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Abstract. Proteins molecular recognition play an important role in their func-
tion. Determining which ligand can bind to a protein is a complex matter due to
the nature of protein-ligand interactions and flexibility of binding sites. However,
geometric complementarity has often been observed between the ligand and its
binding site. Under the assumption that geometrically similar binding sites bind
the same ligand, binding sites are mainly studied using three dimensional and
graph based representations. In this paper, we present a model for two dimen-
sional ligand binding pockets representation and we apply it to pocket-pocket
matching and binding ligand prediction. This model is based on surface mapping
of the binding site and makes use of two dimensional Pseudo-Zernike descrip-
tors. Our results show that for certain classes of ligands (HEM, NAD, PO4), up
to 60% of binding sites are correctly predicted to belong to the right class.

1 Introduction

Proteins are large chains of molecules (amino acids) and play essential roles in the hu-
man body. They are a key part of the immune system, they transport molecules such as
oxygen, and are involved in every cellular function. Made of 300 amino acids on aver-
age, proteins are large compounds harder to study than molecules. A protein function
is often determined by its three dimensional structure, experimentally measured by X-
ray crystallography or NMR spectroscopy. An ongoing worldwide effort, the Structural
Genomics initiative [1] is solving three dimensional structures of proteins of medical
interest, where little to nothing is known about their function. In many cases, a pro-
tein is functionally activated by a molecule (ligand) binding to it, acting as a switch.
Therefore, determining which ligand could bind to a protein is fundamental for protein
function identification.

Protein-ligand interactions are known to be based on geometric and electrostatic
complementarity. Current methods for comparing binding pockets are focused on ge-
ometric properties. Our motivation is to model binding pockets with versatile surface
properties, ie. shape, b-factors (correlated with flexibility) and electrostatic potential
(though only shape is covered in this paper). Since binding pockets are suitable for a
star-like shape approximation, we transform a binding pocket to a spherical function
and describe it with two dimensional moments.



In the next section, we give an overview of current research on protein binding sites
discovery, matching and comparison. In section 3, we formally describe a new model
for binding pockets descriptors based on ray-casting and two dimensional descriptors.
In section 4, these descriptors are evaluated for binding pocket comparison and used in
the design of a ligand prediction method.

2 Related Work on Ligand Binding Sites

Ligand binding sites have been computationally studied from three main angles: de-
tection of binding pockets using protein surface, match of protein structure against a
database of known binding sites patterns, and pocket-pocket comparisons.

2.1 Identification of binding sites

Detection of binding sites consists in predicting where on the protein surface any ligand
can bind, which is critical to drug discovery. To the best of our knowledge, binding site
detection does not predict which ligand binds to the discovered site.

The most common approach to ligand binding site localization is volumetric search
for large cavities, more recent methods also use electrostatic potential and conserva-
tion. SURFNET [2] performs a gap search by fitting spheres inside protein convex hull.
PocketPicker [3] and LIGSITE [4] methods consist in creating a grid and scanning it
for protein-void-protein events in many directions, whereas VisGrid [5] uses visibility
of surface points to find pockets. A broad survey of binding pocket detection is pre-
sented in [3]. It is worth noting that most successful approach cited in this paper is
LIGSITEcsc, which achieves an average detection accuracy of 75%.

Another unique binding pocket detection method is local similarity search on pro-
tein surface. It consists in using a database of known binding sites and scanning the sur-
face of a protein to find surface patch matches in the database. This was implemented
in a very accurate but computationally intensive method using a maximum subgraph
algorithm, eF-seek [6].

2.2 Pocket-pocket comparison

Similarity of binding pockets play a crucial role in structural protein function predic-
tion. There is a flood of methods for binding site representation and comparison. Since
mechanisms of binding are not yet fully understood, binding sites are commonly de-
fined on geometric criterions.

Among comparison methods, we will restrict our survey to the most popular ones:
three dimensional shape matching with spherical harmonics [7], geometric hashing [8]
and three dimensional root mean square deviation [9].



Recently, a study on shape variation of binding sites and how they are related to their
ligand was published [10], spherical harmonics descriptors were used. The authors con-
cluded that binding sites binding the same ligand show variable shape conformations,
and global geometric complementarity alone is not sufficient for molecular recognition.

3 Novel Binding Pockets Descriptors

Since spherical harmonics cannot capture partial shape complementarity, we choose to
use an approach where local similarity search has been already well researched: two
dimensional descriptors. In this section we describe a novel binding pocket description
model based on ray-casting and 2D moments. The binding pocket will be represented as
a spherical panoramic picture from its center of gravity, on which we apply descriptors
used in content-based image retrieval, Pseudo-Zernike moments.

