



- code on http://git.vidjil.org/
- open-source (GPL v3), public issue tracker (Gitlab)
- ▶ continuous integration, > 2,000 unit and functional tests Duez et al., PLOS One, 2016



20% 50% 30% 1 000 000 VDJ = 100 s

Giraud, Salson et al., BMC Genomics, 2014

20% 50% 30% 1 000 000 VDJ = 100 s

Giraud, Salson et al., BMC Genomics, 2014

Fast identification of a window centered on the CDR3 Clone clustering

parts	of	V	genes
-------	----	---	-------

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ...

parts of J genes

ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

Fast identification of a window centered on the CDR3

Clone clustering

parts of V genes

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT

parts of J genes

ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

<u>ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACT</u>TCCAGCACTGGGGCC

Fast identification of a window centered on the CDR3

Clone clustering

parts of V genes

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT parts of J genes

ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

<u>ACACGGCCGTGTATTA</u>CTGT<u>GCGAGA</u>GAGCTGA<u>ATACT</u>T<u>CCAGCAC</u>TGGGGCC

O(n) alignment-free V(D)J detection algorithm

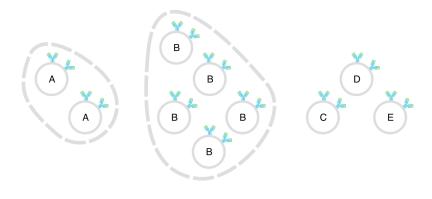
Giraud, Salson et al, BMC Genomics, 2014

Fast identification of a window centered on the CDR3

Clone clustering

parts of V genes

ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT


parts of J genes

ATAC TACT ACTT CCAG CAGC
AGCA GCAC TGGG GGGC GGCA
GCAA CAAG AAGA AGAG GAGT
AGTT GTTG TTGG

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

O(n) alignment-free V(D)J detection algorithm

Giraud, Salson et al, BMC Genomics, 2014

20% 50% 30% 1 000 000 VDJ = 100 s

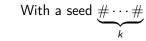
Giraud, Salson et al., BMC Genomics, 2014

How the seeds are chosen?

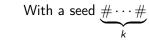
Use sensitive seeds \rightarrow spaced seeds (e.g. ##-##)

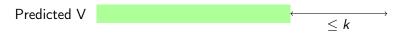
How the seeds are chosen?

Use sensitive seeds \rightarrow spaced seeds (e.g. ##-##)

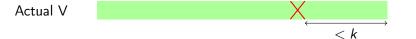

Minimize the window shift in case of error

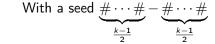
How to prevent the window from being shifted too much?

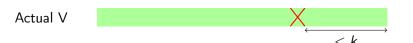

With a seed
$$\underbrace{\#\cdots\#}_{k}$$


Actual V

How to prevent the window from being shifted too much?


How to prevent the window from being shifted too much?




How to prevent the window from being shifted too much?

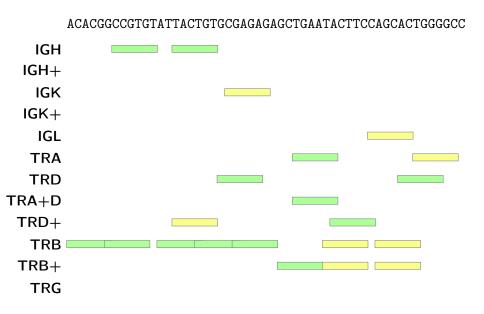
With a seed
$$\underbrace{\#\cdots\#}_{\frac{k-1}{2}} - \underbrace{\#\cdots\#}_{\frac{k-1}{2}}$$

How to prevent the window from being shifted too much?

