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Introduction

In April 2016, I was offered to give a set of mini-lectures at the Séminaire de Géométrie et Sin-
gularités at IRMAR, on the simplification theory for differential polynomial systems. A set of
mini-lectures is not just a long talk and the audience may want to get more than a flavour of the
topic. However, the topic is really large and, if we really enter details, the allocated time is likely
to be elapsed before any interesting notion gets addressed.

Actually, I teach computer science and numerical analysis in an Engineering School and this
situation is classical . . . at least for scientific courses. I have thus decided to proceed as I do at
school: write every lecture as one could dream it, if we had no strong constraint on the allocated
time and on the freshness of students. Afterwards, in front of students, real lectures are, somewhat,
the “trailers” of the chapters.

Thus, every chapter of this document is thought as a lecture. It addresses a single key ques-
tion and tries to stress what the issue is, with the help of the computer algebra MAPLE package
DifferentialAlgebra [1]. I have tried also to design chapters so that they can be read as inde-
pendently as possible, summarizing whenever it seemed reasonable to do it, at the beginning, some
notions that are detailed in former chapters. As for lecture notes, I have restricted citations to
the books and papers that I have actually used to write the chapters. In a survey paper, I would
certainly have cited much more people.

Quite often, I rewrite lecture notes after the actual lectures, in the spirit of Stewart Afternotes
on Numerical Analysis [5]. However, the simplification theory in differential algebra is much less
taught than numerical analysis and the title of these Afternotes on Differential Algebra expresses
a wish rather than a fact. Indeed, I think it would be quite important to have good “Afternotes”
on Ritt and Kolchin differential algebra since I do not know any good introductory text to enter
the topic. The book of Kolchin [2] is a very important reference book but is definitely not an
introductory text. Ritt books [3, 4] are a good starting point but they were written quite some
time ago and, for that reason, miss many important developments and clarifications which arose
later. Besides them, there are also many research papers and PhD theses but I find them not so
easy to read either. Indeed, there is something in differential algebra which makes it difficult to
write simply.

Concerning the content, I have focused on the theory of regular differential chains, which are a
modern variant of Ritt characteristic sets. Lectures 2, 3 and 4 address non-differential commutative
algebra key issues on regular chains. This is necessary since systems of polynomial equations are
particular cases of systems of differential polynomial equations. Lectures 5, 7, 6 and 9 address
differential issues. Lectures 10 and 11 apply the theory to applications. A dependency graph
between chapters is given in Figure 1 but, as mentioned before, readers should feel free to start
with any chapter.
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Chapter 1

Conventions and Preliminaries

The first section lists a few conventions applied in these lecture notes. The second one focuses on
an ubiquitous ideal construct: the saturation of an ideal by a multiplicative family.

1.1 Conventions
These lecture notes contain many different theorems, propositions and lemmas. Some of them are
the object of the course while some others are classical results, recalled for the convenience of the
reader. By convention, all results falling in the first class are “propositions” while all “theorems”
and “lemmas” are recalled classical results.

All rings are commutative, involve an identity and have characteristic zero. Domains are rings
which are free of zero-divisors.

An element a of a ring R is a zero-divisor if there exists some nonzero b ∈ R such that a b = 0.
Therefore zero is a zero-divisor [3, I, 5, page 8]. An element a which is not a zero-divisor of R is
said to be a regular element of R.

Many propositions involve statements such as “a polynomial f is zero (or a zero-divisor) in
R/A (R being a ring, A being an ideal of R) if and only if f is reduced to zero (by some reduction
process)”. The word “zero” is used twice, here, but has different meanings. The expression “f
is zero in R/A” should actually be written “the image of f by the canonical ring homomorphism
R → R/A is zero” or, “f belongs to the ideal A”. Similarly, the expression “f is a zero-divisor in
R/A” should actually be written “the image of f by the canonical ring homomorphism R → R/A
is a zero-divisor” or, “f is a zero-divisor modulo the ideal A”. These are the properties for which we
want a decision procedure: testing zero needs not be obvious in this context. The other expression
“f is reduced to zero” means that the reduction process, which is a computational procedure,
transforms f to zero, syntactically: in this context, testing zero is straightforward.

1.2 The Saturation
Let R be a ring.

An ideal p is said to be prime if the residue class ring R/p is a domain or — this is equivalent
— if a b ∈ p implies a ∈ p or b ∈ p.

An ideal q is said to be primary if all zero-divisors present in the residue class ring R/q are
nilpotent or — this is equivalent — if a b ∈ q and a /∈ q imply that there exists some nonnegative
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integer e such that be ∈ q.
The radical of a primary ideal q is a prime ideal p =

√
q, called the associated prime ideal of q.

In these lecture notes, a very important operation on ideals is the saturation of an ideal A by
some h ∈ R (more precisely, by the multiplicative family of R generated by h). It is the ideal

A : h∞ = {f ∈ R | ∃ d ≥ 0 , hd f ∈ A} .

We have A ⊂ A : h∞. This construct somehow encodes the “division by h” since f ∈ A : h∞
whenever h f ∈ A : h∞.

It is important to study the behaviour of the saturation over primary ideals and intersections
of primary ideals. Let q be a primary ideal and p =

√
q be its associated prime ideal. Then

• q : h∞ = R if and only if h ∈ p,

• q : h∞ = q if and only if h /∈ p.

Let

A = ∩ri=1qi , (with pi =
√
qi) (1.1)

be a representation of A as a finite intersection of primary ideals. From the above remarks, one
sees that A : h∞ is the intersection of the primary ideals qi such that h /∈ pi, for 1 ≤ i ≤ r. If all
prime ideals pi contain h, then the intersection is empty and A : h∞ = R.

To summarize, the saturation by h has the effect of removing from (1.1) the primary ideals
whose associated prime ideals contain h.

Therefore, if A is an intersection of primary ideals whose associated prime ideals share a common
property then, provided that the intersection is not empty, A :h∞ is also an intersection of primary
ideals whose associated prime ideals share this same property. In these lecture notes, we will
encounter two important cases:

1. the case of unmixed ideals i.e. ideals whose associated primes all have the same dimension,

2. the case of radical ideals i.e. ideals whose primary components are prime ideals.

The representation (1.1) is said to be irredundant if 1) qi ̸⊂ qj and, 2) qi∩ qj is not primary, for
1 ≤ i < j ≤ r. In such a case, the prime ideals pi are called the associated prime ideals of A and
the set of the zero-divisors of R/A is the union of the associated prime ideals of A (it is Condition 1
which is important, here).

This remark holds if R is a Nötherian ring, since every ideal of R has an irredundant represen-
tation (1.1). See [3, IV, Corollary 3 to Theorem 11, page 214]. However, it may hold also if R is not
Nötherian. We will encounter such a situation in the case of R being a differential polynomial ring,
where general differential ideals have no representation (1.1) but every radical differential ideal A
is an irredundant intersection of prime differential ideals. The set of the zero-divisors of R/A is
then the union of these prime differential ideals.

This remark has two consequences, related to the saturation. Given any ideal A and any h ∈ R,

1. h is a regular element (i.e. is not a zero-divisor) in R/A : h∞,

2. h is a regular element of R/A if and only if A = A : h∞.
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Saturations can also be presented via localizations. Let h be an element of R and M the
multiplicative family that it generates. Let RM be the ring of all quotients1 a/m such that a ∈ R
and m ∈ M [3, IV, 9, page 221] and φ be the ring homomorphism R → RM . Then, the ideal of
RM generated by φ(A) is the extended ideal Ae and the ideal φ−1(Ae), the contracted ideal Aec, is
equal to A : h∞. Some of the properties mentioned above are then given in [3, IV, 10, Theorem 15,
page 223 and Theorem 17, page 225].

Saturations are also related to the Hilbert Nullstellensatz [3, VII, 3, Theorem 14, page 164]. Let
R be a polynomial ring and consider a system p1 = · · · = pn = 0, h ̸= 0 of polynomial equations
and inequations. Then

√
(p1, . . . , pn) : h∞ is the ideal of all the polynomials that vanish over the

solution set of the polynomial system (taken in the algebraic closure of the ground field of R).

1.3 The Pseudodivision
Let R be a ring, x be an indeterminate, f and g ̸= 0 be two polynomials of R[x]

f = am xm + · · ·+ a1 x+ a0 , g = bn x
n + · · ·+ b1 x+ b0 .

If bn is not an invertible element of r then the Euclidean division of f by g may not be possible.
However, it is always possible to carry out the pseudodivision of f by g, which is a close variant [2,
6, 5, page 302]. The pseudoremainder r = prem(f, g, x) and the pseudoquotient q = pquo(f, g, x)
are defined as follows:

• if m < n then r = f and q = 0;

• if m ≥ n then (r, q) is the unique pair of polynomials of R[x] such that deg r < n, deg q =
m− deg r and

bm−n+1
n f = g q + r .

The pseudodivision is connected to the saturation because, if r = 0 then f ∈ (g) : b∞n .

1.4 The Resultant
This section is much inspired from [1, 4.2, pages 105-109]. A complete and precise presentation
of resultants would be much too long for these notes. This section only states the properties
of resultants which are actually needed for the following chapters. Let R be a ring, x be an
indeterminate, f and g be two polynomials of R[x]

f = am xm + · · ·+ a1 x+ a0 , g = bn x
n + · · ·+ b1 x+ b0 .

If f or g is zero, then the resultant of f and g is taken to be zero. Assume f and g are nonzero.
Then, the resultant of f and g is the determinant of the Sylvester matrix S(f, g) of f and g, which

1We adopt here the notation of Zariski and Samuel. With a more modern terminology, RM would be denoted
h−1 R, i.e. the ring R localized at h.
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is the following matrix, with dimensions (m+ n)× (m+ n).

S(f, g) =



am · · · · · · · · · · · · a0 0 · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . 0
0 · · · 0 am · · · · · · · · · · · · a0
bn · · · · · · · · · b0 0 · · · · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . . . . ...

... . . . . . . . . . 0
0 · · · · · · 0 bn · · · · · · · · · b0


Assume f is nonzero. The particular case n = 0 (i.e. g = b0) will show up in the following

chapters. Then, the Sylvester matrix S(f, g) is a diagonal matrix of dimensions m×m with b0 on
its diagonal and res(f, g, x) = bm0 .

Assume f and g are nonzero. Any two polynomials u = un−1 x
n−1 + · · · + u1 x + u0 and

v = vm−1 x
m−1 + · · · + v1 x + v0 of degrees n − 1 and m − 1 can be identified with the vector

(un−1 · · ·u0 vm−1 · · · v0)T . The Sylvester matrix above is then the transpose of the matrix of the
linear mapping (u, v) 7→ u f + v g. The following Theorem is [1, 4.2, Proposition 4.15, page 106].

Theorem 1 Assume R is a domain and let K denote its fraction field. Let f and g be two
polynomials of R[x], not both zero. Then res(f, g, x) = 0 if and only if f and g have a common
factor in K[x].

Proof The Theorem obviously holds if one of the polynomials is zero. Assume both are nonzero.
By the above remark, res(f, g, x) = 0 if and only if there exists nonzero polynomials u, v ∈ K[x]
with degu < n and deg v < m such that u f + v g = 0. Thus res(f, g, x) = 0 if and only if f and g
have a common multiple in K[x] of degree strictly less than m+n, hence a common factor in K[x].
□

The following Theorem is adapted from [1, 4.2, Lemma 4.17, page 107].

Theorem 2 Let R be a domain, f and g be two polynomials in R[x]. Assume g is nonzero and
let r = ct x

t + · · · + c1 x + c0 be the pseudoremainder of f by g. If f is zero or r is zero then
res(f, g, x) = res(g, r, x) = 0. Otherwise,

res(f, g, x) = (−1)mn bmax(0,m−t−(m−n+1)n)
n res(g, r, x) .

Proof If f is zero then r is zero and both resultants are zero. Assume f is nonzero. If r is zero,
then res(g, r, x) = 0 and there exists a polynomial q ∈ R[x], such that bm−n+1

n f = q g. Thus f
is a multiple of g in K[x], where K denotes the fraction field of R. By Theorem 1, we have
res(f, g, x) = 0.

Assume f and r are nonzero. If m < n then r = f , m = t and max(0,m− t−(m−n+1)n) = 0.
The matrix S(g, r) is obtained from S(f, g) by performing mn exchanges of rows. We thus have
res(f, g, x) = (−1)mn res(g, r, x) and the Theorem holds. Assume m ≥ n. The Sylvester matrix
S(g, r) can be obtained from S(f, g) by performing the following steps.
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Step 1. Form the Sylvester matrix S(bm−n+1
n f, g). Since this amounts to multiply the n first

rows of S(f, g) by bm−n+1
n , we have b

(m−n+1)n
n res(f, g, x) = det(S(bm−n+1

n f, g)).
Step 2. Form the Sylvester matrix of r and g as if we had t = m. Let us denote S∗(r, g) this

matrix (see below). Let q denote the pseudoquotient so that bm−n+1
n f − g q = r. Since adding to a

row a multiple of another row does not change the determinant, we see that det(S(bm−n+1
n f, g)) =

det(S∗(r, g)).

S∗(r, g) =



0 0 ct · · · · · · c0 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . 0
0 · · · · · · · · · 0 ct · · · · · · c0
bn · · · · · · · · · b0 0 · · · · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . . . . ...

... . . . . . . . . . 0
0 · · · · · · 0 bn · · · · · · · · · b0


Step 3. Perform mn exchanges of rows, yielding the matrix S∗(g, r) (see below). We have

det(S∗(r, g)) = (−1)mn det(S∗(g, r)). The Sylvester matrix S(g, r) appears as the (n+ t)× (n+ t)
submatrix of S∗(g, r) on the bottom-right corner.

S∗(g, r) =



bn · · · · · · · · · b0 0 · · · · · · 0

0
. . . . . . . . . ...

