
Compacting de Bruijn graphs
from sequencing data quickly

and in low memory

Rayan Chikhi (CNRS)

joint work with A. Limasset (ENS Rennes), P. Medvedev (Penn State)

ISMB 2016

1

de Bruijn Graph

sequence: GATTACATTACAA
k-mers: GAT
(k=3) ATT

TTA
...

nodes: k -mers (words of length k)
edges: exact suffix-prefix overlaps of length k − 1

GAT ATT TTA TAC

CAT

ACA CAA

- assembly of genomes, metagenomes
- variant calling
- RNA-seq assembly & quantification

2

Compacted de Bruijn Graph
non-compacted de Bruijn graph:

TCA CAT ATT TTG

TGG

TGC

GGT

GCG

GTA

CGA

TAA

GAA

AAC ACC CCG

Compacted de Bruijn graph:

TCATTG
TGGTAA

TGCGAA
AACCG

Each non-branching path becomes a single node (unitig).

- no loss of information
- less space

3

Steps of de Bruijn graph assemblers

k-mer counting

graph compaction

graph cleaning

Recent progress,
Stand-alone software
(KMC2, DSK2, Jellyfish2)

Integrated in assemblers,
high-memory or slow
This work

1.1 TB
reads.gz

Input data
20 Gbp spruce

[Birol 2013]

Integrated in assemblers,
Heuristics

700 GB
k-mers

30 GB
unitigs

.....

- computationally intensive
- bottlenecks at early stages

4

20 Gbp spruce and 22 Gbp pine

Previous assemblies

- spruce: 2 days, 1380 cores, 4.3 TB RAM [Birol 2013]
- pine: 3 months, 32 cores, 0.8 TB RAM [Zimin 2014]

This work:
improve performance by orders of magnitude (up to compaction
step)

5

BCALM 2

Software for constructing and compacting de Bruijn graphs

Successor of BCALM 1 (single-threaded)

Parallel graph compaction is non-trivial, let’s see why..

6

Parallel compaction, first attempt

Input k-mers
partitioned
on disk, based
on minimizers

1-thread
classical
compaction

minimizer of s:
smallest `-mer in s

[Roberts et al, 2004]

e.g. (` = 2, lexicographical order)

TGACGGG
GACGGGT
ACGGGTC
CGGGTCA
GGGTCAG
GGTCAGA

Frequency ordering
→ better repartition.
[RECOMB’14]

7

Compaction of partitions

GTGAT

TGATG

GATGA

ATGAC

AT
partition

TGACC

ATGAA

TGAAC

GAACT

 AC
partition

 AA
partition

Unitigs:

GTGATGA
ATGACC
ATGAACT

k -mers are partitioned w.r.t minimizer.
In this case, compacting all partitions returns exactly all the unitigs.

8

Compaction of partitions (2)

GTGAT

TGATG

GATGA

ATGAC

AT
partition

TGACC

 AC
partition

Unitig:

GTGATGACC

This case indicates that partitions contain sub-strings of unitigs.
Those substrings need to be later merged.

9

2-step strategy

Parallel
glue
algorithm

Parallel
partial
compac-
tion
algorithm

Intermediate fileInput k-mers Unitigs

10

Simple partitioning is not enough

Compacting partitions may create false unitigs (due to missing
edges).

GTGAC

TGACG

GACGA

ACGAA

ACGAC

CGAAG

 AC
partition

AA partition

- A simple fix: put certain k -mers into two partitions.
- x is a doubled kmer when

minimizer(x [1..k − 1]) 6= minimizer(x [2 . . . k]).

11

BCALM 2’s partial compaction module

Doubled kmers
are inserted in
two partitions

1-thread
classical
compaction

Lemma 1:
doubled k -mers
appear as
prefixes or
suffixes of
compacted
strings.

Lemma 2:
Gluing together
strings with
matching
doubled k -mers
yield unitigs.

12

Big picture

Parallel
glue
algorithm

Parallel
partial
compac-
tion
algorithm

Intermediate
sequences

Input k-mers Unitigs

13

BCALM 2’s glue module

1
2
3
4
5

Minimal perfect
hash table

Union-find
of doubled kmers

A B

C
B
C
B
A

Input sequences

C

Cannot load all sequences in memory. Need again to partition.
Would like to have , and in the same partition.

Sequences of
each U-F class
are loaded
and glued
in parallel.

CBA

14

BCALM 2’s glue module

1
2
3
4
5

Minimal perfect
hash table

Union-find
of doubled kmers

A B

C
B
C
B
A

Input sequences

C

Cannot load all sequences in memory. Need again to partition.
Would like to have , and in the same partition.

Sequences of
each U-F class
are loaded
and glued
in parallel.

CBA

15

20 Gbp spruce and 22 Gbp pine
Previously,
spruce: 2 days, 1380 cores, 4.3 TB RAM (Abyss) [Birol 2013]
pine: 3 months, 32 cores, 0.8 TB RAM (MaSuRCA) [Zimin 2014]

BCALM 2 Pine Spruce

Time 8 h 25 m 8 h 52 m

Memory 17 GB 31 GB

Unitigs 30.5 Gbp 56.0 Gbp

257 M 580 M

1.1/1.2 TB compressed reads
k = 61, abundance cut-off 7, 8/16 threads (pine/spruce)
k -mer counting time not included: 1 day, ≤ 40 GB memory, DSK 2

16

Human dataset

Human NA18507 Bcalm 2 Bcalm 1 ABySS-P 1.9

Time 2 h 13 h 6.5 h

Memory 2.8 GB 43 MB 89 GB

54 GB compressed reads
k = 55, abundance cut-off 3, 16 threads
k -mer counting time included in BCALM 1&2: 46 mins, 2 GB memory, DSK 2
Meraculous: 16 hours, ≤ 1 TB [Georganas 2014]

17

Conclusion

Compacting de Bruijn graphs:
- efficient

I 2 days for spruce, vs few CPU-years other methods
I 2 hours for human
I 2 GB memory per genome Gbp

- useful module for Illumina assemblers
- unitigs to replace k -mers in some applications

Observations:
- bottleneck becomes k -mer counting again
- not a data structure (construction algorithm, no queries)

Contact:
- @RayanChikhi, @pashadag, @NP_Malfoy on Twitter

18

