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Abstract. With a sharp increase of available DNA and protein sequence
data, new precise and fast similarity search methods are needed for large-
scale genome and proteome comparisons. Modern seed-based techniques
of similarity search (spaced seeds, multiple seeds, subset seeds) provide
a better sensitivity/specificity ratio. We present an implementation of
such a seed-based technique on a parallel specialized hardware embed-
ding reconfigurable architecture (FPGA), where the FPGA is tightly
connected to large capacity Flash memories. This parallel system allows
large databases to be fully indexed and rapidly accessed. Compared to
traditional approaches presented by the Blastp software, we obtain both
a significant speed-up and better results. To the best of our knowledge,
this is the first attempt to exploit efficient seed-based algorithms for par-
allelizing the sequence similarity search.

Keywords: sequence, similarity search, spaced seeds, subset seeds, in-
dexing, FPGA, reconfigurable architecture, dedicated hardware.

1 Introduction

Sequence similarity search is one of the fundamental tasks in genomic research.
Its main goal is to locate similar regions in DNA or protein sequences which
correspond to biologically relevant conserved (or homologous) regions. A typical
task, for example, is to query a genomic databank with a newly discovered DNA
sequence. Observed similarities with other known genes witness their putative
common biological function and direct further investigations.

With rapidly growing genomic databases, bioinformatics projects processing
hundreds of gigabytes of data lead to computationally challenging tasks. Since
searching for similarities between raw sequences is often the first step to more
complex bioinformatics analysis, and since this process requires vast computa-
tional resources, there is a big interest in optimizing these computations.

Different approaches have been studied to reduce the computation time of
sequence similarity search while keeping the same sensitivity as Blast, a com-
monly used software based on a seed-based heuristic [1] (see section 2.1). All
these approaches exploit parallelism, though at different levels. A fine-grained
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parallelism can be obtained through the use of SIMD instructions [2,3]. One
immediate approach consists in splitting a genomic databank across a cluster
of computers, like in the mpiBLAST implementation [4,5]. In that scheme, each
processor performs an independent search on a part of the database. A final step
merges the results. The efficiency of this coarse-grained parallelization is due to
a small communication overhead between the involved computers.

Another approach is to parallelize the algorithm itself on a dedicated hardware
(see section 2.2). We can exploit both a fine-grained parallelism (on a VLSI
or FPGA) and a coarse-grained one (architecture with several boards). Such
solutions can provide a lower cost and a better efficiency than a generic cluster.
For example, a single dedicated hardware can be easier to administrate than a
64-node cluster with the same computing power.

This paper presents an implementation of a recently proposed seed-based
heuristic, called subset seeds, on a parallel hardware designed for indexing large
volumes of data such as genomic banks. Two levels of parallelism can be consid-
ered: a coarse-grained level and a fine-grained level. Here, only the first one will
be discussed: it makes a subtle use of subset seeds in order to simultaneously
run several partial searches on large indexes stored in a Flash memory. The
fine-grained level is similar to [6] where a Blast for DNA search was proposed.

The rest of the paper is organized as follows. The next section introduces
a background for sequence similarity search. Section 3 describes our parallel
strategy based on subset seeds. Section 4 presents performance results obtained
for a large-scale biological application and draws conclusions.

2 Similarity Searches

2.1 Seed-Based Similarity Search

An alignment between two sequences is defined in terms of a scoring function
minimizing possible substitutions, deletions and insertions needed to transform
one sequence into the other. Given a set of scores assigned to those edit op-
erations, dynamic programming (DP) equations compute the best local align-
ments between two sequences in quadratic time [7]. Some optimizations achieve
a sub-quadratic complexity [8], but the computation time remains prohibitive
for whole-genome comparisons.

Most of the time, true alignments contain small patterns, called seeds, that
are shared by the two sequences in an exact way. These seeds are used to reduce
DP computations to small neighborhoods of seed occurrences. For example, the
Blast [1] single-hit strategy proceeds in 3 stages (Figure 1):

– Stage 1: searching for words of size k (seeds) that occur in both strings,
– Stage 2: extending each seed by allowing a limited number of substitutions,

and keeping only those with a score greater than a given threshold,
– Stage 3: applying the full DP algorithm to successfully extended seeds.