... . . . bn · · · · · · · · · b0 0 0

... . . . . . . . . . 0

0 · · · . . . 0 bn · · · · · · · · · b0
0 0 ct · · · · · · c0 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . 0
0 · · · · · · · · · 0 ct · · · · · · c0


Step 4. Developing the determinant of S∗(g, r) w.r.t. its m − t first columns, one obtains

det(S∗(g, r)) = bm−t
n S(g, r).

Combining all these formulas, the Theorem is proved. □

Corollary 1 Keep the same notations as Theorem 2. Assume g = b1 x+b0. Then res(f, g, x) = ±r.

Proof If the pseudoremainder r is zero then the Corollary is just a particular case of Theorem 2.
Assume r is nonzero. Then t = 0 and m − t − (m − n + 1)n = 0. According to Theorem 2, we
have res(f, g, x) = ± res(g, r, x). Since n = 1 and t = 0, the Sylvester matrix S(g, r) has dimensions
1× 1. Its determinant is r. □

The following Theorem is [1, 4.2, Proposition 4.18, page 108].
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Theorem 3 Let R be a ring. If f and g are nonzero polynomials of R[x] then there exists two
polynomials u, v ∈ R[x] with deg(u) < n and deg(v) < m such that res(f, g, x) = u f + v g.

Proof The proof is the one of [1, 4.2, Proposition 4.18, page 108].
Let S∗(f, g) be the matrix obtained from S(f, g) by replacing the elements of its last column

by xn−1 f, . . . , x f, f, xm−1 g, . . . , x g, g. In the particular case (m,n) = (3, 2), we get

S∗(f, g) =


a3 a2 a1 a0 x f
0 a3 a2 a1 f
b2 b1 b0 0 x2 g
0 b2 b1 b0 x g
0 0 b2 b1 g

 .

Developing the determinant w.r.t. the last column, it is clear that there exists two polynomials
u, v ∈ R[x] with deg(u) < n and deg(v) < m such that det(S∗(f, g)) = u f + v g.

The key idea is now that the determinant is a linear function of the last column of the matrix.
Over our example, the last column of S∗(f, g) is equal to the one of S(f, g) plus the vector

x f
f − a0
x2 g
x g

g − b0

 = x


a0
a1
0
b0
b1

+ x2


a1
a2
b0
b1
b2

+ · · ·+ x4


a3
0
b2
0
0

 .

If one replaces the last column of S∗(f, g) by one of the vectors occuring on the right-hand side
above, the determinant vanishes (the matrix has two identical columns). Coming back to the
general case, we see that

det(S∗(f, g)) = res(f, g, x) +
m+n−1∑

i=1

Di x
i

where the Di denote determinants all equal to zero. The proof is completed. □

The following Theorem is adapted from [1, 4.2, Proposition 4.20, page 109].

Theorem 4 Let R be a ring. Let f and g be two polynomials of R[x] such that am = 1 and m ≥ n.
Let ϕ : R → S be a ring homorphism, extending to a ring homomorphism R[x] → S[x]. Then
ϕ(res(f, g, x)) = res(ϕ(f), ϕ(g), x).

Proof If g is zero, then so is ϕ(g) and both resultants are zero. Assume g nonzero. Developing
the determinant of S(f, g) w.r.t. its last row, we see that any monomial of the resultant admits a
coefficient of g as a factor. Thus, if ϕ(g) is zero, i.e. if ϕ maps all the coefficients of g to zero, then
res(f, g, x) = 0 and the Theorem holds.

Assume g and ϕ(g) are nonzero. The ring homomorphism ϕ does not change am, which is equal
to 1. If it does not annihilate bn then S(f, g) = S(ϕ(f), ϕ(g)) and the Theorem is proved. Assume
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deg(ϕ(g)) = t < n. Then

ϕ(S(f, g)) =



1 · · · · · · · · · ϕ(a0) 0 · · · · · · 0

0
. . . . . . . . . ...

... . . . 1 · · · · · · · · · ϕ(a0) 0 0

... . . . . . . . . . 0

0 · · · . . . 0 1 · · · · · · · · · ϕ(a0)
0 0 ϕ(bt) · · · · · · ϕ(b0) 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . 0
0 · · · · · · · · · 0 ϕ(bt) · · · · · · ϕ(b0)



.

The Sylvester matrix S(ϕ(f), ϕ(g)) appears as the (m+ t)× (m+ t) submatrix of ϕ(S(f, g)) at the
bottom-right corner. Developing the determinant of ϕ(S(f, g)) w.r.t. its n− t first columns, we see
that ϕ(res(f, g, x)) = res(ϕ(f), ϕ(g), x). □
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Chapter 2

Ideals Defined by Triangular Sets are
Unmixed

This chapter aims at proving Proposition 4, which is necessary for proving many further results of
these lecture notes. However, for a casual reader, this chapter is probably one of the most difficult
to read because it is technical and addresses an issue which is not evident for a beginner. The
informal introduction below, which unfortunately suggests Proposition 4 only remotely, was used
to present differential elimination during a very first course. It should be easy to follow.

2.1 Informal Introduction
First we load the DifferentialAlgebra MAPLE package.
> with (DifferentialAlgebra):

The variable sys is assigned a system of polynomial PDE, in jet notation. The very same system,
written using Jacobi’s notation for partial derivatives, is assigned to sys diff. The equations
(the sign “= 0” is omitted but the polynomials are viewed as left hand-sides of equations) are
polynomials. The two differential indeterminates u and v represent unknown functions of the
two independent variables x and y. The constant 1 represents the constant function of the two
variables x and y, equal to 1. In commutative algebra, polynomials belong to polynomial rings. In
differential algebra [8, 5], differential polynomials belong to differential polynomial rings. Such a
differential polynomial ring is assigned to the R variable.
> R := DifferentialRing(derivations = [x,y], blocks = [[v,u]]);

R := differential_ring

> sys := [u[x]^2-4*u, u[x,y]*v[y]-u+1, v[x,x]-u[x]];
2

sys := [u[x] - 4 u, u[x, y] v[y] - u + 1, v[x, x] - u[x]]

> sys_diff := Equations(sys, R, notation=diff);
/ 2 \
|d | /d \

sys_diff := [|--- v(x, y)| - |-- u(x, y)|,
| 2 | \dx /
\dx /
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/ 2 \
| d | /d \ /d \2
|----- u(x, y)| |-- v(x, y)| - u(x, y) + 1, |-- u(x, y)| - 4 u(x, y)]
\dy dx / \dy / \dx /

There exists a notion of leading derivative of a differential polynomial. This notion is by no means
intrinsic. It is defined by an ordering (a ranking) on the set of all the derivatives of the differential
indeterminates. In the variable R above, a ranking was defined together with the more mathematical
differential polynomial ring. The following command returns the differential polynomials of sys in
“solved form” i.e. as equations, with the leading derivatives on the left hand-sides and differential
fractions on the right-hand sides.
> Equations(sys, R, solved);

-u + 1 2
[v[x, x] = u[x], u[x, y] = - ------, u[x] = 4 u]

v[y]

Just to show that rankings are by no means intrinsic, the variable Rbis is assigned the same
mathematical differential polynomial ring, with another ranking (look at the change on the block
list). In the solved form of sys, some other derivatives become leading derivatives.
> Rbis := DifferentialRing(derivations = [x,y], blocks = [v,u]);

Rbis := differential_ring

> Equations(sys, Rbis, solved);
-u + 1 2

[v[x, x] = u[x], v[y] = - -------, u[x] = 4 u]
u[x, y]

The following command shows that there exists an algorithm which takes as input 1) a system of
differential polynomials, 2) a ranking. It returns a list of regular differential chains. As one can
see, regular differential chains are sets of differential polynomials.
> ideal := RosenfeldGroebner(sys,R);

ideal := [regular_differential_chain]

> ideal := ideal[1]:
> Equations(ideal, solved);

-u[x] u[y] u + u[x] u[y] 2
[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,

u

2
u[y] = 2 u]

A regular differential chain permits to expand solutions of the initial system into formal power series,
from given initial values. The example is very particular because all its solutions are polynomials.
The commands below compute the solution, plug it in the input system and check the equation
evaluate to zero.
> iv := [u=c[0]^2, u[y]=sqrt(2)*c[0], u[x]=2*c[0], v=c[1], v[x]=c[2]];

2 1/2
iv := [u = c[0] , u[y] = 2 c[0], u[x] = 2 c[0], v = c[1], v[x] = c[2]]
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> sols := PowerSeriesSolution(ideal, 3, iv);
/ 1/2\
| 2 1/2 2 | 2

sols := [v(x, y) = c[1] + |1/2 c[0] 2 - ----| y + c[2] x + 1/2 c[0] y
\ 2 /

1/2 3 2 1/2 2 3
1/2 2 2 y x y 2 x y x

+ 2 c[0] x y + c[0] x + ------- + ---- + --------- + ----,
12 2 2 3

2
2 1/2 y 1/2 2

u(x, y) = c[0] + 2 c[0] y + 2 c[0] x + ---- + 2 x y + x ]
2

> expand (eval (sys_diff, sols));
[0, 0, 0]

Why do initial values look so complicated? Well, the differential equations state equalities between
functions of x and y. In particular, these equalities must be satisfied at the origin. The following
command shows the constraints that initial values must satisfy. Knowing that D[1](u) stands for
∂u/∂x, one sees that the constraints are obtained by stating that the regular differential chain
equations must be satisfied at the origin. Only the leading nonlinear equations need to be given.

> PowerSeriesSolution(conditions, ideal);
2 2

[[D[1](u)(0, 0) - 4 u(0, 0) = 0, D[2](u)(0, 0) - 2 u(0, 0) = 0],

[u(0, 0) <> 0, D[1](u)(0, 0) <> 0, D[2](u)(0, 0) <> 0]]

Much less obvious: every algebraic solution of the above system can be prolongated into a differen-
tial solution (a formal power series). This property holds for the regular differential chain but not
for the input system. From a theoretical point of view, it is due to the fact that regular differential
chains satisfy Rosenfeld’s Lemma [9].

The conditions on initial values involve inequations ( ̸= 0): the initials and separants of the
regular differential chain must not vanish at the origin. This condition is quite intuitive for initials,
since they are the polynomials which show up as denominators of the equations, in solved form.
Separants are the polynomials which show up as denominators of the proper derivatives of the
equations, in solved form.

> Tools:-Initial (ideal);
[1, 4 u, 1, 1]

> Tools:-Separant (ideal);
[1, 4 u, 2 u[x], 2 u[y]]

> Equations (Tools:-Differentiate (u[x]^2 - 4*u, y, R), R, solved);
2 u[y]

u[x, y] = ------
u[x]
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We have computed a regular differential chain from some input system. We have solved the regular
differential chain and obtained a solution for the input system. Do they have the same solutions?
Short answer: yes. This is due to the fact that they define (in some way) the same differential
ideal. The computation of formal power series solutions is strongly related to the computation of
some normal forms of differential fractions, modulo the differential ideal under consideration. In
our case (by opposition to the Gröbner bases theory), normal form computations raise two issues:
1) deciding membership to differential ideals, and 2) deciding zero-divisorship (i.e. non-regularity)
modulo differential ideals.

> NF1 := NormalForm (v[x,x,y], ideal);
u[x] u[y]

NF1 := 1/2 ---------
u

> NF2 := NormalForm (1/v[x,x,y], ideal);
u[x] u[y]

NF2 := 1/4 ---------
u

> NormalForm (NF1 * NF2, ideal);
1

To understand more precisely the ideas evocated in this section, we are going to study, in the
next sections, the structure of the non-differential ideals defined by regular differential chains. The
unmixedness property of these ideals permits to view any regular differential chain, such as our
example, as a triangular system of four monic polynomials (i.e. with initials all equal to 1) in a
polynomial ring in four indeterminates (vxx, vy, ux, uy), over a field of rational fractions (K(u)). This
is precisely what the following command illustrates and this will prove most helpful in Chapter 3.

> Equations (ideal, solved);
-u[x] u[y] u + u[x] u[y] 2

[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,
u

2
u[y] = 2 u]

2.2 The Issue
The rest of this talk is uniquely concerned by non-differential problems. We consider a triangu-
lar system A = {p1, . . . , pn} in a polynomial ring R = K[t1, . . . , tm, x1, . . . , xn]. The system is
triangular in the following sense: each polynomial pk introduces at least one variable, its leading
variable xk. Our introductory regular differential chain is a particular case of a triangular system

vxx − ux︸ ︷︷ ︸
p4

, 4u vy + ux uy u− ux uy︸ ︷︷ ︸
p3

, u2x − 4u︸ ︷︷ ︸
p2

, u2y − 2u︸ ︷︷ ︸
p1

,

by renaming (x1, x2, x3, x4) = (uy, ux, vy, vxx) and (t1) = (u). For each 1 ≤ k ≤ n, the initial of pk
is the leading coefficient of pk w.r.t. xk and the separant of pk is the polynomial sk = ∂pk/∂xk.
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To a triangular system A, we are going to associate some ideal A of R. Observe this ideal may
be equal to R. Assume this is not the case, i.e. that A is proper. We will address questions such
as: given some f ∈ R, is f zero? or a zero-divisor in R/A? Rather than working in the ring R, we
would like to work in the ring

R0 = K(t1, . . . , tm)[x1, . . . , xn]

which is obtained from R by inverting all nonzero polynomials of K[t1, . . . , tm].

The issue. We need first to prove that nonzero elements of K[t1, . . . , tm] are not zero-divisors in
R/A. This is a basic requirement, stated in [11, I, 19, page 42] — and related to the notion of the
total quotient ring of a ring. By [11, IV, 6, Corollary 3 to Theorem 11, page 214], we thus need to
prove that, if p is an associated prime ideal of A (isolated or imbedded), then p∩K[t1, . . . , tm] = (0).

A Note on the Lasker-Nöther Theorem. Isolated and imbedded associated primes are notions
strongly related to the Lasker-Nöther Theorem [11, IV, 4-5, pages 208-212].