Vidjil-algo

analyses recombinations on all human TR/Ig locus

				K IGK
complete recombinations		incomplete/special recombinations		R IGK+
TRA	Va-Ja			
TRB	Vb-(Db)-Jb	TRB+	Db-Jb	■ IGL
TRD	Vd-(Dd)-Jd	TRD+	Vd-Dd3, Dd2-(Dd)-Jd, Dd2-Dd3	A TRA
		TRA+D	Vd-(Dd)-Ja, Dd-Ja	
TRG	Vg-Jg			a TRA+D
IGH	Vh-(Dh)-Jh	IGH+	Dh-Jh	B TRB
IGL	VI-JI			
IGK	Vk-Jk	IGK+	Vk-KDE, INTRON-KDE	b TRB+
				D TRD
				d TRD+
				G TRG


H IGH

IGH+

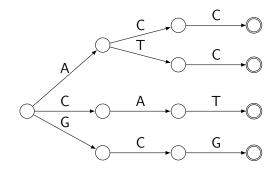
One pass for each recombination system

 ${\tt ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC}$

One pass for each recombination system

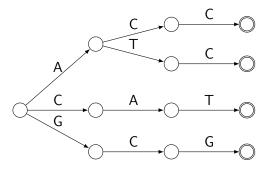
How could we find

a V(D)J recombination (if any)

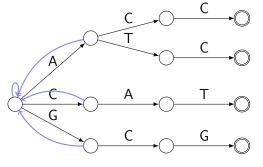

in a single pass?

Introduced by Alfred Aho and Margaret Corasick in 1975

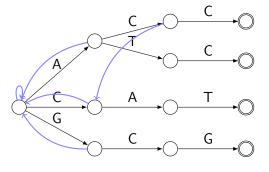
Searches a set of patterns P in a text T in time O(|T|)


Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

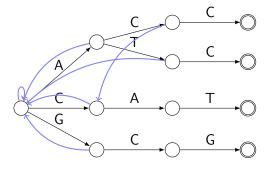

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$


Introduced by Alfred Aho and Margaret Corasick in 1975

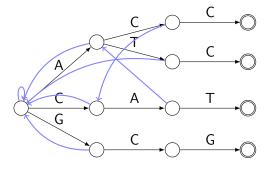
Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Introduced by Alfred Aho and Margaret Corasick in 1975

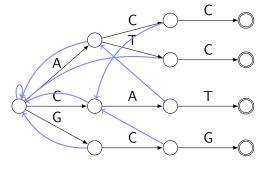

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns
$$P$$
 in a text T in time $O(|T|)$

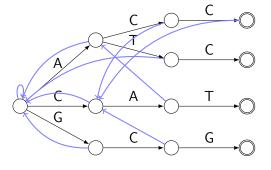

$$P = \{ACC, ATC, CAT, GCG\}$$

Introduced by Alfred Aho and Margaret Corasick in 1975

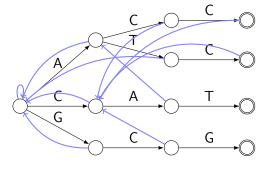

Searches a set of patterns
$$P$$
 in a text T in time $O(|T|)$

$$P = \{ACC, ATC, CAT, GCG\}$$

Introduced by Alfred Aho and Margaret Corasick in 1975

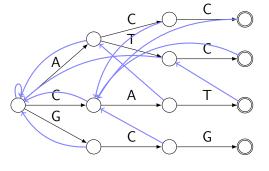

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Introduced by Alfred Aho and Margaret Corasick in 1975

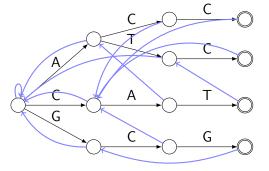

Searches a set of patterns
$$P$$
 in a text T in time $O(|T|)$

$$P = \{ACC, ATC, CAT, GCG\}$$

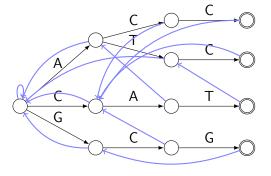
Introduced by Alfred Aho and Margaret Corasick in 1975


Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Introduced by Alfred Aho and Margaret Corasick in 1975