About five years ago, it was understood that instead of contiguous k-words,
it is more advantageous for Stage 1 to use so-called spaced seeds that correspond
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Fig. 1. Schematic view of the Blast 3-stage algorithm. Stage 1: identify exact seeds
(black diagonals). Stage 2: compute seed extension allowing a small number of substi-
tution errors (grey diagonals). Stage 3: perform a full DP computation (white squares)
on remaining extended seeds. Here only seed (b) leads to an output alignment.

to gapped diagonals in the DP matrix. The idea of using spaced seeds for bio-
logical sequence comparison was first proposed in the PatternHunter software [9]
and then used in a more elaborate form in the YASS software [10]. Theoretical
design and usage of better seeds is an active field of research [11,12,13,14,15].
For protein search, Stage 1 of Blastp looks for words in databank sequences that
are sufficiently close (in terms of the scoring function) to the query word. This
strategy is captured by the general concept of vector seeds proposed in [13]. Re-
cent works on seed-based protein search [16,17] apply some extended definition
of this concept. An important advantage of all those seed models is the possibil-
ity to design appropriate seeds according to sensitivity/selectivity criteria and
the class of target alignments. Moreover, instead of using a single seed, one can
use several seeds simultaneously (so-called multiple seeds), to further improve
the sensitivity/selectivity trade-off.

2.2 Dedicated Hardware for Similarity Search

There have been many attempts to efficiently implement the DP technique of
sequence comparison in a specialized hardware. Dynamic programming equa-
tions can be projected on 2D or 1D systolic arrays [18,19,20]. A backtracking
phase follows the score computation phase to build the alignment [21]. Special
edition scores significantly reduce the hardware resources [19]. Between 1990 and
2006, more than twenty different architectures were proposed on VLSI or FPGA
circuits [22] (see [23] or [24] for some recent works).

Hardware implementations for seed-based heuristics have been less studied.
The first ASIC implementation of a seed-based heuristic was done in 1993 with
the BioSCAN architecture [25]. Several FPGA implementations have been inde-
pendently developed since 2003 (see [22] for a review). Some authors developed
both a new algorithm (DASH) with better sensitivity than Blast as well as an
FPGA implementation [26].
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3 Parallel Implementation of Subset Seeds

To the best of our knowledge, no dedicated hardware has been proposed so
far to efficiently implement modern seed-based sequence comparison methods.
Moreover, some features of those methods are costly to implement at the software
level, but can be easily implemented in hardware.

3.1 Subset Seeds for Protein Searches

The detection of an occurrence of a seed (a hit) in Stage 1 is done by first
constructing an index for all keys corresponding to the seed. Very general seed
models, such as vector seeds [13], lead to more expressive hit definitions but also
to more complex and less cache-efficient implementations of this process. More
specifically, whereas traditional seeds imply accessing one entry of the index for
each query key (direct indexing), vector seeds require to store, for each key p,
its neighborhood, i.e. a set of all keys that reach a given score threshold when
compared to p. Therefore, this leads, for each key, to multiple accesses the main
index at non-contiguous positions, inducing a larger latency.

For example, the 3-letter seed ### implies that for each 3-letter key (word)
occurring at a query position, only one (identical) key should be looked up in
the index. The single-hit Blastp strategy (seed ###

≥11) uses the same index, but
should look up, for each query key, for all possible keys that score at least 11
when compared with the query key. This strategy gives a theoretically expected
number of 26 index look-ups for the Blosum-62 background distribution of amino
acids.

In this work, we use the subset seeds model, first proposed in [27] for DNA
similarity search. Subset seeds are more expressive than spaced seeds but less
expressive than vector seeds. The main idea of subset seeds is that they use
elements (seed letters) that distinguish between different types of mismatches.
The main advantage of this model is that it provides a powerful seed definition
and at the same time preserves the possibility of direct indexing.