Theorem 5 (Lasker-Nöther Theorem)
In a Nötherian ring R, every ideal a can be represented by an irredundant primary decomposition

a = q1 ∩ · · · ∩ qr. Irredundant means that, for i ̸= j, 1) qi ̸⊂ qj and 2) qi ∩ qj is not primary.

The prime ideals pi =
√
qi are the associated prime ideals of a. The associated primes of a

which contain no other associated prime are said to be isolated. The ones which are not isolated
are said to be imbedded.

In R[x, y], take a = (x2, x y). Then a = (x) ∩ (x2, y) is an irredundant primary decomposition
of a. The associated prime ideals are (x) (isolated) and (x, y) (imbedded).

In polynomial rings, an ideal defines an algebraic variety. Isolated primes correspond to irre-
ducible components of the variety (the line x = 0). Imbedded primes correspond to embedded
varieties (the point (x, y) = (0, 0)).

The Ideal Under Consideration. Let h denote either the product of the initials or the product
of the separants of the polynomials pk. We are going to handle both cases in the same proof. We
could actually even handle more cases since the only property we actually need is that, if p is an
associated prime ideal of the ideal A, then the polynomials pk cannot completely degenerate in R/p
(see the proof of Proposition 2 for more details).

Let thus A denote the ideal (A) : h∞ (the ideal generated by A, saturated by the multiplicative
family generated by h) i.e.

A = {f ∈ R | ∃ d ≥ 0, hd f ∈ (A)}

Sketch of Proof. The sketch of proof of Proposition 4 is as follows:

1. Consider A′ = (A, hxn+1 − 1︸ ︷︷ ︸
pn+1

) in R′ = R[xn+1].
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2. Use the “principal ideal theorem” [11, IV, 9, Theorem 30, page 240] or its reformulation [11,
VII, 7, Theorem 22, page 196] and the structure of h in order to prove that, if p′ is an isolated
prime of A′ then dim p′ = m and p′ ∩K[t1, . . . , tm] = (0).

3. Use then Macaulay’s unmixedness theorem [11, VII, 8, Theorem 26, page 203] in order to
prove that all associated prime ideals of A′ are isolated.

4. Last, use the behaviour of the irredundant primary decomposition of A′ under passage to
residue class ring (pn+1) [11, IV, 5, page 213] and contraction (with respect to the localization
at h) [11, IV, 10, Theorem 17, page 225]. Proposition 4 is proved.

2.3 The Result
Almost all references are towards the Commutative Algebra of Zariski and Samuel [11]. To simplify
proof checking, the key theorems used from [11] are restated almost as is. I have only shortened
some of them and often renamed rings and ideals to make correspondences easier to state.

Denote φ the localization at h i.e. the ring homomorphism

R
φ−−−→ h−1R .

With the terminology of Zariski and Samuel, h−1R = RM where M denotes the multiplicative
family generated by h. Extended and contracted ideals [11, IV, 8] are taken with respect to the
ring homomorphism φ, and the ideal A is a contracted ideal i.e. A = Aec (see Chapter 1). The
extended ideal Ae is just the ideal generated by A/1 = {p1/1, . . . , pn/1} in the localized ring h−1R.
Let us now introduce the ring R′ = R[xn+1], the polynomial pn+1 = hxn+1 − 1 and the ideal
A′ = (A, pn+1) of R′. Let π denote the ring homomorphism (quotient of R′ by the ideal (pn+1))

R′ π−−−→ R′/(pn+1) .

These two constructs are related by the ring isomorphism:

h−1R ≃ R′/(pn+1) .

Indeed, every element of h−1R is a fraction f/hd with f ∈ R and corresponds to the equivalence
class of f xdn+1 modulo (pn+1). The two ideals Ae and πA′ are the same ideal, since they share a
same generating family: A.

Proposition 1 The ideal A is proper if and only if the ideal A′ is proper.

Proof Both ideals contain 1 if and only if some power of h belongs to the ideal (A). □

In the sequel, we assume A′ is proper. Let us recall [11, VII, 7, Theorem 22, page 196], which is
nothing but a reformulation, using the terminology of the dimension theory of [11, IV, 9, Theorem
30, page 240]. It is a form of the “principal ideal theorem”.

Theorem 6 If S is a finite integral domain, of transcendence degree r, and B is a proper ideal
in S wich admits a basis of s elements, then every isolated prime ideal of B has dimension ≥ r− s.
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Proposition 2 We have dimA′ = m. If p′ is an isolated prime ideal of A′ then dim p′ = m and
p′ ∩K[t1, . . . , tm] = (0).

Proof Applying Theorem 6 (the principal ideal theorem) with (S, r, s,B) = (R′, n+m+1, n+1,A′),
we see that every isolated prime ideal of A′ has dimension ≥ m. Since the dimension of an ideal is
the maximum of the dimensions of its associated prime ideals, we see that dimA′ ≥ m.

We now claim that dimA′ ≤ m. Let p′ be an associated prime ideal of A′ and consider some
polynomial pi ∈ A. Dropping the index i for legibility, let us write

p = ad x
d + ad−1 x

d−1 + · · ·+ a1 x+ a0 .

Because of the triangular nature of A, the coefficients

ad, ad−1, . . . , a0 ∈ K[t1, . . . , tm, x1, . . . , xi−1] .

We have p ∈ p′ and, depending on the definition of h, either

ad /∈ p′ , or d ad x
d−1 + (d− 1) ad−1 x

d−2 + · · ·+ a1 /∈ p′ .

This implies that, in R′/p′, the polynomial p cannot become a trivial relation: in the first case, the
degree of p cannot decrease while, in the second, it cannot decrease down to zero. Therefore x =
xi must be algebraic over t1, . . . , tm, x1, . . . , xi−1 in R′/p′. Putting this remark in an inductive
argument, we see that x1, . . . , xn are algebraic over t1, . . . , tm in R′/p′. Thus dim p′ ≤ m.

Combining both inequalities, we have dim p′ = m for all isolated prime ideals of A′ hence
dimA′ = m.

Considering again the arguments developed in the claim, we immediately see also that, if p′ is
an isolated prime of A′ then p′ ∩K[t1, . . . , tm] = (0). □

Let us recall the following theorem, due to Macaulay [11, VII, 13, Theorem 26, page 203]. An
ideal is said to be unmixed if all its associated prime ideals have the same dimension [11, VII, 7,
page 196].

Theorem 7 Let B be an ideal in S = K[y1, . . . , yr] of dimension r − s. If B is generated by s
elements, then B is unmixed.

Proposition 3 The ideal A′ is unmixed. If p′ is an associated prime ideal of A′ then dim p′ = m
and p′ ∩K[t1, . . . , tm] = (0).

Proof It is an immediate corollary to Theorem 7 (Macaulay’s unmixedness Theorem) and Propo-
sition 2. □

Let us now recall an important information, stated as a remark [11, IV, 5, Remark concerning
passage to a residue class ring, page 213].

Let S be a ring, a and b two ideals of S such that b ⊂ a. [. . . ]. Consequently, if a = ∩iqi
is an irredundant primary representation of a and if pi =

√
qi, then a/b = ∩i(qi/b) is

an irredundant primary representation of a/b, and the pi/b are the associated prime
ideals of a/b.
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Let us also recall [11, IV, 10, Theorem 17, page 225]. In this theorem, S is a Nötherian ring
and the ring homomorphism with respect to which contractions and extensions are considered is
the localization at some multiplicative family M . We are going to apply it with M being the set
of all powers of h.

Theorem 8 Let a be an ideal of S admitting an irredundant primary representation a = ∩si=1qi.
Suppose that, for 1 ≤ i ≤ r, we have qi ∩M = ∅, and that, for r+1 ≤ j ≤ s, we have qj ∩M ̸= ∅.
Then ae = ∩ri=1qi

e is an irredundant primary representation of ae, and we have aec = ∩ri=1qi, that
is, aec is the intersection of those primary components of a which are disjoint from M .

In the last sentence, the theorem does not say that aec = ∩ri=1qi is an irredundant primary
representation of aec but this is obvious, since a sub-intersection of an irredundant primary repre-
sentation must be irredundant.

Proposition 4 The ideal A is unmixed. If p is an associated prime ideal of A then dim p = m and
p ∩K[t1, . . . , tm] = (0).

Proof Let A′ = ∩ri=1q
′
i be an irredundant primary representation of A′ and p′i =

√
q′i. Let us

apply the “remark concerning passage to a residue class ring” with (S, a, b) = (R′,A′, (pn+1)) and
recall the definition of the π ring homomorphism. We see that πA′ = ∩ri=1(π q′i) is an irredundant
primary representation of πA′ and that the π p′i are the associated prime ideals of πA′.

Recall Proposition 3 and observe that the π ring homomorphism removes one indeterminate and
one polynomial. For each prime ideal π p′ (dropping the index i), one thus still has dimπ p′ = m
and (with a slight abuse of notation) π p′ ∩K[t1, . . . , tm] = (0).

Recall the ring isomorphism between h−1R and R′/(pn+1). We have A = Aec and Ae = πA′. Let
us apply Theorem 8 with (S, a,M) = (R,A, {hd | d ≥ 0}). Then A = ∩ri=1(π q′i)

c is an irredundant
primary representation of A. A polynomial f belongs to some (π q′)c (dropping the index i) if, and
only if, the fraction f/1 ∈ π q′. Thus dim(π p′)c = m and (π p′)c ∩K[t1, . . . , tm] = (0).

The ideal A is thus unmixed. Its associated prime ideals all have dimension m and do not
contain any nonzero element of K[t1, . . . , tm]. □

2.4 Concluding Remarks
Proposition 4 is not mentionned in [5].

There were quite some papers mentioning the unmixedness properties of algebraic varieties
defined by triangular sets or — this is equivalent — of radicals of ideals defined by triangular sets.
The earlier reference I know is [10, page 59]. Let me mention also [4, 3]. Let us stress the fact that
these results do not address the question of the possible imbedded associated prime ideals.

As far as I know, Sally Morrison was the first one to point out the issue mentioned in Section 2.2,
the importance of Macaulay’s unmixedness theorem and to provide a complete proof in the case of
ideals saturated by separants. See [6, 7].

The proof exposed here, covering all cases in the same argument (Proposition 2), is essentially
the one given in [2, 1]. I have reorganized it to make it simpler to understand and I have added the
remark that Proposition 4 can be applied to more cases than just the case of h being the product
of the initials, or the product of the separants.
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Chapter 3

Regular Chains

Regular differential chains are particular cases of regular chains. This chapter aims at proving
Proposition 5.

3.1 Informal Introduction
A regular chain is a triangular system of R = K[t1, . . . , tm, x1, . . . , xn] which can be transformed
into an equivalent monic triangular system in R0 = K(t1, . . . , tm)[x1, . . . , xn]. Beware to the fact
that the transformation must be bottom up and, at each step, must only involve already processed
polynomials. From an algorithmic point of view, this condition is simple and natural, though it
looks so complicated when stated formally in Definition 1.

Let us consider a triangular system A = {p1, p2} of the polynomial ring R = K[t1, x1, x2]. Let
us view it as a polynomial system of K(t1)[x1, x2].

> p1 := t[1]*x[1]^2 - x[1];
2

p1 := t[1] x[1] - x[1]

> p2 := (x[1]-1)*x[2]^3 - x[1]*x[2] + t[1];
3

p2 := (x[1] - 1) x[2] - x[1] x[2] + t[1]

The initial of p1 ∈ K(t1). Let us invert it and obtain a monic version of p1, denoted p01.

> p01 := collect (p1 / t[1], x[1]);
2 x[1]

p01 := x[1] - ----
t[1]

What about the initial i2 = x1 − 1 of p2? It depends on x1. We want to know if it is invertible
modulo the already processed polynomials, i.e. p1 or p01 (it is equivalent). We may use the extended
Euclidean algorithm for computing a Bézout identity u (x1− 1) + v p1 = (x1− 1)∧ p1 between this
initial and p1. We will see later that we might have used resultants.

> gcdex (x[1]-1, p1, x[1], 'u', 'v');
1
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The gcd is equal to 1, proving that the initial is invertible in R/(p01). Let us have a look to the
cofactors u (the inverse of the initial) and v. They are polynomials in K(t1)[x1], since they were
computed using polynomials in K(t1)[x1].

> 'u' = u, 'v' = v;
t[1] x[1] 1

u = -1 - ---------, v = ---------
-1 + t[1] -1 + t[1]

Therefore, if we multiply p2 by u, the result p02 keeps being a polynomial in K(t1)[x1, x2] and the
overall system keeps being triangular.

> p02 := collect (rem (u*p2, p01, x[1]), x[2]);
2

3 t[1] x[1] x[2] t[1] x[1]
p02 := x[2] + -------------- - ---------- - t[1]

-1 + t[1] -1 + t[1]

These computations actually prove that the triangular set {p1, p2} is a regular chain.

3.2 Definition and Characterization
Let R = K[t1, . . . , tm, x1, . . . , xn] be a polynomial ring over a field K of characteristic zero. Let A =
{p1, . . . , pn} be a triangular system of polynomials such that the leading variable of pk is xk, the
leading degree of pk is dk = deg(pk, xk), and the initial of pk, i.e. the leading coefficient of pk
with respect to xk, is denoted ik, for 1 ≤ k ≤ n. Let h denote the product of the initials of the
polynomials pk and A denote the ideal (A) : h∞ of R (the ideal generated by A, saturated by the
multiplicative family generated by h) i.e.

A = {f ∈ R | ∃ d ≥ 0, hd f ∈ (A)}

If f is any polynomial of R, one defines the pseudoremainder of f by A by

prem(f,A) = prem(. . . prem(f, pn, xn), . . . , p1, x1)

and the resultant of f by A by

res(f,A) = res(. . . res(f, pn, xn), . . . , p1, x1) .