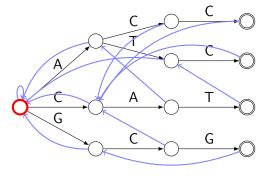

Searches a set of patterns
$$P$$
 in a text T in time $O(|T|)$

$$P = \{ACC, ATC, CAT, GCG\}$$


Introduced by Alfred Aho and Margaret Corasick in 1975

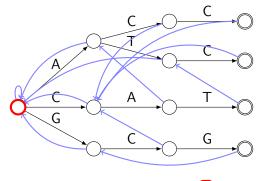
Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Introduced by Alfred Aho and Margaret Corasick in 1975


Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Searching P in T = ACATCG

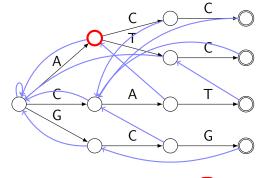
Introduced by Alfred Aho and Margaret Corasick in 1975


Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975

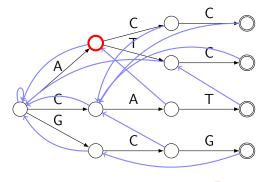
Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$



Failure function: returns the longest proper suffix accessible from the initial state

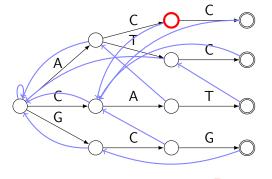
Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975


Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Searching P in T = ACATCG

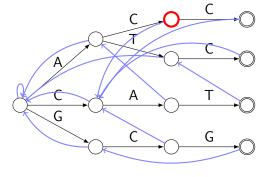
Introduced by Alfred Aho and Margaret Corasick in 1975


Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

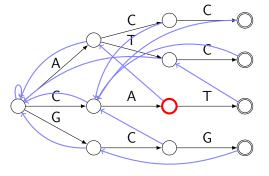


Failure function: returns the longest proper suffix accessible from the initial state

Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

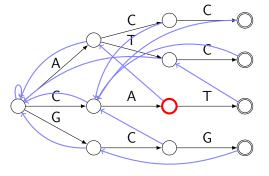


Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T = A(A) \Gamma CG$

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

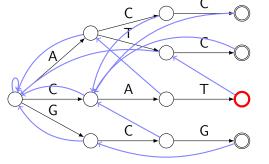


Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T = A(A)\Gamma CG$

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

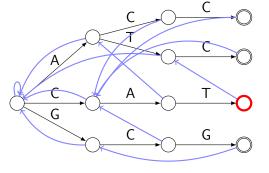


Failure function: returns the longest proper suffix accessible from the initial state

Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

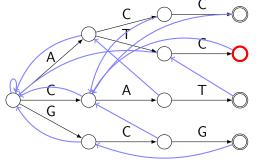

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in T = ACATCG

CAT found!

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

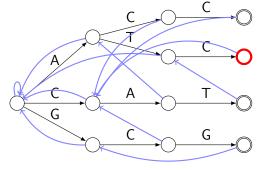


Failure function: returns the longest proper suffix accessible from the initial state

Searching P in T = ACATCG

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

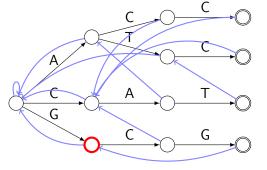

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in T = ACATCG

ATC found!

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

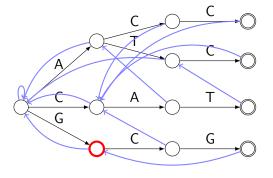


Failure function: returns the longest proper suffix accessible from the initial state

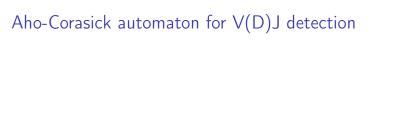
Searching P in $T = ACAT \bigcirc$

Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$



Failure function: returns the longest proper suffix accessible from the initial state


Searching P in $T = ACAT \bigcirc$

Introduced by Alfred Aho and Margaret Corasick in 1975

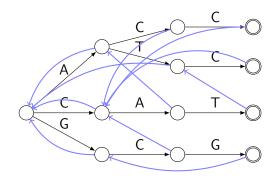
Searches a set of patterns P in a text T in time O(|T|) $P = \{ACC, ATC, CAT, GCG\}$

Searching P in T = ACATCG

Aho-Corasick automaton for V(D)J detection

What are the patterns?