Consider the alphabet of amino acids Σ = {C, F, Y, W, M, L, I, V, G, P, A, T,
S, H, Q, E, R, K, D, N}. A subset seed is defined as a word s1s2 . . . sm such that:

– each seed letter si denotes a partition of the alphabet Σ, grouping amino
acids that can be exchanged at this position,

– a subset seed s1s2 . . . sm matches an alignment fragment (x1, y1)(x2, y2) . . .
(xm, ym) ∈ (Σ2)m if, for each position i, amino acids xi and yi belong to the
same set in the partition si.

Figure 2 provides an example of seed letters and a subset seed. The design of
seed letters, i.e. partitions of the set of amino acids, will be subject of a separate
publication. Once seed letters are fixed, we use the approach proposed in [27] to
estimate the performance of a given seed. Theoretical estimates for sensitivity
and selectivity are computed on Bernoulli background and foreground models
taken from the Blosum-62 matrix model (Blocks database version 5) using the
original program of [28]. Seeds achieving the best sensitivity/selectivity ratios
are selected for practical evaluation (see section 4).
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⎧
⎪⎪⎨

⎪⎪⎩

b0 = {CFY WMLIV GPATSNHQEDRK}
b1 = {C, FY W,MLIV, G, P, ATS,HQERK,DN}
b2 = {C, FY W,ML, IV, G, P, A, TS,H, QE,RK, DN}
b3 = {C, F, Y, W,M, L, I, V, G, P, A, T, S, H, Q,E, R, K, D, N}

Fig. 2. Example of seed letters ranging from a don’t care symbol (b0, the whole set of
amino acids) to a match symbol (b3, the partition into singletons). With this alphabet,
the subset seed s = b1b3b2 matches the alignment fragment (H,K)(L, L)(F, W ).

3.2 Hardware Search Filter

As shown on Figure 3, the hardware prototype architecture, called ReMIX, is
composed of several 64 GB Flash memory boards, each linked to a FPGA com-
ponent. An implementation of a seed-based heuristic with fixed seeds was pre-
sented in [6]. The key point is that, in the index, each position of each seed key
is stored together with its neighborhood (Figure 4), allowing both Stage 1 and
Stage 2 to be computed without additional memory accesses. As we use a mul-
tiple seed (a set of several subset seeds), each seed requires a separate index of
the database, and each index is stored on a separate memory board. In runtime,
each seed is thus separately processed on distinct couples (flash memory board
/ FPGA), motivating the coarse-grained parallelism.

Fig. 3. Principle of the ReMIX architecture. Flash memory boards, linked to a FPGA
filter, are linked to a host computer. In this experience, four boards are used.

More specifically, Algorithm 1 below shows how to find local alignments
between a query and a database, closely following the heuristic described in
section 2.1.

During a preprocessing phase, the databank is indexed off-line with respect
to the specified seed (Figure 4). The index points to the positions of keys in the
database matched by the seed s (for the Stage 1) and their neighborhoods. This
index is stored in the Flash memory. The Flash technology allows all those data
to be quickly accessed at the runtime. The latency of 20 μs for a random access
can be hidden by a large number of successive calls. Moreover, as shown on the
right part of Figure 4, for each query position, only one index look-up is needed,
reducing the total latency, and thus the total filtering time.
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Fig. 4. Each index line, on the ReMIX architecture, contains the position of the seed
key (database pos.) and its neighborhood (20 amino acids on each side). On the left,
the index used on traditional ### and ###

≥11 seeds gives all the database positions of
occurrences of a given key. On the right, the index used with subset seeds uses less
keys. There is more data for each key: the full database size remains the same.

Algorithm 1. Querying a database indexed with one seed
Input: database, seed s, query
1: index the database (with respect to s)
2: store the index into Flash memory
3: for each key of the query do
4: using the index, focus on similar key occurrences in the database (Stage 1)
5: for each key occurrence in the database do
6: using the FPGA, filter out the neighborhoods of the occurrence (Stage 2)
7: end for
8: end for
9: on host computer, perform DP computations on filtered sets of positions (Stage 3)

Output: local alignments of the query against the database

Those neighborhoods are processed on the FPGA together with the neighbor-
hoods of the query (Stage 2). Each FPGA filter can compute approximatively
160 ungapped alignments simultaneously in 50 clock cycles. As a clock cycle is
around 25 nanoseconds, up to 128 millions ungapped alignments per board can
be computed each second.