See Chapter 1 for details on the pseudodivision and the resultant.
The following Proposition does not list all the properties of regular chains but it explains why

this concept is important. Many different variants of triangular systems were defined and studied
from 1990 to 2010. The Proposition essentially states that, if any such variant permits to recognize
zero, or zero-divisors, in R/A, then it must be another definition of regular chains.

Definition 1 A triangular system of R is said to be a regular chain if the initial ik of pk is regular
in R/(p1, . . . , pk−1) : (i1 · · · ik−1)

∞ for 2 ≤ k ≤ n.

Proposition 5 Let A be a triangular system and f be a polynomial of R. The following conditions
are equivalent:
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a A is a regular chain;

b prem(f,A) = 0 if and only if f is zero in R/A;

c res(f,A) = 0 if and only if f is a zero-divisor in R/A.

Proposition 6 If a triangular set A satisfies any of Conditions a, b or c then the ideal A is
necessarily proper.

Proof If A = R then every element of R/A is zero and a zero-divisor. Thus Condition a cannot
hold. Moreover, if f is any nonzero element of K[t1, . . . , tm] then prem(f,A) ̸= 0 and res(f,A) ̸= 0.
Thus Conditions b and c cannot hold either. □

3.3 Reduction to Dimension Zero
Let K0 = K(t1, . . . , tm) and R0 = K0[x1, . . . , xn] be the polynomial ring obtained by mov-
ing t1, . . . , tm to the base field of the polynomials. Define A0 = (A) : h∞ in the ring R0.

Proposition 5 is all about testing whether a given polynomial f of R is zero, or a zero-divisor
in some ring S. By [9, I, 19, page 42], f is zero, or a zero-divisor if and only if it is zero, or a
zero-divisor in the total quotient ring of S.

There are many different rings involved in Proposition 5. Proposition 4 plays a key role here,
since it tells us that in all these rings, the nonzero elements of K[t1, . . . , tm] are regular. Because
of this, we are allowed to study Proposition 5 in R0 rather than in R.

By Proposition 4, all associated prime ideals of A have dimension m. Therefore, all associated
prime ideals of A0 have dimension zero and, in R0/A0, an element is regular if and only if it is
invertible.

3.4 The Algorithmic Test
Ideas seem quite simple but one needs to be careful. As a warning, the reader may want to find
out where is the mistake in the following “false proposition”.

False Proposition. In the ring R0, every triangular system is a regular chain. Proof Assume A
is a triangular system. The initials ik are invertible in R0/A0 (this is definitely true since the
saturation by h ensures that h belongs to none of the associated prime ideals of A0). Multiplying
all the initials by their inverses, one gets a triangular system A0 which generates A0, with initials
all equal to 1: a regular chain. □

Being warned, let us proceed more carefully and consider a triangular system A of R0 satisfying
the regular chain condition. Then there exists polynomials ui and vij such that (this is nothing
but a formal reformulation of Section 3.1)

u1 i1 = 1 , u1 ∈ K0 ,
u2 i2 = 1 + v21 p1 , u2, v21 ∈ K0[x1] ,
u3 i3 = 1 + v31 p1 + v32 p2 , u3, v31, v32 ∈ K0[x1, x2] ,

...
un in = 1 + vn1 p1 + · · ·+ vn,n−1 pn−1 , un, vn1, . . . , vn,n−1 ∈ K0[x1, . . . , xn−1] .

(3.1)
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Recall dk = deg(pk, xk) for 1 ≤ k ≤ n and define

p01 = u1 p1 , p01 ∈ K0[x1] ,

p02 = u2 p2 − v21 p1 x
d2
2 , p02 ∈ K0[x1, x2] ,

...
p0n = un pn − (vn1 p1 + · · ·+ vn,n−1 pn−1)x

dn
n , p0n ∈ R0 .

(3.2)

For each 1 ≤ k ≤ n, the polynomials p0k have the same leading variable xk and the same degree dk
in xk as pk; they all have initials equal to 1 (the polynomials are said to be monic). Denote
A0 = {p01, . . . , p0n}. The ideal generated by A0 is equal to A0. The above observation is summarized
in the following proposition.

Proposition 7 Assume A is a regular chain. Then, the ideal A0 admits a basis A0 made of
polynomials p01, . . . , p0n such that the polynomials p0k have the same leading variable xk and the
same degree dk in xk as pk, and have initials all equal to 1.

In (3.1), the polynomials uk are inverses of the initials ik. Inverses can be computed by means
of the extended Euclidean algorithm. Indeed, using the pseudo-codes given in Figures 3.1, page 30
and 3.2, page 31, the regular chain condition can easily be turned into an algorithm that decides
whether a triangular system is a regular chain.

3.5 Membership Testing to the Ideal
The two next propositions are easy and do not even require A to be triangular.

Proposition 8 Let f and be any polynomial of R and denote g = prem(f,A). Then

deg(g, xk) < deg(pk, xk) (1 ≤ k ≤ n) . (3.3)

Moreover, there exists a power product hf of initials of A and polynomials v1, v2, . . . , vn such that

hf f = g + v1 p1 + v2 p2 + · · ·+ vn pn . (3.4)

3.5.1 a⇒ b
Proposition 9 Let f be any polynomial of R. If prem(f,A) = 0 then f is zero in R/A.

Proof By Formula (3.4) of Proposition 8. □

The following proposition is more difficult. Combined with the above one, it proves a⇒ b.

Proposition 10 Assume A is a regular chain and let f be any polynomial of R. If f is zero in
R/A then prem(f,A) is the zero polynomial.

Proof Denote g = prem(f,A). Assume f is zero in R/A. Then g is zero in R/A and in R0/A0.
There exists a short proof for readers who know Gröbner bases: in R0, the triangular set A0

defined in Proposition 7 is a Gröbner basis, w.r.t. the lexicographic ordering x1 < · · · < xn, of the
ideal A0, since the leading monomials are disjoint. See [6, 2, 9, Proposition 4 “Buchberger’s First
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Criterion” and Theorem 3, page 101]. Condition (3.3) implies that g is irreducible by A0. Then g
must be zero, as a polynomial. See [6, 2, 6, Corollary 2, page 80].

Here is another proof, which avoids the Gröbner bases theory. We assume g is not the zero
polynomial and seek a contradiction. Since g ∈ A0, there exists a formula

g = v1 p01 + v2 p02 + · · ·+ vk p0k︸ ︷︷ ︸
F

.

To any such formula F , one may associate an index j(F ) defined as the highest index j such
that xj occurs in some vi or some p0i. This index is well defined since g is not zero. And we must
have j ≥ k. Among all possible formulas F , let us consider one, such that j(F ) is minimal. Let
us denote j = j(F ) for short, d = deg(p0j , xj) and p0j = xdj + qj . In the polynomials vi of F , let
us substitute every occurence of xdj by p0j − qj yielding another formula

g = w1 p01 + w2 p02 + · · ·+ wℓ p0ℓ︸ ︷︷ ︸
F ′

(wℓ ̸= 0)

such that deg(wi, xj) < d for 1 ≤ i ≤ ℓ. We must have ℓ = j since j(F ) = j(F ′). Since
deg(wi, xj) < d and deg(p0i, xj) = 0 for i < j and wj ̸= 0, we must have deg(g, xj) ≥ d. This
contradiction with Condition (3.3) proves that g must be the zero polynomial. □

3.5.2 b⇒ a
Example. The following triangular set A is not a regular chain since the initial t1 x1 − 1 of p2
has a non-unit gcd with p1. It is thus not regular in R/(p1) : i∞1 .

> p1 := t[1]*x[1]^2 - x[1];
2

p1 := t[1] x[1] - x[1]

> p2 := (t[1]*x[1]-1)*x[2]^3 - x[1]*x[2] + t[1];
3

p2 := (t[1] x[1] - 1) x[2] - x[1] x[2] + t[1]

> gcdex (t[1]*x[1]-1, p1, x[1]);
1

x[1] - ----
t[1]

Since ideal A is saturated by all the initials of the triangular set, it contains the quotient x1 of p1
by t1 x1 − 1, viewed as polynomials in x1. However, this quotient is not reduced to zero by A
because its degree in x1 is strictly less than the one of p1. In summary: if a does not hold then b
may not hold either.

Proposition 11 proves b⇒ a by the very same argument, formulated in a more general way. The
ideal A is assumed to be proper for simplicity. According to Proposition 6, this is not a restriction
for proving b⇒ a.

Proposition 11 Let A be triangular set of R such that A is proper, and 1 ≤ k < n be an index
such that the regular chain condition is satisfied up to k and ik+1 is not regular in R/(p1, . . . , pk) :
(i1 · · · ik)∞. Then there exists some f ∈ A such that prem(f,A) ̸= 0.
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Proof Denote Ak = (p1, . . . , pk):(i1 · · · ik)∞. Let q1∩· · ·∩qr be an irredundant primary representa-
tion of Ak and pℓ =

√
qℓ be its associated prime ideals. Since ik+1 is not regular in R/Ak, there exists

an index 1 ≤ j ≤ r such that ik+1 ∈ p1, . . . , pj and ik+1 /∈ pj+1, . . . , pr Denote Bk = qj+1 ∩ · · · ∩ qr
(the intersection is not empty for A is proper). We have Bk = Ak : i∞k+1 by [9, IV, 10, Theorem
17, page 225]. Denote Rk = K[t1, . . . , tm, x1, . . . , xk]. By Proposition 4, there exists some nonzero
polynomial f ∈ Bk ∩ Rk. Choose f /∈ Ak. Since f ∈ Rk we have prem(f,Ak) = prem(f,A). Since
f /∈ Ak we have prem(f,Ak) ̸= 0 (Proposition 9). Since f ∈ Bk ⊂ A, the proposition is proved. □

3.6 Regularity Testing modulo the Ideal
In the examples above, we have tested the regularity of the initial of p2 modulo the ideal defined
by p1 by means of a gcd computation, through the Euclidean algorithm. The gcd and the resultant of
two polynomials are quite related. From a theoretical point of view, the resultant has the advantage
of being a determinant: the determinant of the Sylvester matrix defined by the polynomials under
consideration. As such, it is defined for polynomials over general rings.

Example. The following computations, combined to the fact that a zero resultant indicates a
common factor (Theorem 1, page 9), prove x1 − 1 is regular in R/(p1) : i∞1 .
> with (LinearAlgebra):
> p1 := t[1]*x[1]^2 - x[1];

2
p1 := t[1] x[1] - x[1]

> S := SylvesterMatrix (x[1]-1,p1,x[1]);
[ 1 -1 0]
[ ]

S := [ 0 1 -1]
[ ]
[t[1] -1 0]

> Determinant (S);
-1 + t[1]

The following computations prove that t1 x1 − 1 is a zero-divisor.
> S := SylvesterMatrix (t[1]*x[1]-1,p1,x[1]);

[t[1] -1 0]
[ ]

S := [ 0 t[1] -1]
[ ]
[t[1] -1 0]

> Determinant (S);
0

Proposition 12 Let f be a polynomial and A be a triangular set of R. Then there exists polynomials
u, v1, v2, . . . , vn of R such that

u f = res(f,A) + v1 p1 + v2 p2 + · · ·+ vn pn (3.5)

Proof Apply n times the fact that the resultant of two polynomials is in the ideal generated by
these polynomials (Theorem 3, page 11). □
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3.6.1 c⇒ a
In this section, the ideal A is assumed to be proper, for simplicity. According to Proposition 6, this
is not a restriction for proving c⇒ a.

Proposition 13 Let f be a polynomial and A be a triangular set of R such that A is a proper
ideal. If res(f,A) ̸= 0 then f is regular in R/A.

Proof Take Formula (3.5) in R/A. We have u f = res(f,A). Since res(f,A) ∈ K[t1, . . . , tm], by
Proposition 4, it is a regular element of R/A, thus so is f . □

Combined with Proposition 13, the following Proposition 14 proves that c⇒ a.

Proposition 14 Let A be a triangular set of R such that A is a proper ideal. Assume that, for
any f regular in R/A, we have res(f,A) ̸= 0. Then A is a regular chain.

Proof Let 1 ≤ k ≤ n be an index. The initial ik of pk is regular in R/A, since A is satu-
rated by the product of its initials. See [9, IV, 6, Corollary 3 to Theorem 11, page 214; and
10, Theorem 17, page 225]. Thus by assumption, res(ik, A) ̸= 0. Let us decompose res(ik, A) =
res(rk, {p1, . . . , pk−1}) where rk = res(ik, {pk, . . . , pn}). Then res(rk, {p1, . . . , pk−1}) ̸= 0. Thus rk is
regular in R/(p1, . . . , pk−1):(i1 · · · ik−1)

∞ by Proposition 13. Since ik does not depend on xk, . . . , xn,
the polynomial rk is a power of ik. Thus ik is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)

∞. Thus A
is a regular chain. □

3.6.2 a⇒ c
In the sequel, A is a regular chain. We thus prefer to work with the monic triangular set A0 of R0

as defined in Proposition 7. The following proposition provides a theoretical justification.

Proposition 15 Let f be a polynomial, A be a regular chain of R, and A0 be the monic triangular
set of R0, defined in Proposition 7. Then there exists polynomials u, v1, v2, . . . , vn of R0 such that

u f = res(f,A) + v1 p01 + v2 p02 + · · ·+ vn p0n (3.6)

Proof Solving system (3.2) w.r.t. p1, p2, . . . , pn and replacing them by their values in (3.5) provides
the sought formula. □

Combined with Proposition 16, Proposition 13 proves a⇒ c.

Proposition 16 Let f be a polynomial and A be a regular chain of R. If res(f,A) = 0 then f is
a zero-divisor in R/A.

Proof The Proposition holds if f is zero. Assume f is nonzero.
Let A0 and R0 and A0 as in Proposition 7. We assume res(f,A0) = 0 and prove that f is a

zero-divisor in R0/A0, i.e. that there exists an associated prime ideal of A0 which contains f . See
[9, IV, 6, Corollary 3 to Theorem 11, page 214].