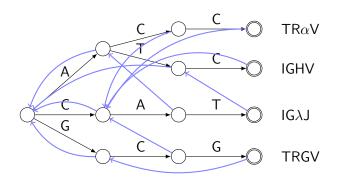
Aho-Corasick automaton for V(D)J detection


What are the patterns?

(spaced) k-mers from V and J genes

Aho-Corasick automaton for V(D)J detection

What are the patterns?


(spaced) k-mers from V and J genes

Aho-Corasick automaton for V(D)J detection

What are the patterns?

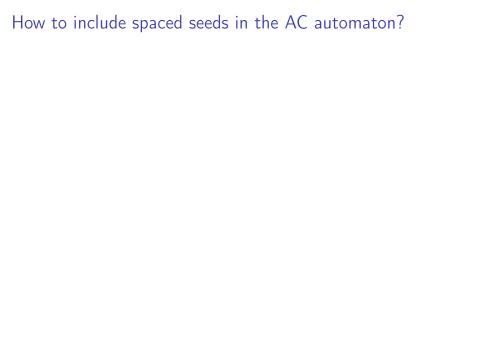
(spaced) k-mers from V and J genes

Why an Aho-Corasick automaton?

Querying spaced k-mers could be done with a hash table!

Why an Aho-Corasick automaton?

Querying spaced k-mers could be done with a hash table!

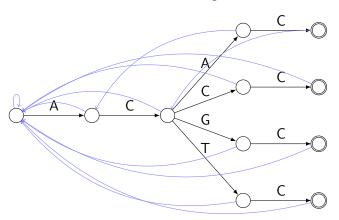

With Aho-Corasick automaton: seeds of various lengths and shapes

 ${\tt ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC}$

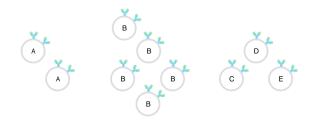
I	ACACGGCCC	TGTAT	TACTG	TGCGAGAG	AGCTGAAT	ACTTCCAGCA	CTGGGGCC
	$TR\betaV$	IGHV	???	$TR\betaV$???	$TR\betaJ$	IGLJ

Keep the two most abundant annotations Here $TR\beta V$ and $TR\beta J$

Keep the two most abundant annotations Here $TR\beta V$ and $TR\beta J$



How to include spaced seeds in the AC automaton?


Not in a very smart way: add all possible paths

How to include spaced seeds in the AC automaton?

Not in a very smart way: add all possible paths Indexing AC-C

V(D)J detection or V(D)J assignment? V(D)J detection

V(D)J assignment

Comparison with other software

MiXCR V(D)J-assign all reads (Bolotin *et al*, 2015)

IgReC V(D)J-assign all reads (Shlemov *et al*, 2016)