We first define some terms. The notion of surface refers to the Connolly surface
[11], commonly used in proteins surface visualization and surface-related computa-
tions. We consider a binding pocket (BP ) as any connected subset of the protein sur-
face that is not part of the protein convex hull. We define G as the center of gravity
of BP , provided it does not lie inside the protein volume; otherwise, G is any of the
closest points outside of it. The opening of BP is defined as the set of rays starting at
G and not intersecting BP .

3.1 Ray-casting of outermost surface

We now describe a ray-casting [12] strategy to represent BP as seen from G. To remove
one degree of freedom and later achieve rotation invariance, we make the assumption
that a binding pocket orientation is partially defined by its opening. Therefore, our rep-
resentation is a piecewise continuous surface map relative to a coordinate system de-
fined from BP opening.

A three dimensional cartesian coordinate system (−→x ,−→y ,−→z ) specific to BP is de-
fined as follows: origin G, −→z is a unit vector aligned with the center of mass of all
the opening rays. Intuitively, −→z points toward the pocket opening. The later use of 2D
rotationally invariant descriptors enable us to define (−→x ,−→y ) arbitrarily.

Using spherical coordinates, we define f(θ, φ) as follows: (θ, φ) ∈ [0, 2π], [0, π]
and

f(θ, φ) =

{
max

i
(di) where a ray starting at G intersects BP at distances (di) from G

0 if no intersection occurs.

This can be interpreted as a spherical function describing the outermost surface of BP .
Figure 1 sketches f definition on the intersection of BP with a fictional plane con-

taining G. Since this function is a piecewise continuous spherical function, in order to



Fig. 1. Mapping of binding pocket (bold line) from its center of gravity. Z axis is aligned
with the center of the pocket opening, plane X,Y is arbitrarily oriented.

use two dimensional descriptors f has to be mapped to a plane, the same way the Earth
maps are projected.

3.2 Projection and Pseudo-Zernike descriptors

Numerous methods exists for spherical function projection, because no projection can
be constructed to preserve spherical properties such as area, shape and distance alto-
gether [13]. We selected a very simple scheme, a special case of equi-rectangular (dis-
tance preserving) projection named plate-carrée projection. This consists in mapping
f(θ, φ) a plane where:

x = θ

y = φ

Experimentally, this projection does not distort shapes of a binding pocket beyond
recognition by descriptors. A projected surface of a binding pocket is shown Figure 2.

The next step is to describe the two dimensional BP projection with image mo-
ments. Because of the rapid growth of content-based image retrieval, there is a flood of
descriptors that can be used to quantify similarity of images. By definition of f(θ, φ),
only the shape descriptors are of interest. Among them, we choose to use Pseudo-
Zernike [14] moments.

The Pseudo-Zernike moments use a set of complete and orthogonal basis functions
defined over the unit circle as follows:

Vn,m(x, y) = ejmθ

n−|m|∑
s=0

(−1)s(2n + 1− s)!ρ(n−l)

s!(n + |m|+ 1− s)!(n− |m| − s)!



Fig. 2. Overview of the binding pocket representation process: the ligand binding site
of a protein (on the left, PDB:1dwd protein) is represented by the whole cavity surface
(middle), which is sphere-mapped from its center of gravity and projected (right)

where ρ =
√

x2 + y2, θ = tan−1(y/x). Pseudo-Zernike moments (An,m)0≤n+m≤i of
i-th order are computed for an image f(x, y) with the following formula:

An,m =
n + 1

π

∫ ∫

x2+y2≤1

f(x, y)V ∗
n,m(x, y)dxdy

This choice was motivated by three reasons. First, comparative studies show that
these moments are robust for shape description [15,16], they have been extensively
used for face recognition [17]. Second, these moments are rotationally invariant around
the center of the image, which is a required property due to the coordinate system we
used to model binding pockets. Third, they are orthogonal over the unit circle. In a
binding pocket, the active site is likely to be buried inside the cavity, at the opposite to
the opening. Due to the adequate position and orientation of our coordinate system, the
Pseudo-Zernike basis is likely to capture the active site shape, therefore providing an
ideal local similarity criteria.

4 Applications and results

In this section our descriptor model is used to compare actual ligand binding sites and
predict which ligand is most likely to bind to a binding pocket, by searching for similar
pockets.

