Compacting de Bruijn graphs
from sequencing data quickly
and in low memory

Rayan Chikhi (CNRS)

joint work with A. Limasset (ENS Rennes), P. Medvedev (Penn State)

ISMB 2016

de Bruijn Graph

sequence: GATTACATTACAA
k-mers: GAT
(k=3) ATT
TTA

nodes: k-mers (words of length k)
edges: exact suffix-prefix overlaps of length k — 1

Py

GAT =P ATT mmdpy TTA =mmps TAC === ACA === CAA

assembly of genomes, metagenomes
variant calling
RNA-seq assembly & quantification

Compacted de Bruijn Graph

non-compacted de Bruijn graph:

TGG—GGT—GTA—TAA
TCA—CAT—ATT—TTG AAC—ACC—CCG
TGC—GCG—CGA—GAA

Compacted de Bruijn graph:

. TGGTAA _
TCATTG =78 . AACCG
TGCGAA

Each non-branching path becomes a single node (unitig).

no loss of information
less space

Steps of de Bruijn graph assemblers

Recent progress,
1.1 TB k-mer counting Stand-alone software

reads.gz (KMC2, DSK2, Jellyfish2)

‘ i, Integrated in assemblers,
700 GB graph compaction| high-memory or slow
k-mers This work

v

30 GB) , Integrated in assemblers,
unitigs graph cleaning Heuristics

Input data
20 Gbp spruce
[Birol 2013]

computationally intensive
bottlenecks at early stages

20 Gbp spruce and 22 Gbp pine

Previous assemblies

spruce: 2 days, 1380 cores, 4.3 TB RAM [Birol 2013]
pine: 3 months, 32 cores, 0.8 TB RAM [Zimin 2014]
This work:

improve performance by orders of magnitude (up to compaction
step)

BCALM 2

Software for constructing and compacting de Bruijn graphs

Successor of BCALM 1 (single-threaded)

Parallel graph compaction is non-trivial, let's see why..

Parallel compaction, first attempt

Input k-mers

partitioned B o OIS
on disk, based mm = ———

ON MINIMIZErS mm w— ———

£ A L

1-thread
classical
compaction

minimizer of s:
smallest /-merin s
[Roberts et al, 2004]

€.g. (¢ = 2, lexicographical order)

TGACGGG
GACGGGT
ACGGGTC
CGGGT
GGGTCAG
GGTCAGA

Frequency ordering
— better repartition.
[RECOMB’14]

Compaction of partitions

partition

partition
AC
partition
Unitigs:
GTGATGA
ATGACC
ATGAACT

k-mers are partitioned w.r.t minimizer.
In this case, compacting all partitions returns exactly all the unitigs.

Compaction of partitions (2)

partition
AC
partition
Unitig:
GTGATGACC

This case indicates that partitions contain sub-strings of unitigs.
Those substrings need to be later merged.

Input k-mers

Parallel
partial
compac-
tion
algorithm

2-step strategy

Intermediate file

Unitigs

—

Parallel
glue
algorithm

—

10

Simple partitioning is not enough

Compacting partitions may create false unitigs (due to missing
edges).

AA partition

partition

A simple fix: put certain k-mers into two partitions.

x is a doubled kmer when
minimizer(x[1..k — 1]) # minimizer(x[2. .. k]).

11

BCALM 2’s partial compaction module

Doubled kmers
are inserted in
two partitions

| B | - | B |

-— —-— [__ B | -
_-— - —-— - - L
1-thread

classical

compaction

I [P I
I e ——

|

Lemma 1:
doubled k-mers
appear as
prefixes or
suffixes of
compacted
strings.

Lemma 2:
Gluing together
strings with
matching
doubled k-mers
yield unitigs.

12

Input k-mers

Parallel
partial
compac-
tion
algorithm

Big picture

Intermediate
sequences

Unitigs

—

Parallel
glue
algorithm

—

13

BCALM 2’s glue module

Input sequences

Cannot load all sequences in memory. Need again to partition.
Would like to have =————— e gnd == in the same partition.

Union-find Minimal perfect

of doubled kmers hash table

SO

Sequences of
each U-F class
are loaded
and glued
in parallel.

Uubh WNE
il
>WmO WO

14

BCALM 2’s glue module

Input sequences

Cannot load all sequences in memory. Need again to partition.
Would like to have =————— e gnd == in the same partition.

Union-find Minimal perfect

of doubled kmers hash table

—

ﬂ Rob Patro A
i me PHF library
@ o — here's the aweso sh cc

| as mer tfiont g gt Ub.CO / \Zkg/BB\ a
o me Zk (@ ayal \C k
@G\l'\\\au R R y

g rfect has!
:gsash - Bloom-filter pased minimal pe!

1 function library

Sequences of
each U-F class
are loaded
and glued
in parallel.

ﬁﬂ.ﬂﬂ%oﬂ

15

20 Gbp spruce and 22 Gbp pine

Previously,
spruce: 2 days, 1380 cores, 4.3 TB RAM (Abyss) [Birol 2013]
pine: 3 months, 32 cores, 0.8 TB RAM (MaSuRCA) [Zimin 2014]

BCALM 2 Pine Spruce

Time 8h25m 8hb52m

Memory 17 GB 31 GB

Unitigs 30.5 Gbp 56.0 Gbp

257 M 580 M

1.1/1.2 TB compressed reads
k = 61, abundance cut-off 7, 8/16 threads (pine/spruce)
k-mer counting time not included: 1 day, < 40 GB memory, DSK 2

16

Human dataset

Human NA18507 Bcalm2 Bcalm1 ABySS-P 1.9

Time 2h 13 h 6.5h
Memory 28GB 43 MB 89 GB
54 GB compressed reads
k = 55, abundance cut-off 3, 16 threads

k-mer counting time included in BCALM 1&2: 46 mins, 2 GB memory, DSK 2
Meraculous: 16 hours, < 1 TB [Georganas 2014]

17

Conclusion

Compacting de Bruijn graphs:
efficient

2 days for spruce, vs few CPU-years other methods
2 hours for human
2 GB memory per genome Gbp

useful module for lllumina assemblers
unitigs to replace k-mers in some applications

Observations:
bottleneck becomes k-mer counting again
not a data structure (construction algorithm, no queries)

Contact:
@RayanChikhi, @pashadag, @NP_Malfoy on Twitter

18