The proof is by induction on n.
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Basis: the case n = 1. Then res(f,A0) = res(f, p01, x1). If it is zero then f and p01 have a
common factor (Theorem 1, page 11). This common factor provides at least one associated prime
ideal of A0 containing f .

General case: n > 1. Denote R′
0 = K(t1, . . . , tm)[x1, . . . , xn−1], A′

0 = {p01, . . . , p0,n−1}, A′
0 the

ideal (A′
0) in R′

0 and g = rem(f, p0n, x). By Theorem 2 we have res(g,A0) = ± res(f,A0). Since
res(f,A0) = 0, we have res(g,A0) = 0. Decompose res(g,A0) = res(r,A′

0) where r = res(g, p0n, xn).
We have res(r,A′

0) = 0. The induction hypothesis applies: there exists an associated prime
ideal p′ of A′

0 which contains r. Denote φ the canonical ring homomorphism R′
0 → R′

0/p
′, so

that φ(r) = 0. Since deg(g, xn) < deg(p0n, xn) and p0n is monic, Theorem 4 applies and we have
res(φ(g), φ(p0n), xn) = 0. The two polynomials φ(g) and φ(p0n) have coefficients in R′

0/p
′, which is

a domain. Apply Theorem 1: the polynomials φ(g) and φ(p0n) have a common factor. Thus φ(f)
and φ(p0n) have a common factor. This factor defines at least one prime ideal p of R0 such that
f ∈ p, A0 ⊂ p and p′ = p ∩ R′

0. Since dimA0 = 0, the prime ideal p is an associated prime of A0.
Thus f is a zero-divisor in R0/A0. □

3.7 Concluding Remarks
The concept of a regular chain was introduced in [7].

It was much developed in the mid 1990’s in the team of Daniel Lazard [8, 1]. Since then, huge
developments (algebra and computer science), undertaken by the group of Marc Moreno Maza at
ORCCA, led to the MAPLE package RegularChains1.

This chapter owes a lot to [5], [3] and [4].
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function AlgebraicInverseNonZero (f , A)
Parameters

A = {p1, . . . , pn} is a regular chain in K0[x1, . . . , xn], and only involves monic polynomials
f is a polynomial in K0[x1, . . . , xn], which does not lie in the ideal (A)

Result
an inverse of f in K0[x1, . . . , xn]/(A) or the exception “inversion of a zero-divisor”

begin
if f ∈ K0 then

the polynomial f , which does not belong to (A), cannot be zero
return 1/f

else
let xk be the leading variable of f
u := ExtendedEuclideanAlgorithm (f , pk, xk, A)

one has u1 f + u2 pk = u3 mod (A)
if u3 = 1 then

one has u1 f = 1 mod (A)
return u1

else
the polynomial u3 divides pk and is different from pk since f does not lie in A

raise “inversion of a zero-divisor”: u3

fi
fi

end

Figure 3.1: The AlgebraicInverseNonZero function.
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function ExtendedEuclideanAlgorithm (f , g, xk, A)
Parameters

A = {p1, . . . , pn} is a regular chain in K0[x1, . . . , xn] and only involves monic polynomials
f, g are polynomials in K0[x1, . . . , xn] ; their leading coeff. w.r.t. xk do not lie in the ideal (A)

Result
a vector u = (u1, u2, u3) of polynomials in K0[x1, . . . , xn], such that, in K0[x1, . . . , xn]/(A),

the relationship u1 f + u2 g = u3 holds,
the polynomial u3 is a common divisor of f and g,
the leading coefficient of u3 w.r.t. xk is 1

or the exception “inversion of a zero-divisor”
begin

u := (1, 0, f)
v := (0, 1, g)

the property u1 f + u2 g = u3 mod (A) is a loop invariant
the set of common divisors of u3 and v3 modulo (A) is another loop invariant

while v3 ̸= 0 do
let ı be the leading coefficient of v3 w.r.t. xk
ı := AlgebraicInverseNonZero (ı, A)

compute the remainder componentwise
v := rem(ıv, A)

the leading coefficient of v3 w.r.t. xk is now 1
q := quo(u3, v3, xk)
t := v
v := rem(u− q v, {p1, . . . , pk−1})

if v3 is nonzero then, its leading coefficient w.r.t. xk does not lie in (A)
u := t

od
the polynomial u3 is a common divisor of u3 and 0, hence a common divisor of f and g

return u
end

Figure 3.2: The ExtendedEuclideanAlgorithm function.
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Chapter 4

Lazard’s Lemma

This chapter provides a complete proof of Proposition 17 (Lazard’s Lemma). It relies on Chapter 2
only.

4.1 Informal Introduction
Let us load the DifferentialAlgebra MAPLE package and consider again the introductory ex-
ample of Chapter 2.

> with (DifferentialAlgebra):
> R := DifferentialRing(derivations = [x,y], blocks = [[v,u]]);

R := differential_ring

Let us assign to p1, p2, p3 the three differential polynomials which were assigned to sys in Chap-
ter 2.

> p1 := u[x]^2-4*u;
2

p1 := u[x] - 4 u

> p2 := u[x,y]*v[y]-u+1;
p2 := u[x, y] v[y] - u + 1

> p3 := v[x,x]-u[x];
p3 := v[x, x] - u[x]

Let us compute again a regular differential chain from these three differential polynomials (which
are three generators of some differential ideal A) and display the chain elements.

> ideal := RosenfeldGroebner([p1,p2,p3],R);
ideal := [regular_differential_chain]

> ideal := ideal[1]:
> Equations(ideal, solved);

-u[x] u[y] u + u[x] u[y] 2
[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,

u
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2
u[y] = 2 u]

We notice that, if we apply an elimination algorithm such as RosenfeldGroebner over powers of
the three generators of A, we obtain the very same regular differential chain.

> jdeal := RosenfeldGroebner([p1^2,p2^3,p3^2],R);
jdeal := [regular_differential_chain]

> jdeal := jdeal[1]:
> Equations (jdeal,solved);

-u[x] u[y] u + u[x] u[y] 2
[v[x, x] = u[x], v[y] = -1/4 ------------------------, u[x] = 4 u,

u

2
u[y] = 2 u]

I stated a similar1 observation in my PhD memoir (see [1, Section 5.2]). Daniel Lazard, who was
one my PhD referees, wrote me back two weeks before my PhD defense, that he thought that the
ideals defined by the output of the algorithm were radical ideals. A first (incomplete) proof of this
remark was published in [2, Lemma 2]. It is today often called Lazard’s Lemma.

4.2 Why are Radical Ideals Important
An ideal is said to be radical if it is equal to its radical [6, III, 7, Definition 2, page 147]. A radical
ideal of a ring S is thus an ideal B such that, for any f ∈ S, we have f ∈ B whenever some
power fd of f belongs to B.

Radical ideals are important because of the Hilbert Nullstellensatz [6, VII, 3, Theorem 14, page
164], recalled below.

Theorem 9 (The Hilbert Nullstellensatz)
Let K be a field. If f1, f2, . . . , fq are polynomials in K[x1, x2, . . . , xn] and if f vanishes at every

common zero of f1, f2, . . . , fq (in an algebraically closed extension K̄ of K), then there exists an
exponent ρ and polynomials a1, a2, . . . , an in K[x1, x2, . . . , xn] such that

fρ = a1 f1 + a2 f2 + · · ·+ an fn . (4.1)

Formula (4.1) just expresses that f belongs to the radical of the ideal B generated by f1, f2, . . . , fq.
The converse implication of the theorem is obvious: if f ∈

√
B then f vanishes at every common

zero of f1, f2, . . . , fq (in any field extension of K, not necessarily algebraically closed).
1In my PhD memoir, the version of RosenfeldGroebner was much simpler than the one implemented in the

MAPLE package. In particular, the output was made of Gröbner bases rather than regular differential chains, which
were not yet defined in 1994. The observation still holds, however.
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4.3 The Chinese Remainder Theorem
By consistency w.r.t. the rest of these lecture notes, we would like to rely on Zariski and Samuel
Commutative Algebra. Their formulation of the Chinese Remainder Theorem, through direct sums,
may look unusual for many readers. We thus feel the need of summarizing their approach. Let us
start with a small example and consider the polynomial

p = (x2 − 2)︸ ︷︷ ︸
p1

(x− 1)︸ ︷︷ ︸
p2

in the polynomial ring K[x]. The gcd of the two irreducible factors p1 and p2 is 1. Indeed, we even
have, by the extended Euclidean algorithm, a Bézout identity (as one says in France) between the
two factors:

u p1 + v p2 = 1 ,

u = −1 ,
v = x+ 1 ,

which permits to solve the following problem: given any pair of polynomials f1, f2, find a polyno-
mial f such that:

f = f1 mod (x2 − 2) ,

f = f2 mod (x− 1) .

Multiply the first equation by v p2, the second one by u p1, add termwise and use the Bézout
identity:

f = v p2 f1 + u p1 f2 mod (p) . (4.2)

It is not difficult to strengthen the above statements and end up with the following isomorphim of
rings, which is the classical formulation of the Chinese Remainder Theorem:

K[x]/(p) = K[x]/(p1)×K[x]/(p2) .

The Cartesian product on the right hand-side is endowed with a ring structure: ring operations are
performed componentwise.

There exists another way to present the above construct. It is the one adopted in [6]. Let us
denote S = K[x]/(p) and Bi the ideal generated by pi in S for i = 1, 2. The fact that the gcd of the
two polynomials is 1 implies that the ideals Bi are comaximal, i.e. that their sum is equal to the
whole ring [6, III, 13, page 176]. The intersection of two comaximal ideals is equal to their product
[6, III, 13, Theorem 31, page 177]. In S, the ideal (p) becomes (0). Taking all these remarks into
account, we have

(0) = B1 ∩B2 ,

S = B1 +B2 .

The above conditions actually imply that the sum is direct, which means that every element f
of S has a unique representation as a sum of one element of B1 and one element of B2 [6, III, 12,
page 164]. Back to our example, this decomposition is given by (4.2):

f = v p2 f1︸ ︷︷ ︸
B2

+u p1 f2︸ ︷︷ ︸
B1

.
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The following more general definition comes from [6, III, 13, Definition 1, page 174]. Recall that
an ideal of a ring S is a subring of S. A ring S is said to be a direct sum of the ideals S1, S2, . . . , Sr

if S = S1 + S2 + · · ·+ Sr and Si ∩
∑

j ̸=i Sj = (0) for 1 ≤ i ≤ r. One writes S = S1 ⊕ S2 ⊕ · · · ⊕ Sr.
When this holds, Si Sj = (0) for i ̸= j. This comes from the fact that Si Sj ⊂ Si ∩ Sj ⊂

Si ∩
∑

j ̸=i Sj , which is equal to (0) by definition of direct sums.

The following theorem is a shortened version of [6, III, 13, Theorem 32, page 178]. It is a
formulation of the Chinese Remainder Theorem.

Theorem 10 Let S be a ring with identity. Let B1, . . . ,Br be ideals such that (0) = ∩iBi and
Bi + Bj = S for i ̸= j. If we define Si = ∩j ̸=iBj for 1 ≤ i ≤ n, then S = S1 ⊕ · · · ⊕ Sr with
Si ≃ S/Bi.

Theorem 11 is an incomplete formulation of [6, III, 13, Theorem 30, page 175] which essentially
states that in a ring which is a direct sum, addition and multiplication are performed summandwise.

Theorem 11 Let S be a ring with identity. Let S1, S2, . . . , Sr be subrings such that S = S1+S2+
· · · + Sr and Si Sj = (0) for i ̸= j. Then each Si is an ideal and the sum is direct. If ai, bi ∈ Si

for 1 ≤ i ≤ r, then (a1 + a2 + · · · + ar) + (b1 + b2 + · · · + br) = (a1 + b1) + · · · + (ar + br) and
(a1 + a2 + · · · + ar) (b1 + b2 + · · · + br) = a1 b1 + · · · + ar br. If B is an ideal in S, there exists a
decomposition B = B1 ⊕ · · · ⊕Br, where Bi is an ideal in Si; this decomposition is unique. The
residue class ring S/B ≃ S/B1 ⊕ · · · ⊕ S/Br.

Notice that direct sums are associative i.e. that if S is a direct sum of Si and each Si is a direct
sum of Sij then S is the direct sum of the Sij , taken together [6, III, 12, page 164]. Notice also
that if S = S1 ⊕ · · · ⊕ Sr then S[x] = S1[x]⊕ · · · ⊕ Sr[x].

4.4 The Result
The ingredients of the proof of Lazard’s Lemma are then the following ones:

1. An ideal B of a ring S is radical if and only if the total quotient ring of S/B does not contain
any nilpotent element.

2. A direct sum of fields does not contain any nilpotent element (because fields have no nilpotent
elements and, in direct sums, operations are performed summandwise).

3. If an ideal B is an intersection of maximal ideals of a ring S then S/B is a direct sum of
fields (by Theorem 10, the fact that maximal ideals are pairwise comaximal, and that the
residue class ring by a maximal ideal is a field [6, III, 8, Theorem 10, page 150]).

4. If p is a polynomial in K[x] and s = ∂p/∂x is its separant, then the ideal (p) : s∞ is generated
by the product of the irreducible simple factors of p. It is the intersection of the maximal
ideals generated by each of these factors.

5. If S = S1⊕· · ·⊕Sr and p is a polynomial in S[x], so that p = p1+ · · ·+ pr, then the separant
of p can be taken summandwise i.e. ∂p/∂x = ∂p1/∂x+ · · ·+ ∂pr/∂x.
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Actually, all the idea of the proof consists in applying the well-known property 4 above in a
context where it is not supposed to apply. Let us enter details. The ring K[x] is unique factorization
domain. Consider a polynomial p = fd g with f irreducible and f ∧g = 1. Then the separant of p is
s = p′ = d fd−1 f ′ g+fd g′ and we see that fd−1 | s i.e. if f is not simple then f is a common factor
of p and s and will be factored out by the saturation. In order to show that the saturation does not
factor out simple factors, we need to show that fd does not divide the separant, i.e. that f does
not divide f ′ g. In a unique factorization domain, Gauss Lemma applies: f | f ′ g and f | f f ′ thus
f divides their gcd (f ′ g ∧ f f ′) = (f ∧ g) f ′ = f ′. In the case of Lazard’s Lemma, the polynomial
rings involve zero-divisors. They cannot be unique factorization domains and Gauss Lemma is not
supposed to apply. However, they are direct sums of unique factorization domains . . .