Vidjil-algo (old) V(D)J-detect all reads

and assign most abundant clusters

Vidjil-algo (new) V(D)J-detect all reads

and assign most abundant clusters

Comparison with other software

```
MiXCR V(D)J-assign all reads (Bolotin et al, 2015)

IgReC V(D)J-assign all reads (Shlemov et al, 2016)

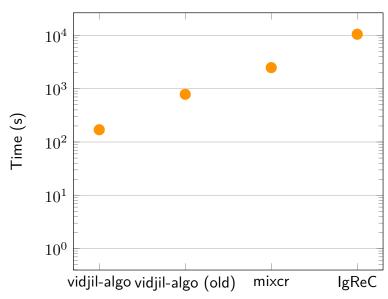
Vidjil-algo (old) V(D)J-detect all reads

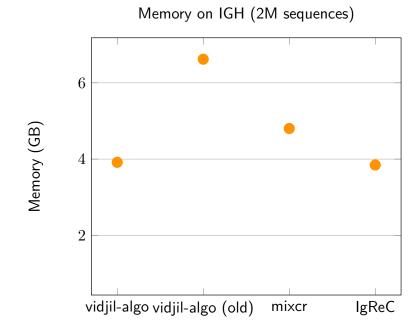
and assign most abundant clusters

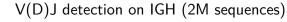
Vidjil-algo (new) V(D)J-detect all reads

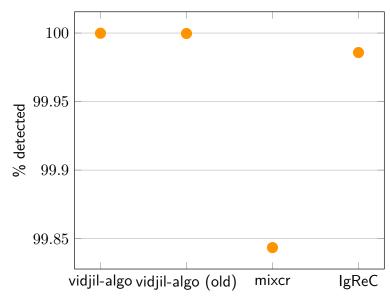
and assign most abundant clusters
```

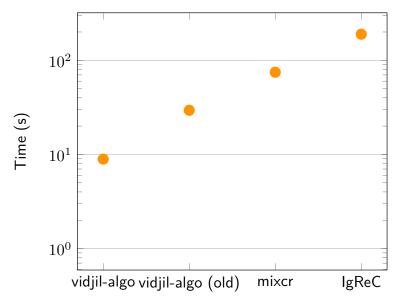
MiXCR and IgReC do much more things than Vidjil-algo

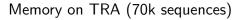

Thus the comparison is unfair but that's the only one we can do

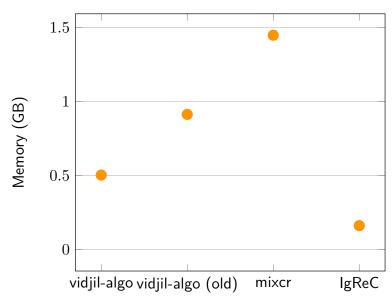

Benchmark datasets

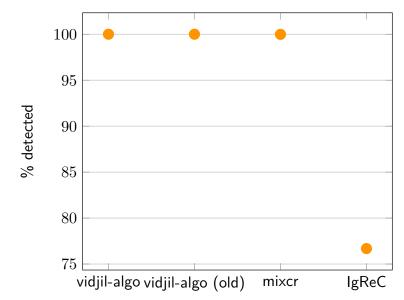

True dataset All V(D)J recombinations, with random indels at junctions and 2% differences

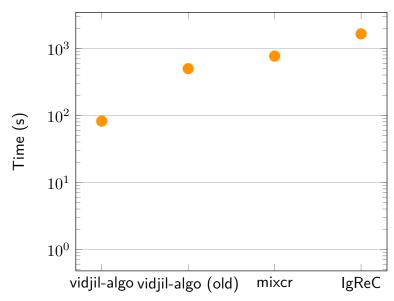

False dataset Random DNA sequences of length 350-450

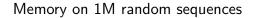


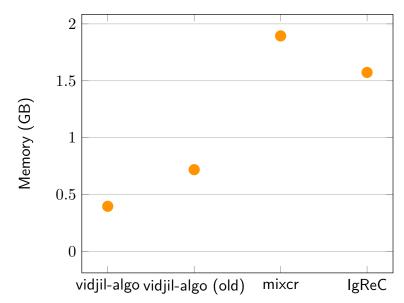


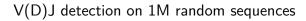


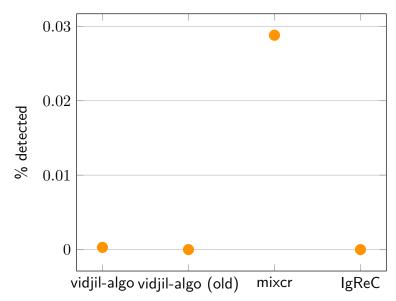


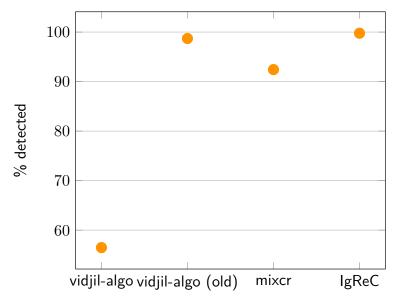





V(D)J detection on TRA (70k sequences)

