Détection sans alignement de recombinaisons V(D)J multi-chaînes

Alignment-free detection of multi loci V(D)J recombinations

Mathieu Giraud, Mikaël Salson

Univ. Lille, CNRS, CRIStAL, Inria

The Adaptive Immune System

TCR and Antibody Specificity - V(D)J Recombination

. . .GGAAGGGCAGAATTA. . .
v2-11 GGATGGG GAATTA J3

TCR and Antibody Specificity - V(D)J Recombination

$$
\begin{aligned}
& \text { V1-03*.1 D2*1 J2-0.3*1 } \\
& \text { AGCTCATACGTCAGGAGG } \\
& \longleftarrow \text { V: } 50 \text { to } 200 \longrightarrow \longleftarrow \text { D: } 5 \text { to } 30 \longrightarrow \longleftarrow \mathrm{~J}: 20 \text { to } 60 \longrightarrow \\
& \longleftarrow \text { Sequence: } 100 \text { to } 350 \longrightarrow
\end{aligned}
$$

$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity

$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity
$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity

$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity

$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity

Diversity region

$V(D) \mathrm{J}$ recombinations are responsible for receptor diversity

Diversity region

TCR and Antibody Specificity - V(D)J Recombination

$$
\begin{aligned}
& \text { V1-03*.1 D2*1 J2-0.3*1 } \\
& \text { AGCTCATACGTCAGGAGG } \\
& \longleftarrow \text { V: } 50 \text { to } 200 \longrightarrow \longleftarrow \text { D: } 5 \text { to } 30 \longrightarrow \longleftarrow \mathrm{~J}: 20 \text { to } 60 \longrightarrow \\
& \longleftarrow \text { Sequence: } 100 \text { to } 350 \longrightarrow
\end{aligned}
$$

Immune Repertoire Sequencing (RepSeq)

Strategies - Sequencing millions of V(D)J recombinations from T-cells or B-cells

Immune Repertoire Sequencing (RepSeq)

Identification of all VDJ recombinations

Immune Repertoire Sequencing (RepSeq)

Identification of all VDJ recombinations

Immune Repertoire Sequencing (RepSeq)

Identification of all VDJ recombinations

20\%

50\%

30\%

Vidjil

High-throughput Repertoire Sequencing (RepSeq) analysis

Web Application

Patient database

Vidjil-algo

Client

Javascript, d3.js

Server

Python, web2py, AJAX

- code on http://git.vidjil.org/
- open-source (GPL v3), public issue tracker (Gitlab)
- continuous integration, $>2,000$ unit and functional tests

Duez et al., PLOS One, 2016

Immune Repertoire Sequencing (RepSeq)

Clone clustering

Immune Repertoire Sequencing (RepSeq)
Clone clustering

Immune Repertoire Sequencing (RepSeq)

Clone clustering

20\%

$$
1000000 \text { VDJ }=100 \mathrm{~s}
$$

Giraud, Salson et al., BMC Genomics, 2014

Immune Repertoire Sequencing (RepSeq)

Clone clustering

20\%

50\%

30\% $1000000 \mathrm{VDJ}=100 \mathrm{~s}$

Giraud, Salson et al., BMC Genomics, 2014

Fast identification of a window centered on the CDR3

Clone clustering
parts of V genes
ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ...

parts of J genes
ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

Fast identification of a window centered on the CDR3

Clone clustering
parts of V genes
ACAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ...

parts of J genes
ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

Fast identification of a window centered on the CDR3

Clone clustering

parts of \vee genes
acac Cacg acga cgac gacc GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ...

parts of J genes
ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC
$O(n)$ alignment-free $\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection algorithm

Giraud, Salson et al, BMC Genomics, 2014

Fast identification of a window centered on the CDR3

Clone clustering

parts of \vee genes
aCAC CACG ACGG CGGC GGCC GCCG TCTT CTTC TTCC TCCA CCAA CAAC AACC ACCT CCTT CTTG TTGG TGGA ACTT ...

parts of J genes
ATAC TACT ACTT CCAG CAGC AGCA GCAC TGGG GGGC GGCA GCAA CAAG AAGA AGAG GAGT AGTT GTTG TTGG ...