Proposition 17 (Lazard’s Lemma)
Let A = {p1, . . . , pn} be a triangular system of R = K[t1, . . . , tm, x1, . . . , xn], such that xi is

the leading variable of pi for 1 ≤ i ≤ n. Let h denote the product of the separants of A and
A = (A) : h∞. Then A is radical. Moreover, if p is an associated prime ideal of A then dim p = m
and p ∩K[t1, . . . , tm] = (0).

Proof The last sentence of the Proposition is a corollary to Proposition 4. We thus only need to
prove that A is radical.

Denote A0 the ideal (A) : h∞ in the ring R0 = K(t1, . . . , tm)[x1, . . . , xn]. By Proposition 4, the
rings R0 and R have the same total quotient ring. We thus only need to prove that A0 is radical.

We prove by induction on n that R0/A0 is a direct sum of fields. This ring can be constructed
incrementally as Sn defined by:

S0 = K(t1, . . . , tm) , Si = Si−1[xi]/(pi) : s∞i ,

where si = ∂pi/∂xi is the separant of pi.
The basis n = 0 is trivial.
Assume Sn−1 is a direct sum of fields K1 ⊕ · · · ⊕Kr. Then Sn is isomorphic to the direct sum

(1 ≤ j ≤ r) of the rings Kj [xn]/(pn) : s∞n .
Thus, in Kj [xn], the ideal (pn) : s∞n is generated by the product of the irreducible simple factors

of pn. It is thus the intersection of the maximal ideals mℓ generated by these factors. According
to the Chinese Remainder Theorem, Kj [xn]/(pn) : s∞n is isomorphic to the direct sum of the fields
Kj [xn]/mℓ. Since direct sums are associative the ring Sn is a direct sum of fields. □

4.5 Concluding Remarks
The sketch of proof of Proposition 17 is the one of Daniel Lazard with two differences: 1) the original
version was formulated using product of fields instead of direct sums of fields (I have switched to
direct sums because it is the presentation of [6] but the two formulations are completely equivalent);
2) the original proof was incomplete because it implicitly assumed that the nonzero elements of
K[t1, . . . , tm] are nonzero divisors (the gap is filled by Proposition 4).

The first complete proof of Proposition 17 is due to Sally Morrison [3, 4].
Proposition 17 is formulated for non-differential ideals. Combined to Rosenfeld’s Lemma [5,

Lemma], it has important consequences for differential ideals.
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Chapter 5

Rosenfeld’s Lemma

Regular differential chains are particular cases of triangular sets of differential polynomials which
satisfy Rosenfeld’s Lemma. This chapter aims at proving Proposition 22 (Rosenfeld’s Lemma).

5.1 Informal Introduction
Rosenfeld’s Lemma is an analogue, in differential algebra, of the Theorem of the Gröbner bases
theory which states that, when all S-polynomials are reduced to zero, we have a Gröbner basis. It
is interesting to notice that Rosenfeld’s Lemma is earlier than the Gröbner bases theory (1959 vs
1965) and contains, up to some encoding, the Gröbner basis Theorem (see concluding remarks).

It is also earlier than the regular chains theory, which was developed in the 1990’s. However, the
ideals it deals with are saturated ideals. This cannot have been motivated by the issues and results
studied in the three first chapters of these notes. Here is a part (probably) of an explanation.

Let p1 ∈ K[x1] and p2 = s2 x2 + q2 with s2, q2 ∈ K[x1] be two polynomials. Assume f ∈
(p1, p2) ∩K[x1]. Then s2 f ∈ (p1) (see below) and we see a saturated ideal naturally arising since
f ∈ (p1) : s∞2 . Why do we have s2 f ∈ (p1)? For an informal introduction, we may just consider an
example. Since f ∈ (p1, p2), there exists a formula (say)

f = (2x1 + x2) p1 + x21 p2 .

The x2 occuring in the first factor bothers us. Let us rewrite it using p2. Precisely, let us perform
the substitution

x2 =
p2 − q2

s2
·

We obtain a formula

f =

(
2x1 +

p2 − q2
s2

)
p1 + x21 p2

that yields another formula, by clearing denominators:

s2 f = (2x1 s2 + p2 − q2) p1 + x21 s2 p2.
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Let us arrange it and collect terms rather w.r.t. p2 than w.r.t. p1. We obtain

s2 f = (2x1 s2 − q2) p1 + (x21 s2 + p1)︸ ︷︷ ︸
=0

p2.

The indeterminate x2 does not occur in the left hand-side nor in the first summand of the right
hand-side. Therefore, the factor in front of p2 must be zero.

In differential algebra, differential polynomials such as p2 naturally occur: all proper derivatives
of differential polynomials have this shape. In this context, the indeterminate x2 is a leading
derivative and s is a separant.

In the ordinary differential case, the above argument is sufficient to prove Rosenfeld’s Lemma.
This is actually done by Ritt in [4, II, 12, page 30].

In the case of partial derivatives, the above process raises a specific difficulty, suggested (rather
than illustrated) by the following example. Consider the differential system

ux = v ,

uy = 0 ,

and assume leading derivatives occur on the left hand-sides of equations. Differentiate the first
equation w.r.t. y, the second w.r.t. x and subtract: the differential polynomial vy belongs to the
differential ideal generated by the two differential polynomials. However, it would not be reduced
to zero by them (we will make this statement more precise below). This situation is very close to
the one encountered in the Gröbner bases theory. It is solved by Rosenfeld’s Lemma.

5.2 Basic Elements of Differential Algebra
Let U be a finite set of differential indeterminates uk and {δ1, . . . , δm} be a set of derivations i.e.
unary operations which obey the following rules

δ(a+ b) = δ(a) + δ(b) , δ(a b) = δ(a) b+ a δ(b)

and which commute pairwise i.e. such that

δi δj a = δj δi a .

Derivations generate a commutative multiplicative monoid Θ of derivation operators θ = δa11 · · · δamm .
Any derivation operator whose order a1 + · · ·+ am is different from zero is said to be proper. The
monoid Θ acts on the set of differential indeterminates, giving the derivatives θ u. The infinite set
of derivatives is naturally denoted ΘU .

Differential polynomials are nothing but polynomials in K[ΘU ]. Differential polynomials can be
differentiated, which means that they belong to an algebraic structure which is a ring endowed with
derivations. Such rings are called differential rings. The ground field K of differential polynomials
is a differential field. Using Ritt’s notation, the differential polynomial ring is denoted R = K{U}.

Example. First one defines a differential polynomial ring with two derivations δ1 = δx, δ2 = δy
and two differential indeterminates v and u.
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> with (DifferentialAlgebra):
> with (Tools):
> R := DifferentialRing(derivations = [x,y], blocks = [[v,u]]);

R := differential_ring

The three variables p[1], p[2] and p[3] are assigned three differential polynomials. Derivation
operators occur as indices. For instance, u[x,y] stands for θ u with θ = δx δy.

> p[1],p[2],p[3] := u[x]^2-4*u, u[x,y]*v[y]-u+1, v[x,x]-u[x];
2

p[1], p[2], p[3] := u[x] - 4 u, u[x, y] v[y] - u + 1, v[x, x] - u[x]

Differential algebra is an abstract theory. However, it is often helpful to interpret abstract deriva-
tions as derivations, in the usual sense, w.r.t. some independent variables x and y and differential
indeterminates as functions u(x, y) and v(x, y) of these two variables. The following command
interprets p[2] as an equation with partial derivatives.

> NormalForm (p[2], notation=diff, R);
/ 2 \
| d | /d \
|----- u(x, y)| |-- v(x, y)| - u(x, y) + 1
\dy dx / \dy /

Derivations act on differential polynomials. Here is δx p2.

> Differentiate (p[2], x, R);
u[x, x, y] v[y] + v[x, y] u[x, y] - u[x]

Regular differential chains are particular cases of regular chains i.e. of triangular systems. In
order to generalize this notion of triangularity to the differential context, we need to be able to
associate a leading derivative, denoted ld p, to any differential polynomial p (not in K). This is
classically achieved by fixing a total ordering over the set of derivatives ΘU and defining the leading
derivative of p as the highest derivative occuring in p, w.r.t. the ordering. The following definition
of leading derivatives has the advantage to hold for objects more complicated than polynomials,
such as rational fractions of differential polynomials:

ld p = max
v∈ΘU

v | ∂p
∂v
̸= 0·

Total orderings on ΘU satisfying the two following conditions are called rankings. See [3, I, 8, page
75].

1. u ≤ θ u for all u ∈ U , θ ∈ Θ;

2. θ u < θ′ u′ ⇒ φθ u < φθ′ u′ for all u, u′ ∈ U and θ, θ′, φ ∈ Θ.

Proposition 18 Assume ΘU is ordered by a ranking and consider any differential polynomial p ∈
R \K. Then, for any proper derivation operator θ ∈ Θ, we have ld θ p = θ ld p, the degree of θ p
w.r.t. its leading derivative is 1 and the initial of θ p (which is the leading coefficient of θ p w.r.t.
its leading derivative), is the separant of p i.e. the differential polynomial

sp =
∂p

∂ ld p
·
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Example. In the MAPLE package, each mathematical differential polynomial ring is endowed
with a ranking, which is defined by playing with the list of blocks argument of the DifferentialRing
function. In our case, the ranking is

· · · > vxx > vxy > vyy > uxx > uxy > uyy > vx > vy > ux > uy > v > u .

The following commands extract the leading derivatives, initials and separants of our three differ-
ential polynomials.

> LeadingDerivative ([p[1],p[2],p[3]], R);
[u[x], u[x, y], v[x, x]]

> Initial ([p[1],p[2],p[3]], R);
[1, v[y], 1]

> Separant ([p[1],p[2],p[3]], R);
[2 u[x], v[y], 1]

One can also check a few claims of Proposition 18.

> LeadingDerivative (Differentiate (p[1], x, R), R);
u[x, x]

> Initial (Differentiate (p[1], x, R), R);
2 u[x]

The following proposition permits us to write proofs by (possibly transfinite) induction on
derivatives ordered by rankings. See [3, I, 17, Lemma 15, page 49].

Proposition 19 Every ranking is a well-ordering (i.e. every strictly decreasing sequence of deriva-
tives is finite).

Proof This is essentially Dickson’s Lemma.
By induction on the number of derivations m.
Basis: if m = 1 the Proposition is obvious.
General case: m ≥ 2. Induction hypothesis: the Proposition holds for less than m derivations.

We assume the existence of an infinite strictly decreasing sequence of derivatives and seek a contra-
diction. Since the number of differential indeterminates is finite, this sequence contains an infinite
strictly decreasing sequence of derivatives (θi u) of the same differential indeterminate u. Because
of the first axiom of rankings, the corresponding sequence (θi) satisfies Property (P): θi ∤ θj for
all 1 ≤ i < j. Denote θi = δa1i1 δa2i2 · · · δami

m and θ∗i = δa2i2 · · · δami
m . Now, every infinite sequence

of nonnegative integers contains an infinite increasing subsequence. Thus (θi) contains an infinite
subsequence such that the sequence (a1i) is increasing. Thus the corresponding subsequence of (θ∗i )
must satisfy Property (P). This contradiction with the induction hypothesis proves the Proposition.
□

In the sequel, each time we consider the leading derivative, the initial or the separant of some
differential polynomial p, it is implicitly assumed that 1) ΘU is endowed with a ranking anf 2)
p /∈ K.

41



A differential polynomial f is said to be partially reduced (according to Kolchin’s terminology
[3, I, 9, page 77]) w.r.t. a differential polynomial p if f does not depend on any proper derivative
of the leading derivative of p. Thanks to Proposition 18, given any differential polynomial f and
any set A = {p1, p2, . . . , pn} of differential polynomials of R, the pseudoremainder prem(f,Θ∗A)
(where Θ∗ denotes the set of proper derivation operators) is partially reduced w.r.t. A. In principle,
this pseudo-remainder is defined as in Chapter 3. Entering in details, it is obtained by computing
a sequence f = f0, f1, . . . , fℓ = g of differential polynomials such that fk+1 = prem(fk, θ p, ld θ p)
where p ∈ A and θ ∈ Θ∗. The traditional strategy consists in choosing a pair (θ, p) such that the
leading derivative of θ p is the highest derivative among all the proper derivatives of the leading
derivatives of A occuring in fk. Whatever the strategy, the sequence of fk is finite (Proposition 19).
According to formula (3.4), page 25, there exists some power product hf of separants of A such
that

hf f = g mod [A] (5.1)

where [A], the differential ideal of R generated by A, is the set of all finite linear combinations of
derivatives of elements of A, with differential polynomials of R as coefficients i.e. the ideal (ΘA).
In the proof of Rosenfeld’s Lemma, we will need to be even more precise and stress the fact that
the pseudodivision process only requires derivatives of A whose leading derivatives are less than or
equal to that of f :

hf f = g mod (θ p | ld θ p ≤ ld f) . (5.2)

The differential polynomial g is called the partial remainder of f by A. Of course, one may also
reduce g by the elements of A without differentiating them. In that case, Formulas (5.1) and
(5.2) still hold, provided that hf denotes a power product of separants and initials of A. The new
differential polynomial g is then called the full remainder of f by A. See [4, I, 6, pages 5-7] or [3,
I, 9, pages 77-81].

Example. For legibility, let us precompute a few derivatives of p1.