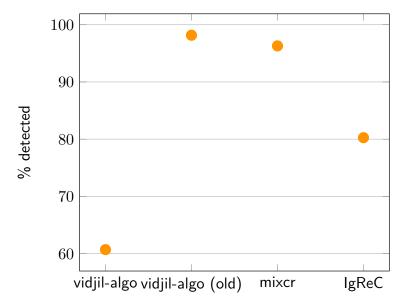



Running time on 1M random sequences



What if we have V(D)J with 10 % errors?

Well...


What if we have V(D)J with 10% errors?

V(D)J detection on IGH (2M sequences)

What if we have V(D)J with 10% errors?

V(D)J detection on TRA (70k sequences)

	parts of V g	enes		parts of J genes				
ACAC	CACG ACGG	CGGC	GGCC	ATAC	TACT	ACTT	CCAG	CAGC
GCCG	TCTT CTTC	TTCC	TCCA	AGCA	GCAC	TGGG	GGGC	GGCA
CCAA	CAAC AACC	ACCT	CCTT	GCAA	CAAG	AAGA	AGAG	GAGT
CTTG	TTGG TGGA	ACTT		AGTT	GTTG	TTGG		

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

	parts of V g	enes			parts of J genes				
ACAC	CACG ACGG	CGGC	GGCC	ATAC	TACT	ACTT	CCAG	CAGC	
GCCG	TCTT CTTC	TTCC	TCCA	AGCA	GCAC	TGGG	GGGC	GGCA	
CCAA	CAAC AACC	ACCT	CCTT	GCAA	CAAG	AAGA	AGAG	GAGT	
CTTG	TTGG TGGA	ACTT		AGTT	GTTG	TTGG			

<u>ACACGGCCGTGTATTACTGTGCGAGA</u>GAGCTGA<u>ATACT</u>TCCAGCACTGGGGCC

	parts of V g	enes		parts of J genes				
ACAC	CACG ACGG	CGGC	GGCC	ATAC	TACT	ACTT	CCAG	CAGC
GCCG	TCTT CTTC	TTCC	TCCA	AGCA	GCAC	TGGG	GGGC	GGCA
CCAA	CAAC AACC	ACCT	CCTT	GCAA	CAAG	AAGA	AGAG	GAGT
CTTG	TTGG TGGA	ACTT		AGTT	GTTG	TTGG		

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

	parts	of V	genes			parts of J genes					
ACAC V2, V4	CACG V2, V4	ACGG V1	CGGC V1, V2, V4	GGCC V2, V4	ATAC J1, J2	TACT J1, J2, J3	ACTT	CCAG J4	CAGC J4		
GCCG	TCTT V4	CTTC V6, V7	TTCC V6	TCCA V6, V8	AGCA	GCAC J1, J2	TGGG J1, J3	GGGC J1, J3	GGCA J2, J3		
CCAA v6, v8, v9	CAAC V7	AACC V8, V9	ACCT V1, V9	CCTT V4, V5	GCAA J2, J3	CAAG J2, J3	AAGA	AGAG	GAGT J3		
CTTG v5, v6, v7	TTGG V7	TGGA	ACTT		AGTT	GTTG J3, J4	TTGG J3, J4				