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC
$O(n)$ alignment-free $\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection algorithm

Giraud, Salson et al, BMC Genomics, 2014

Immune Repertoire Sequencing (RepSeq)

Clone clustering

20\%

$$
1000000 \text { VDJ }=100 \mathrm{~s}
$$

Giraud, Salson et al., BMC Genomics, 2014

Vidjil-algo

analyses recombinations on all human TR/Ig locus

complete recombinations				(b) IGH+
		incomplete/special recombinations		χ^{1} IGK
		(k) IGK+		
TRA	Va-Ja			
TRB	$\mathrm{Vb}-(\mathrm{Db})$-Jb	TRB+	Db-Jb	[IGL
TRD	Vd-(Dd)-Jd	TRD+	Vd-Dd3, Dd2-(Dd)-Jd, Dd2-Dd3	A TRA
		TRA+D	Vd-(Dd)-Ja, Dd-Ja	
TRG	Vg-Jg			a TRA + D
IGH	Vh-(Dh)-Jh	IGH+	Dh-Jh	B TRB
IGL	VI-JI			
IGK	Vk-Jk	IGK+	Vk-KDE, INTRON-KDE	b TRB+
				(TRD
				d TRD+
				G TRG

One pass for each recombination system

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

One pass for each recombination system

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC
IGH
IGH+

IGK
IGK+
IGL
TRA
TRD
TRA+D
TRD+
TRB
TRB+
TRG

How could we find a $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination (if any) in a single pass?

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Aho-Corasick automaton: searches patterns in linear time

Introduced by Alfred Aho and Margaret Corasick in 1975
Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time

Introduced by Alfred Aho and Margaret Corasick in 1975
Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=$ ACATCG

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=$ ACATCG

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A$ TCG CAT found!

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G$

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=A C A T C G \quad$ ATC found!

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=$ ACATGG

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=$ ACAT(G)

Aho-Corasick automaton: searches patterns in linear time Introduced by Alfred Aho and Margaret Corasick in 1975

Searches a set of patterns P in a text T in time $O(|T|)$

$$
P=\{\mathrm{ACC}, \mathrm{ATC}, \mathrm{CAT}, \mathrm{GCG}\}
$$

Failure function: returns the longest proper suffix accessible from the initial state

Searching P in $T=$ ACATCG

Aho-Corasick automaton for $V(D) J$ detection

Aho-Corasick automaton for $V(D) J$ detection

What are the patterns?

Aho-Corasick automaton for $V(D) J$ detection
What are the patterns?
(spaced) k-mers from V and J genes

Aho-Corasick automaton for $\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection

What are the patterns?

(spaced) k-mers from V and J genes

Aho-Corasick automaton for $\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection

What are the patterns?

(spaced) k-mers from V and J genes

Analysing all recombinations in a single pass

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

Analysing all recombinations in a single pass

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

Analysing all recombinations in a single pass

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC
TR βV IGHV ??? TR βV ??? TR βJ IGLJ

Keep the two most abundant annotations
Here $\operatorname{TR} \beta \vee$ and $\operatorname{TR} \beta J$

Analysing all recombinations in a single pass

ACACGGCCGTGTATTACTGTGCGAGAGAGCTGAATACTTCCAGCACTGGGGCC

Keep the two most abundant annotations
Here $\operatorname{TR} \beta \vee$ and $\operatorname{TR} \beta J$

How to include spaced seeds in the AC automaton?

How to include spaced seeds in the AC automaton?

Not in a very smart way: add all possible paths

How to include spaced seeds in the AC automaton?

Not in a very smart way: add all possible paths Indexing AC-C

$V(D) J$ detection or $V(D) J$ assignment?
$V(D) J$ detection

V(D)J assignment

Comparison with other software

MiXCR V(D)J-assign all reads (Bolotin et al, 2015)
$\operatorname{lgReC} V(D) J$-assign all reads (Shlemov et al, 2016)
Vidjil-algo (old) V(D)J-detect all reads and assign most abundant clusters
Vidjil-algo (new) V(D)J-detect all reads and assign most abundant clusters

Comparison with other software

MiXCR V(D)J-assign all reads (Bolotin et al, 2015)
$\operatorname{lgReC} V(D) J$-assign all reads (Shlemov et al, 2016)
Vidjil-algo (old) V(D)J-detect all reads and assign most abundant clusters

Vidjil-algo (new) V(D)J-detect all reads and assign most abundant clusters

Thus the comparison is unfair but that's the only one we can do

Benchmark datasets

True dataset All $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombinations, with random indels at junctions and 2% differences
False dataset Random DNA sequences of length 350-450

A precise and quicker heuristic
Running time on IGH (2M sequences)

A precise and quicker heuristic
Memory on IGH (2M sequences)

A precise and quicker heuristic
V (D)J detection on IGH (2M sequences)

A precise and quicker heuristic
Running time on TRA (70k sequences)

A precise and quicker heuristic
Memory on TRA (70k sequences)

A precise and quicker heuristic
$\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection on TRA (70k sequences)

Conclusions

A linear-time alignment-free $\mathrm{V}(\mathrm{D}) \mathrm{J}$ detection

Much quicker, about as precise as before

In the future:
Consider several results per state

Optimize spaced seeds for each recombination system

Integrate to the Vidjil platform (50 samples/day)