4.1 Evaluation of Descriptors

To assess the quality of our descriptors we compare them with spherical harmonics
using the protein data set derived in [10], under the Interact Cleft Model. This model
has been built with pseudo-spheres within 0.3 Å of proteins atoms interacting with the
bound ligand. Since our binding pocket model is related to protein surface, we derived



a similar model named Ligand BP Approximation by keeping protein atoms within 5 Å
of the bound ligand (distance was experimentally chosen in order to include atoms in a
buffer region). Pseudo-Zernike moments are computed to the 7th order on the binding
pocket model described in Section 3.

Then, Pseudo-Zernike moments are compared with spherical harmonics moments
using all-against-all distance matrices, shown Figure 3. It appears that our model is able
to reflect similarity of sites from the same ligand set (green dots in the diagonal square)
while suffering from a very low specificity (green dots also appear outside diagonal
squares). Oppositely, Interact Cleft Model (spherical harmonics) is able to separate PO4

sites from every other ligand except GLC, but is not able to capture similarity of any
other type.

Fig. 3. All-against-all distances matrices of Pseudo-Zernike (left) and spherical har-
monics (right, reproduced from [10]) descriptors representing shape similarity of bind-
ing pockets from the Thornton-Kahraman [10] protein set. A green dot reflects low
distance between two descriptors, whereas orange-yellow reflects high distance. The
actual color scale for Pseudo-Zernike descriptors is shown.

A closer inspection of the distance matrix reveals that, even if most coefficient dis-
tances are not clearly reflecting separation of ligand families, most of the dark green
dots are often in the diagonal square. In the next subsection we design a scoring func-
tion that predicts binding pocket ligand type based on this observation.

4.2 Binding ligand prediction from pocket shape

We present a framework to predict the binding site ligand type given a query pocket and
a database of binding sites.



Our approach for binding ligand prediction is based on the assumption that, given a
query binding pocket, sites binding the same ligand are likely to often show among the
k closest pockets in the database. Therefore, even if the closest match is not a binding
pocket of the same type, we examine the k = 20 nearest neighbors out of n = 100
binding pockets, and give a score to every ligand. The scoring function is defined for a
ligand F regarding ranks and proportion of pockets binding F :

score(F ) =
20∑

i=0

(1l(i)(F )log(
n

i
))

20∑

i=0

1l(i)(F )

n∑

i=0

1l(i)(F )

where l(i) returns ligand type of the i-th nearest neighbor. The ligand with the highest
score is predicted to bind with the query pocket.

We applied this scoring function to predict the ligand of every binding site from the
Thornton-Kahraman data set, using the remaining of the data set as the reference data.
The results are shown Table 1 in two lines, Top 1 is for highest scoring ligand being the
correct binding ligand, Top 3 allows the correct answer to lie in the first three highest
scoring ligands.

Ligand AMP ATP FAD FMN GLC HEM NAD PO4 STR
Top 1 43.8% 46.7% 60%
Top 3 50% 60% 60% 43.8% 66% 70% 50%

Table 1. Success rate for binding ligand prediction using our binding pocket model,
7-th order Pseudo-Zernike moments and the scoring function. The protein database we
used is the Thornton-Kahraman data set (100 proteins, each binding one of the 9 ligands
shown on table). Top 1 means that the correct prediction is the highest scoring ligand,
Top 3 extends to the second and third highest scoring ligands. Scores under 15% for
Top 1 and 33% for Top 3, corresponding to random predictions are not shown.

Our prediction method performs well at identifying the PO4 ligand, which is due to
a clear separation already shown in the distance matrix Figure 3. HEM is also known
as a rigid ligand with similar binding pocket shapes, however NAD is flexible but the
overall shape of the pocket is well preserved, as most of the closest matches belong
to the same ligand type. Top 1 (resp. 3) predictions that scored higher than 11% (resp.
33%) are superior than a random classifier, which has one (resp. three) chances out of
9 to predict the right ligand.



5 Conclusion

In this paper, we design a representation of ligand binding sites using a planar-projected
spherical function as an input for two dimensional Pseudo-Zernike descriptors. These
descriptors are applied to an actual data set and compared with spherical harmonics.
Both show an average selective power on most ligands in the set.

As a proof of concept, we explicit a method to predict which ligands are most likely
to bind to a binding site, using a similarity search with known ligand binding sites.
This method successfully predicts a correct result for 60% of the PO4 binding sites, and
finds the correct ligand among the best 3 predictions of most ligands with average 60%
success rate.

Future directions of research include adapting surface maps to other protein surface
properties such as b-factors and electrostatic potential, and combining descriptors to
achieve a clearer separation of sites binding different ligands.
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