 $\underline{ACACGGCCGTGTATTA}CTGT\underline{GCGAGA}GAGCTGA\underline{ATACT}T\underline{CCAGCACTGGGG}CC$

	parts	of V	genes		parts of J genes				
ACAC V2, V4	CACG V2, V4	ACGG	CGGC V1, V2, V4	GGCC V2, V4	$\underset{J_1,\;J_2}{ATAC}$	TACT J1, J2, J3	ACTT J4	CCAG J4	CAGC J4
GCCG V1, V5	TCTT V4	CTTC V6, V7	TTCC V6	TCCA V6, V8	$\underset{J_1,\ J_2}{AGCA}$	GCAC J1, J2	TGGG J1, J3	GGGC J1, J3	GGCA J2, J3
CCAA V6, V8, V9	CAAC V7	AACC V8, V9	ACCT V1, V9	CCTT V4, V5	GCAA J2, J3	CAAG J2, J3	AAGA	AGAG	GAGT J3
CTTG v5, v6, v7	TTGG V7	TGGA	ACTT		AGTT	GTTG J3, J4	TTGG J3, J4		

$\underline{ACACGGCCGTGTATTACTGTGCGAGAGAGCTGA\underline{ATACT}TCCAGCACTGGGGCCC}$

V1 8

V2 6

V4 3

V5 1

	parts	of V	genes		parts of J genes				
ACAC V2, V4	CACG V2, V4	ACGG V1	CGGC V1, V2, V4	GGCC V2, V4	ATAC TACT ACTT CCAG CAGC				
GCCG	TCTT	CTTC V6, V7	TTCC V6	TCCA V6, V8	AGCA GCAC TGGG GGGC GGCA J1, J2 J1, J2 J1, J3 J1, J3 J2, J3				
CCAA v6, v8, v9	CAAC	AACC V8, V9	ACCT V1, V9	CCTT V4, V5	GCAA CAAG AAGA AGAG GAGT				
CTTG v5, v6, v7	TTGG	TGGA	$\underset{V7}{ACTT}$		AGTT GTTG TTGG				

$\underline{ACACGGCCGTGTATTACTGTGCGAGAGAGCTGA\underline{ATACT}TCCAGCACTGGGGCCC}$

V1 8

V2 6

V4 3

V5 1

Only compare with (most?) detected genes

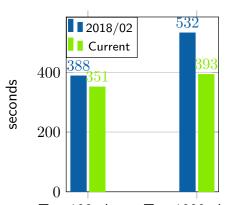
How does that improve vidjil-algo?

Assigning V(D)J of 10,000 IGH sequences

How does that improve vidjil-algo?

Assigning V(D)J of 10,000 IGH sequences

> 100 min Before


How does that improve vidjil-algo?

Assigning V(D)J of 10,000 IGH sequences

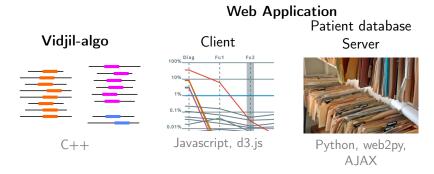
> 100 min Before < 5 min
With our optimisation

How does that improve vidjil-algo?

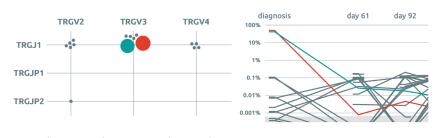
Clustering clones from 2.4M reads and assigning V(D)J to the top n clones

Top 100 clones Top 1000 clones Assigning 10 times more sequences in as many time as before Results quality check: *p*-value estimation and usual tests

Vidjil-algo – detecting and identifying V(D)J


A linear-time alignment-free V(D)J detection

Much quicker, about as precise as before


In the future:
Consider several results per state
Optimize spaced seeds for each recombination system
Don't just choose the two most abundant gene types

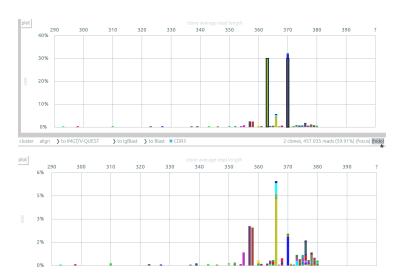
Integrate to the Vidjil platform

Vidjil
High-throughput Repertoire Sequencing (RepSeq) analysis

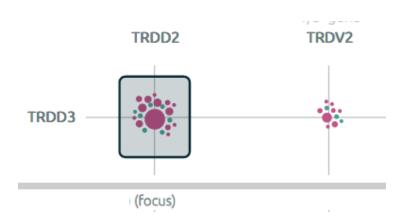
- code on http://git.vidjil.org/
- open-source (GPL v3), public issue tracker (Gitlab)
- ▶ continuous integration, > 2,000 unit and functional tests Duez et al., PLOS One, 2016