> p[1];
2

u[x] - 4 u

> py[1] := Differentiate (p[1], y, R);
py[1] := 2 u[x, y] u[x] - 4 u[y]

> pyy[1] := Differentiate (py[1], y, R);
2

pyy[1] := 2 u[x, y, y] u[x] + 2 u[x, y] - 4 u[y, y]

Let us now partially reduce f0 = θ u with θ = δx δ
2
y . To clarify the process, we compute the power

of the separants and the pseudoquotients involved in the pseudoreduction.

> f[0] := u[x,y,y]:
> f[1] := prem (f[0], pyy[1], u[x,y,y], 'h1', 'q1'):
> 'f[1]' = f[1], 'h1' = h1, 'q1' = q1;

2
f[1] = -2 u[x, y] + 4 u[y, y], h1 = 2 u[x], q1 = 1
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> f[2] := prem (f[1], py[1], u[x,y], 'h2', 'q2'):
> 'f[2]' = f[2], 'h2' = h2, 'q2' = q2;

2 2 2
f[2] = 16 u[x] u[y, y] - 32 u[y] , h2 = 4 u[x] , q2 = -4 u[x, y] u[x] - 8 u[y]

The differential polynomial f2 is partially reduced w.r.t. p1. However, it is not fully reduced. Thus
if we perform one more reduction step, we get the full remainder f3.

> f[3] := prem (f[2], p[1], u[x], 'h3', 'q3'):
> 'f[3]' = f[3], 'h3' = h3, 'q3' = q3;

2
f[3] = -32 u[y] + 64 u[y, y] u, h3 = 1, q3 = 16 u[y, y]

It is now possible to make Formula (5.2) explicit, over this example.

> expand (h1*h2*h3*f[0] - h2*h3*q1*pyy[1] - h3*q2*py[1] - q3*p[1] - f[3]);
0

5.3 The Result
Rosenfeld’s Lemma reduces the differential ideal membership problem to a non-differential one. In
order to achieve this goal, we first require triangular sets A of R to have elements pairwise partially
reduced. This property implies that

A = {p1, . . . , pn}

is finite (order the polynomials by decreasing leading derivatives and apply Proposition 19). In
the ordinary differential case (m = 1), this property implies moreover that A does not contain two
differential polynomials whose leading derivatives are derivatives of the same differential indeter-
minate. However, if m ≥ 2, this is not true anymore and A may involve critical pairs.

Definition 2 A set {p1, p2} of differential polynomials of R\K is said to form a critical pair if the
leading derivatives θ1 u of p1 and θ2 u of p2 are derivatives of some same differential indeterminate u.

If the least common multiple θ12 of θ1 and θ2 is different from both θ1 and θ2, one defines the
∆-polynomial associated to the pair as

∆(p1, p2) = s1
θ12
θ2

p2 − s2
θ12
θ1

p1 , (5.3)

where s1, s2 are the separants of p1, p2.

Formula (5.3) is built in order to annihilate the leading terms, both equal to ±s1 s2 θ12 u, of the
two derivatives of p1, p2. Therefore,

Proposition 20 Either ∆(p1, p2) ∈ K or it has a leading derivative strictly less than θ12 u.
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Example. Our set of differential polynomials defines a single critical pair (the two first ones) with
θ1 = δx and θ2 = δx δy. However θ12 = θ2 so that the ∆-polynomial is not defined, according to
the above definition. In order to see a ∆-polynomial, we may consider the critical pair {δx p1, p2}.
Then we have θ1 = δ2x, θ2 = δx δy and θ12 = δ2x δy. We may observe that the ∆-polynomial depends
on derivatives strictly less than θ12 u only.

> px[1] := Differentiate(p[1], x, R);
px[1] := 2 u[x, x] u[x] - 4 u[x]

> DeltaPolynomial (px[1], p[2], R);
2

v[x, y] u[x, y] u[x] - u[x, x] u[x, y] v[y] + 2 u[x, y] v[y] - u[x]

If A is a triangular set of pairwise partially reduced differential polynomials, then a ∆-polynomial
is associated to any critical pair of A.

Before stating the following definition, recall that if A is an ideal (possibly differential) and h is
any differential polynomial of R, then the saturation of A by h is the ideal (differential, if so is A)

A : h∞ = {f ∈ R | ∃ d ≥ 0 , fd ∈ A} .

Definition 3 Let A be a triangular set of pairwise partially reduced differential polynomials of R
and h be the product of its initials and separants. A critical pair {p1, p2} ⊂ A is said to be solved if

∆(p1, p2) ∈ (θ p | p ∈ A , ld θ p < θ12 u) : h∞ . (5.4)

In Formula (5.4) the inequality is strict (if it were large, every critical pair would be solved).

Proposition 21 (the algorithmic criterion)
Let A be a triangular set of pairwise partially reduced differential polynomials of R and {p1, p2} ⊂

A be a critical pair. If

prem(∆(p1, p2),ΘA) = 0

then the critical pair is solved.

Proof If prem(∆(p1, p2),ΘA) = 0 then ∆(p1, p2) belongs to the ideal stated in Formula (5.2)
(with a large inequality, w.r.t. the leading derivative of the ∆-polynomial). However, this leading
derivative is strictly less than θ12 (Proposition 20), so that Formula (5.4) holds. □

Definition 4 A triangular set of pairwise partially reduced differential polynomials is said to be
coherent if all its critical pairs are solved.

Our set S of three differential polynomials defines a differential ideal (the radical of the dif-
ferential ideal generated by these differential polynomials). This set is triangular but its elements
are not pairwise partially reduced. It turns out that the ideal defined by S can be represented by
a single regular differential chain A. In the following commands, the call to RosenfeldGroebner
computes A from S and the ranking. Regular differential chains satisfy the hypotheses of Rosen-
feld’s Lemma. In particular, they are triangular sets of differential polynomials pairwise partially
reduced.
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> ideal := RosenfeldGroebner([p[1],p[2],p[3]],R):
> A := Equations (ideal[1]);

2
A := [v[x, x] - u[x], 4 v[y] u - u[x] u[y] u + u[x] u[y], u[x] - 4 u,

2
u[y] - 2 u]

> LeadingDerivative (A, R);
[v[x, x], v[y], u[x], u[y]]

The two critical pairs defined by A are solved (Proposition 21). The calls to DifferentialPrem
perform Ritt reduction. Each call returns a sequence h, r where h is the power product of initials
and separants involved in the reduction process and r is the remainder. One can observe that
remainders are zero. The set A is thus coherent.

> DifferentialPrem (DeltaPolynomial (A[1], A[2], R), A, R);
2 3 2

16 u[x] u[y] u , 0

> DifferentialPrem (DeltaPolynomial (A[3], A[4], R), A, R);
1, 0

Proposition 22 (Rosenfeld’s Lemma)
Let A be a triangular set of pairwise partially reduced differential polynomials of R and h be the

product of its initials and separants. If all critical pairs of A are solved (i.e. if A is coherent), then
every differential polynomial f ∈ [A] : h∞, which is partially reduced w.r.t. A belongs to (A) : h∞.

Proof By transfinite induction.
Since f ∈ [A] : h∞, there exists a power product hf of separants and initials of A and finitely

many differential polynomials bφ,i such that

hf f =
∑
φ∈Θ

n∑
i=1

bφ,i φpi︸ ︷︷ ︸
(F )

.

We assume f /∈ (A) : h∞ and seek a contradiction. Formula (F ) then involves proper derivatives
of leading derivatives of A. Let v(F ) be the lowest one w.r.t. the ranking. Among all possible
formulas (F ), choose one such that v(F ) is minimal. This derivative does exist since rankings are
well-orderings. We seek another formula (F ′) such that v(F ′) < v(F ). This contradiction with
the minimality hypothesis will prove the Proposition.

Denote v(F ) = θ u and assume that θ u is a proper derivative of the leading derivtaives
θ1 u, . . . , θk u of the differential polynomials p1, . . . , pk ∈ A (renumbering if needed). Denote
(θ/θ1) p1 = s1 θ u+ r1. Apply over (F ) the substitution

θ u =
(θ/θ1) p1 − r1

s1
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and multiply by a suitable power of the separant s1 in order to clear denominators. Denote
γj = θ/ lcm(θ1, θj) for 2 ≤ j ≤ k. One obtains the following formula, where c, dj and lines (5.6)
and (5.7) involve derivatives strictly less than v(F ) only:

sα1 hf f = c
θ

θ1
p1 (5.5)

+
k∑

j=2

dj ∆(γj p1, γj pj) (5.6)

+
∑
φ∈Θ

n∑
j=1

eφ,j φpj . (5.7)

The leading derivative of sαi h f is itself strictly less than v(F ). Thus v(F ) only shows up as
leading derivative of (θ/θ1) p1. The differential polynomial c is thus identically zero.

In the ordinary differential case, the sum (5.6) is empty and (5.7) provides the sought for-
mula (F ′).

Let us address the partial case (m = 2). All critical pairs {p1, pj} are supposed to be solved.
According to Proposition 23, all critical pairs {γj p1, γj pj} are also solved. Multiplying again,
possibly, both sides of the formula by a suitable power product of initials and separants of A, one
sees that (5.6) belongs to the ideal generated by the elements of ΘA whose leading derivative is
strictly less than v(F ). The sum of (5.6) and (5.7) provides the sought formula (F ′). □

The following Proposition actually is a technical lemma, used in the proof of Proposition 22.

Proposition 23 Let A be a triangular set of pairwise partially reduced differential polynomials
of R, {p1, p2} ⊂ A be a solved critical pair and γ ∈ Θ a derivation operator. Then the critical pair
{γ p1, γ p2} is solved.

Proof By induction on the order of γ.
First observe that

∆(γ p1, γ p2) = s1
γ θ12
θ2

p2 − s2
γ θ12
θ1

p1 .

Basis: if the order is zero then {γ p1, γ p2} = {p1, p2} is solved.
General case. Decompose γ = δ λ with δ a single derivation. Assume inductively that {λ p1, λ p2}

is solved. Denote φ = λ θ12 and θ = δ φ = γ θ12. By the induction hypothesis, there exists a power
product of initials and separants hd of A such that

hd∆(λ p1, λ p2) ∈ (µ p | ldµ p < φu)

Differentiate this expression by δ and multiply again by hd. One gets a sum

(δ hd)hd∆(λ p1, λ p2) + h2d δ∆(λ p1, λ p2)

which belongs to (µ p | ldµ p < θ u), and whose first summand belongs to (µ p | ldµ p < φu). Since
φu < θ u, one sees that the second summand belongs to (µ p | ldµ p < θ u). Develop this second
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summand:

h2d δ∆(λ p1, λ p2) = h2d δ
{
s1

φ

θ2
p2 − s2

φ

θ1
p1

}
(5.8)

= h2d

{
(δ s1)

φ

θ2
p2 − (δ s2)

φ

θ1
p1

}
(5.9)

+ h2d

{
s1

θ

θ2
p2 − s2

θ

θ1
p1

}
. (5.10)

The differential polynomials (φ/θi) pi on line (5.9) belong to (µ p | ldµ p < φu). Thus, the expres-
sion on line (5.10), which is nothing but h2d∆(γ p1, γ p2), lies also in this ideal. The critical pair
{γ p1, γ p2} is thus solved. □

5.4 Concluding Remarks
Rosenfeld’s Lemma appears in [5, Lemma]. It improves an earlier (flawed?) version by Seidenberg
[6, Theorem 6]. A generalized version is available in [3, III, 8, pages 135-138] but Kolchin’s version
does not clearly appear to be algorithmic.

The presentation of Rosenfeld’s Lemma owes a lot to [1, Section 7.3], which also involves a fixed
formulation of Seidenberg’s variant.

Proposition 22 is formulated for ideals saturated by the separants and the initials of A. Actu-
ally, the theorem can be formulated for ideals saturated by the separants only, provided that one
updates accordingly the definition of solved critical pairs. In that case however, Proposition 21
(the algorithmic criterion) does not hold anymore but can be replaced by a partial remainder
computation, followed by a Gröbner basis reduction.

Every polynomial system can be encoded as a linear PDE system, in one differential indetermi-
nate, with constant coefficients. With this encoding, Rosenfeld’s Lemma implies that a polynomial
system which reduces to zero all its S-polynomials is a Gröbner basis [2, 2, 9, Theorem 3, page
101].
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Chapter 6

The Differential Nullstellensatz

This section aims at proving Propositions 24 and 25.

6.1 Informal Introduction
We reconsider the example of Chapter 10 and focus on a point which introduces this chapter. See
Chapter 10 for more details.

We start with the following chemical reaction system. It describes the transformation of a
substrate S into a product P , in the presence of some enzyme E. An intermediate complex C is
formed. The symbols k1, k−1, k2 denote reaction rates and are considered as parameters.

E + S
k1−−−→←−−−
k−1

C
k2−−−→ E + P . (6.1)

Let us first build the deterministic model of (6.1) using the mass-action law. The four functions
correspond to the concentrations of the corresponding chemical species.

> with (LinearAlgebra):
> X := <E(t), S(t), C(t), P(t)>:
> V := <k[1]*E(t)*S(t), k[-1]*C(t), k[2]*C(t)>:
> N := <<-1, -1, 1, 0> | <1, 1, -1, 0> | <1, 0, -1, 1>>:
> X, N, V;

[E(t)] [-1 1 1]
[ ] [ ] [k[1] E(t) S(t)]
[S(t)] [-1 1 0] [ ]
[ ], [ ], [ k[-1] C(t) ]
[C(t)] [ 1 -1 -1] [ ]
[ ] [ ] [ k[2] C(t) ]
[P(t)] [ 0 0 1]

Here is a first formulation of the dynamical system.
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> madm := map (diff, X, t) = N . V;
[d ]
[-- E(t)]
[dt ]
[ ]
[d ] [-k[1] E(t) S(t) + k[-1] C(t) + k[2] C(t)]
[-- S(t)] [ ]
[dt ] [ -k[1] E(t) S(t) + k[-1] C(t) ]

madm := [ ] = [ ]
[d ] [k[1] E(t) S(t) - k[-1] C(t) - k[2] C(t) ]
[-- C(t)] [ ]
[dt ] [ k[2] C(t) ]
[ ]
[d ]
[-- P(t)]
[dt ]

Here, we would like to study what happens if we assume moreover that the rate change of the
complex C(t) is zero.