Finally, the host computes the final set of alignments from the remaining set
of filtered positions given by the FPGA (Stage 3). With our approach, using
both dedicated hardware and subset seeds, Stage 3 is not a limiting factor, even
computed in software on the host.

4 Performance Results and Conclusions

In our application, the database was extracted from the hard-masked human
genome (UCSC Release hg18) translated according to the six possible reading
frames. The query was a set of seven archea and bacteria proteomes deriving
from a study on mitochondrial diseases. The goal of this study was to detect
potential insertions of mitochondrial genes in the human genome. We selected
three sets consisting respectively of 1, 2, and 4 subset seeds among the sets with
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Table 1. Comparison between different seeds. The fixed seed ### is given as a reference.
The number n is the number of seeds of the set: the computation is distributed over
n boards. Experimental values for sensitivity (third column) are obtained through
comparison with Smith-Waterman alignments on human chromosomes 1 – 11. For the
other columns, we focused on the chromosome 1 (85×106 amino acids). All subset seeds
used here were chosen to have a better sensitivity than ###

≥11. On this data, the ###≥11

seed looks up the index 17 more times than any of the subset seeds (fourth column).
The number of returned database positions (fifth column) estimates the selectivity, as
most of them are false positive that will be filtered out in Stage 2. When several seeds
and boards are used (n > 1), we show the results for the slowest one. In comparison,
the usual single-hit Blastp implementation would take more than 3400 minutes on this
dataset with a 3 GHz PC (data not shown).

Seed model n sensitivity
index calls

(×106)
positions returned

(×109)
filtering time

(min:sec)
Fixed seed ### 1 92.87% 5.4 24 24:13

Blastp seed ###
≥11 1 99.09% 92.9 246 257:50

Subset seed n◦1 1 99.11% 5.4 231 216:25
Subset seeds n◦2 2 99.14% 5.4 max: 109 max: 103:51
Subset seeds n◦3 4 99.13% 5.4 max: 69 max: 65:35

the best sensitivity/specificity ratio and with a global sensitivity comparable to
the Blastp seed ###

≥11.
Using one or several boards, we performed tests parallelizing algorithm 1,

except for Stage 3 that has been computed by the host computer on the merged
results from all the boards. The computation time of Stage 3, lower than Stage
1 and 2, is hidden by successive calls of queries.

Time and data results are shown in Table 1. On average, FPGA filter took ap-
proximatively 67 nanoseconds for processing one index line, representing around
15 million of index entries filtered each second.

Even with traditional Blastp seeds, one ReMIX board provides a 13× speed-up
over a conventional software implementation. A convenient speed-up is obtained
by joining several PCI boards inside a host PC [6]. Moreover, the use of the
subset seeds gives an additional speed-up due to reduced access to the memory.
Here, the best results (in proportion to the number of boards) are achieved with
the set of 2 subset seeds, giving a 24% speed-up over the implementation of
Blastp seeds.

Thus a simple host computer equipped with 4 ReMIX boards with those subset
seeds provides a 4 × 13 × 1.24 > 64× speed-up. Thus this host is equivalent to
a 64-node cluster processing traditional Blastp seeds.

As the cost of the FPGA circuit and the Flash memory declines, this solution
becomes more interesting than the cluster. One may argue that the hardware
design enabling the fine-grained parallelism required an additional time of de-
velopment. However, the use of subset seeds is fully transparent for the architec-
ture, as the index in the memory does only see integer keys. A better algorithmic
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design of seeds provides an additional speed-up with the very same fine-grained
operators on the same FPGA architecture.

One possible extension is to index only a part of the databases positions rather
than all of them. This would reduce the index size and speed up the search. The
loss in sensitivity could be limited with specially designed seeds. The efficiency
of such an approach remains to be studied. Another open question is if a similar
approach could be used to speed up DNA similarity searches.
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