Plot clones - Grid view

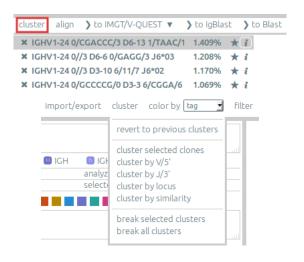
Plot clones - Bar view


Browsing and filtering clones

Hide dominant clones to study other clones


Browsing and filtering clones

Hide dominant clones to study other clones



Browsing and filtering clones

Focus on any subset of clones

Clustering options and undo

Further inspect the sequences with other software

- ► Blast, igBlast
- ► IMGT/V-QUEST
- V mutation status from IMGT/V-QUEST

```
ster align > to IMGT/V-QUEST ▼ > to IgBlast > to Blast ☑ CDR3-IMGT ☑ V/D/J-IMGIGHV4-39 3/7/0 D6-13 1/9/1 J5*02 81.53% 99.64% ☑ ★ i CCATATCCGTAGAC
```


Automatically testing the software as much as possible

Vidjil-algo \simeq 2,000 tests (including "curated sequences")

Web app \simeq 1,000 tests on internal behaviour, \simeq 100 tests on practical behaviour ("when I click here, I should see the clone sequence")

numericalAxis: use nice_number_digits in FloatAxis

Closes #2731.

Edited 37 minutes ago by Mathieu Giraud

Request to merge feature-c/2731-nice_number_dig... into dev

Pipeline #11003 • • • passed for 658ff73a.

Deployed to review/feature-c/2731-nice_number_digits on
feature-c-2731-nice-number-digits.ci.vidjil.org/?data=analysis-example.vidjil 32 minutes ago

Stop environment

Every step in the Vidjil platform is tested...

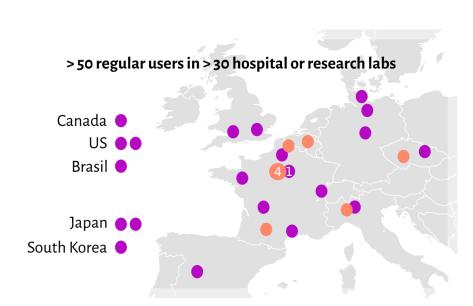
Every step in the Vidjil platform is tested...but independently

Every step in the Vidjil platform is tested...but independently

Need to develop end-to-end testing

Every step in the Vidjil platform is tested...but independently

Need to develop end-to-end testing


- 1. Create patient
- 2. Upload file
- 3. Launch process
- 4. View results and analyze them
- 5. Compare results
- 6. . . .

30,000

samples, since 2016

6,000

ALL/CLL patients at diagnosis in 7 hospitals, since 2016

Developing and maintaining a web application
Offering support to users

This is not the job of a research group

VidjilNet consortium in 2018/19

Inria Foundation --> Inria

January 2018

► VidjilNet started at Inria Foundation

Summer 2018

- new Inria direction
- reorganization of Inria and its foundation

December 2018

VidjilNet reintegrated to Inria

VidjilNet: Why?

Any member of the not-for-profit VidjilNet consortium

- participate to a community of members, showing interest in the Vidjil platform and potentially other tools, collectively deciding development priorities
- benefit from contracted services for clinical or research work, including remote maintenance of in-hospital servers or data hosting through accredited partner

no biological or sequencing service, no bioinformatics services outside hematological/immunological studies

Vidjil - a platform for the analysis of V(D)J recombinations

Vidjil-algo
A quick and sensitive algorithm

Web platform
A user-friendly interface

VidjilNetUsed in routine hospital practice

Open source

vidjil.org