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de Bruijn Graph

sequence: GATTACATTACAA
k-mers: GAT
(k=3) ATT
TTA

nodes: k-mers (words of length k)
edges: exact suffix-prefix overlaps of length k — 1

Py

GAT =P ATT mmdpy TTA =mmps TAC === ACA === CAA

assembly of genomes, metagenomes
variant calling
RNA-seq assembly & quantification



Compacted de Bruijn Graph

non-compacted de Bruijn graph:

TGG—GGT—GTA—TAA
TCA—CAT—ATT—TTG AAC—ACC—CCG
TGC—GCG—CGA—GAA

Compacted de Bruijn graph:

. TGGTAA  _
TCATTG =78 . AACCG
TGCGAA

Each non-branching path becomes a single node (unitig).

no loss of information
less space



Steps of de Bruijn graph assemblers

Recent progress,
1.1 TB k-mer counting Stand-alone software

reads.gz (KMC2, DSK2, Jellyfish2)

‘ i, Integrated in assemblers,
700 GB graph compaction| high-memory or slow
k-mers This work

v

30 GB ) , Integrated in assemblers,
unitigs graph cleaning Heuristics

Input data
20 Gbp spruce
[Birol 2013]

computationally intensive
bottlenecks at early stages



20 Gbp spruce and 22 Gbp pine

Previous assemblies

spruce: 2 days, 1380 cores, 4.3 TB RAM [Birol 2013]
pine: 3 months, 32 cores, 0.8 TB RAM [Zimin 2014]
This work:

improve performance by orders of magnitude (up to compaction
step)



BCALM 2

Software for constructing and compacting de Bruijn graphs

Successor of BCALM 1 (single-threaded)

Parallel graph compaction is non-trivial, let's see why..



Parallel compaction, first attempt

Input k-mers

partitioned B o OIS
on disk, based mm = ———

ON MINIMIZErS mm w— ———

£ A L

1-thread
classical
compaction

minimizer of s:
smallest /-merin s
[Roberts et al, 2004]

€.g. (¢ = 2, lexicographical order)

TGACGGG
GACGGGT
ACGGGTC
CGGGT
GGGTCAG
GGTCAGA

Frequency ordering
— better repartition.
[RECOMB’14]



Compaction of partitions

partition

partition
AC
partition
Unitigs:
GTGATGA
ATGACC
ATGAACT

k-mers are partitioned w.r.t minimizer.
In this case, compacting all partitions returns exactly all the unitigs.



Compaction of partitions (2)

partition
AC
partition
Unitig:
GTGATGACC

This case indicates that partitions contain sub-strings of unitigs.
Those substrings need to be later merged.



Input k-mers

Parallel
partial
compac-
tion
algorithm

2-step strategy

Intermediate file

Unitigs

—

Parallel
glue
algorithm

—

10



Simple partitioning is not enough

Compacting partitions may create false unitigs (due to missing
edges).

AA partition

partition

A simple fix: put certain k-mers into two partitions.

x is a doubled kmer when
minimizer(x[1..k — 1]) # minimizer(x[2. .. k]).
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BCALM 2’s partial compaction module

Doubled kmers
are inserted in
two partitions

| B | - | B |

_-— —-_— [ __ B | -
_-— - —-— - - L
1-thread

classical

compaction

I [ P I
I e ——

|

Lemma 1:
doubled k-mers
appear as
prefixes or
suffixes of
compacted
strings.

Lemma 2:
Gluing together
strings with
matching
doubled k-mers
yield unitigs.
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Input k-mers

Parallel
partial
compac-
tion
algorithm

Big picture

Intermediate
sequences

Unitigs

—

Parallel
glue
algorithm

—
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BCALM 2’s glue module

Input sequences

Cannot load all sequences in memory. Need again to partition.
Would like to have =————— e gnd == in the same partition.

Union-find Minimal perfect

of doubled kmers hash table

SO

Sequences of
each U-F class
are loaded
and glued
in parallel.
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BCALM 2’s glue module

Input sequences

Cannot load all sequences in memory. Need again to partition.
Would like to have =————— e gnd == in the same partition.

Union-find Minimal perfect

of doubled kmers hash table
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20 Gbp spruce and 22 Gbp pine

Previously,
spruce: 2 days, 1380 cores, 4.3 TB RAM (Abyss) [Birol 2013]
pine: 3 months, 32 cores, 0.8 TB RAM (MaSuRCA) [Zimin 2014]

BCALM 2 Pine Spruce

Time 8h25m 8hb52m

Memory 17 GB 31 GB

Unitigs  30.5 Gbp 56.0 Gbp

# 257 M 580 M

1.1/1.2 TB compressed reads
k = 61, abundance cut-off 7, 8/16 threads (pine/spruce)
k-mer counting time not included: 1 day, < 40 GB memory, DSK 2
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Human dataset

Human NA18507 Bcalm2 Bcalm1 ABySS-P 1.9

Time 2h 13 h 6.5h
Memory 28GB 43 MB 89 GB
54 GB compressed reads
k = 55, abundance cut-off 3, 16 threads

k-mer counting time included in BCALM 1&2: 46 mins, 2 GB memory, DSK 2
Meraculous: 16 hours, < 1 TB [Georganas 2014]
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Conclusion

Compacting de Bruijn graphs:
efficient

2 days for spruce, vs few CPU-years other methods
2 hours for human
2 GB memory per genome Gbp

useful module for lllumina assemblers
unitigs to replace k-mers in some applications

Observations:
bottleneck becomes k-mer counting again
not a data structure (construction algorithm, no queries)

Contact:
@RayanChikhi, @pashadag, @NP_Malfoy on Twitter
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