> with(DifferentialAlgebra);

Let us now define a differential polynomial ring, endowed with the ranking

(the derivatives of C,E, P, S)≫ (the parameters k1, k−1, k2) .

> R := DifferentialRing
(blocks = [[C,E,P,S], [k[1](),k[-1](),k[2]()]], derivations = [t]);

R := differential_ring

Let us now add to madm the hypothesis that C(t) is a constant, obtaining a new system called
madm approx.

> madm_approx :=
[ seq (lhs (madm) [i] = rhs (madm) [i], i = 1 .. Dimension (X)),
diff (C(t),t) = 0 ];

In the simplification process, we do not want to discuss the possible vanishing of any expression
depending on the three parameters: we want the simplification to be “generic”. The algebraic way
to formulate this consists in moving the three parameters in the ground field of the equations.
Indeed, in a field, every quantity which is not zero is invertible, and cannot vanish.

> Field := field (generators = [k[1],k[-1],k[2]]);
Field := field(generators = [k[1], k[-1], k[2]])

Let us now simplify the system over the ground field Field.

> ideal := RosenfeldGroebner (madm_approx, R, basefield = Field);
ideal := [regular_differential_chain, regular_differential_chain]

> Equations (ideal);
d d d d

[[-- E(t), -- P(t), C(t), S(t)], [-- P(t), -- S(t), C(t), E(t)]]
dt dt dt dt
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We have thus got two cases, represented by two regular differential chains. This is a nice example
since the two chains are very simple and obviously define prime differential ideals which are not
included in each other. The intersection is thus irredundant (Proposition 24 below).

How did we end up with these two cases? Actually, the hypothesis Ċ(t) = 0 simplifies one
of the equations and yields k1E(t)S(t) − k−1C(t) − k2C(t) = 0. Differentiating this equation
(the two sides are the zero function and the derivative of the zero function is the zero function),
taking the hypothesis into account, and dividing by k1, which is a ground field element, we get
E(t) Ṡ(t) + Ė(t)S(t) = 0. At this stage, the simplifier has solved the equation w.r.t. its leading
derivative, which is Ė(t), and has viewed it as

Ė(t) → −E(t) Ṡ(t)

S(t)

provided that S(t) ̸= 0. Separately, it has considered the case S(t) = 0 in order not to loose any
solution: It has split cases.

This chapter is all about the correspondence between the solution sets (the algebraic varieties)
and the equation sets (the differential ideals). As long as we do not split cases, it is easy: the
hypothesis Ċ(t) = 0 can be restated as Ċ(t) ∈ A where A is the differential ideal generated by
madm approx. Observe we have differentiated one differential polynomial without leaving A since
the ideal is differential.

The analysis of the splitting requires more theory. What is clear, is that it preserves the
(differential) algebraic variety V of the input system. Denoting V1 and V2 the solution sets (one of
them is not an algebraic variety since it involves an inequation) after the splitting, we see that

V = V1 ∪ V2 . (6.2)

Let us denote I(V ) the differential ideal of the differential polynomials which annihilate over V
(define similarly I(V1) and I(V2)). We would like to translate the union of varieties (6.2) as an
intersection of ideals

I(V ) = I(V1) ∩ I(V2) . (6.3)

In order to have I(V ) = A, we will require A to be a radical differential ideal (Proposition 25). We
will also need to give formulas for I(V1) and I(V2). This is achieved by Proposition 26.

6.2 In Commutative Algebra
The Lasker-Nöther Theorem (Theorem 5, page 17) states that, in a Nötherian ring R, every ideal a
can be represented by an irredundant primary decomposition a = q1 ∩ · · · ∩ qr. Irredundant means
that, for i ̸= j, 1) qi ̸⊂ qj and 2) qi∩qj is not primary. The prime ideals pi =

√
qi are the associated

prime ideals of a. The associated primes of a which contain no other associated prime are said to be
isolated. The ones which are not isolated are said to be imbedded. See [8, IV, 4-5, pages 208-212].

The associated prime ideals of a play an important role since an element f ∈ R is a zero-divisor
in R/a if and only if f belongs to the union of the associated prime ideals of a [8, IV, 6, Corollary
3 to Theorem 11, page 214].
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If R is a polynomial ring in finitely many indeterminates, over a field K then R is Nötherian,
which means that a is generated by a finite set p1, . . . , pn of polynomials. In this context, the above
theorems can be interpreted in terms of solutions of the polynomial system

p1 = · · · = pn = 0 .

Indeed, provided that we seek solutions of a in non-fixed overfields of the ground field K, a
polynomial f belongs to

√
a if and only if vanishes on every solution of the polynomial system.

Proof The implication ⇒ is clear: every solution of the polynomial system annihilates the
whole ideal a. Since solutions are sought in fields, which are particular cases of domains, fd = 0
implies that f = 0.

The implication⇐ may be proved by means of the Lasker-Nöther Theorem. We assume f /∈
√
a

and we prove that the polynomial system admits a solution that does not annihilate f . The ideal√
a is the intersection of the isolated associated prime ideals of a. Since f /∈

√
a, there exists at

least one isolated associated prime ideal p of a such that f /∈ p. The field of fractions K ′ of R/p
is a field extension of K. Let x1, . . . , xr denote the indeterminates of R. The image of the vector
(x1, . . . , xr) by the canonical ring homomorphism K → K ′ provides the desired solution. □

To simplify statements and avoid non-fixed overfields, one may go a bit further and inject K ′

in the field of the complex numbers. We then obtain Hilbert Nullstellensatz [8, VII, 3, Theorem
14, page 164].

The overfield K ′ thus depends on the solution under consideration. Here is a basic example.
Consider the equation x2 − 2 = 0 in Q[x]. The idea consists in looking for a solution in Q(

√
2)

rather than in C. Formally, (x2 − 2) is a prime (even a maximal) ideal of Q[x]. The field K ′ is
the residue class ring Q[x]/(x2 − 2). The solution x =

√
2 is the image of x by the canonical ring

homomorphism Q[x] → Q[x]/(x2 − 2). Indeed, what is
√
2? Almost nothing but a symbol x such

that x2 − 2 = 0.
The isolated associated prime ideals of a correspond to the irreducible components of the alge-

braic variety of the polynomial system [8, VII, 3, Corollary 3 to Theorem 14, page 167].

6.3 In Differential Algebra
Let R = K{U} be a differential polynomial ring where K is a differential field of characteristic
zero, U is a finite set of differential indeterminates uk, endowed with a finite set of derivations
{δ1, . . . , δm}. Let Θ denote the multiplicative monoid of derivation operators, generated by the m
derivations. See Section 5.2, page 39, for more details.

The differential polynomial ring R = K[ΘU ] is a polynomial ring in infinitely many indetermi-
nates (the derivatives). It is thus not Nötherian and the Lasker-Nöther Theorem needs not hold.
Indeed, we only have a weak form at our disposal (Proposition 25).

An ideal A of R is said to be differential if θ f ∈ A whenever f ∈ A, for any differential
polynomial f ∈ R and any derivation operator θ ∈ Θ. The radical of a differential ideal is a radical
differential ideal (or perfect in Ritt’s terminology). A prime differential ideal is a differential ideal
which is prime. If A ⊂ R, then one denotes [A] the differential ideal generated by A.

We are now ready to state [6, I, 16, Theorem; and 17, page 16].
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Proposition 24 Every radical differential ideal A of R has a representation as an irredundant
finite intersection of prime differential ideals A = ∩ri=1Pi. Irredundant means that if i ̸= j then
Pi ̸⊂ Pj.

By analogy with the commutative algebra case, we will call the differential prime ideals Pi the
associated differential prime ideals of A (the essential prime divisors in Ritt’s terminology).

There does not seem to be any mention of primary differential ideals in classical books, though
the study of differential ideals such as [yp] [6, I, 21, page 16] is probably related to such a concern.

Proposition 24 implies the following differential Nullstellensatz [6, II, 7, Theorem of zeros, page
27].

Proposition 25 (differential Nullstellensatz)
Let p1, . . . , pn be differential polynomials of R = K{U} and A be the radical of the differential

ideal that they generate. Then a differential polynomial f belongs to A if and only if it vanishes
over every solution of the system of differential polynomial equations p1 = · · · = pn = 0, taken in
some non-fixed differential field extension K ′ of K.

In principle, the proof is exactly the same as in commutative algebra.
In the non-differential case, we have used the Lasker-Nöther Theorem to conclude that, if f /∈

√
a

then there exists an associated prime ideal of a which does not contain f . In the differential case,
one may use Proposition 24 for the same purpose.

A notion which may seem unclear to some readers is that, if P is a differential prime ideal of R
then R/P is a differential ring. A clear explanation is given in [6, II, 6, page 26]: a residue class
ring S/a is the set of the equivalence classes w.r.t. the equivalence relation modulo the ideal a.
This set is endowed with a ring structure by defining the sum and the product of two classes. If
a lies in a class A and b lies in a class B then the sum of the two classes A + B is defined as the
class which contains the sum a + b (the product is defined likewise). And it is a classical exercise
to prove, using the definition of ideals, that A+ B depends on A and B and not on the arbitrary
elements a ∈ A and b ∈ B. If a is differential, one can similarly define the derivative of a class and
thereby endow S/a of a differential ring structure.

6.4 The Splitting Case Mechanism
Proposition 26 Let p1, . . . , pn be differential polynomials of R = K{U} and A be the radical of
the differential ideal that they generate. Let h be any differential polynomial.

Then the solution set V of p1 = · · · = pn = 0 is the union V = V1 ∪ V2 of the solution sets V1

of p1 = · · · = pn = h = 0, and V2 of p1 = · · · = pn = 0, h ̸= 0.
Moreover, the set A1 of the differential polynomials which annihilate over V1 is the radical

differential ideal
√
[A ∪ {h}], the set A2 of the differential polynomials which annihilate over V2 is

the radical differential ideal A : h∞, and we have A = A1 ∩ A2.

Proof The fact that V = V1 ∪ V2 is obvious.
The fact that A1 =

√
[A ∪ {h}] is a consequence of Proposition 25.

By Proposition 25, the differential polynomials that annihilate over V2 have the form hd f with
d ≥ 0 and f ∈ A. They thus belong to A2 = A : h∞. By definition of the saturation, A2 is the
intersection of the associated differential prime ideals of A which do not contain h (one defines the
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empty intersection to be the whole ring). Since it is an intersection of prime differential ideals, it
is a radical differential ideal.

The equivalence between V = V1 ∪V2 and A = A1 ∩A2 is classical. In the commutative algebra
context, see [8, VII, 3, page 160]. □

6.5 Formal Power Series Solutions
Assume u(x) is an analytic function. The following formula is well-known:

u(x) = u(0) + u̇(0)x+ ü(0)
x2

2
+ · · ·

It generalizes to functions of m independent variables x1, . . . , xm. If θ = δa11 · · · δamm is a derivation
operator, denote xθ = xa11 · · ·xamm and θ! = a1! · · · am!. Then

u(x) =
∑

(θ u)(0)
xθ

θ!
·

Let A be a radical differential ideal of R. Let us view every derivative of any differential
indeterminate as a non-differential indeterminate and seek a solution of A in, say, the field of the
complex numbers. Such a solution provides a map φ : ΘU → C. Now, if we interpret φ(θ u) as
(θ u)(0) and the derivations δk as partial derivatives w.r.t. xk, for 1 ≤ k ≤ m, then the vector
(ū1, . . . , ūn) (see below) provides a solution of A has a tuple of formal power series.

ūk(x) =
∑

φ(θ uk)
xθ

θ!
·

Example. Let us consider the differential equation u̇3 − 27u2, which admits u(x) = (x + c)3 as
a solution.

> with (DifferentialAlgebra):
> with (Tools):

> p := u[x]^3-27*u[]^2;
3 2

p := u[x] - 27 u[]

Let us assign to ideal the regular differential chain that it defines.

> R := DifferentialRing (derivations = [x], blocks = [u]):
> ideal := PretendRegularDifferentialChain ([p], R);

ideal := regular_differential_chain

Let us assign to ThetaU the following list of derivatives

> ThetaU := [seq (Differentiate (u,x^i,R,notation=tjet), i = 0..4)];
ThetaU := [u[], u[x], u[x, x], u[x, x, x], u[x, x, x, x]]

and to L some of the differential polynomials that must be annihilated by any solution φ.
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> L := [seq (Differentiate (p,x^i,R), i = 0..3)];
3 2 2

L := [u[x] - 27 u[] , 3 u[x, x] u[x] - 54 u[x] u[],

2 2 2
3 u[x, x, x] u[x] + 6 u[x, x] u[x] - 54 u[x, x] u[] - 54 u[x] ,

2
3 u[x, x, x, x] u[x] + 18 u[x, x, x] u[x, x] u[x] - 54 u[x, x, x] u[]

3
+ 6 u[x, x] - 162 u[x, x] u[x]]

In order to obtain a solution φ, a simple method consists in computing the normal forms of the
derivatives of ThetaU w.r.t. the regular differential chain.

> NF_ThetaU := NormalForm (ThetaU, ideal);
2

u[x]
NF_ThetaU := [u[], u[x], 2/3 -----, 6, 0]

u[]

These normal forms depend on two symbols u[] and u[x] but any value given to these symbols
must annihilate p. We thus cannot choose both of them freely. A convenient possibility consists in
assigning c3 to u[] and 3 c2 to u[x].

> phi := [seq (ThetaU[i] = subs (u[]=c^3, u[x]=3*c^2, NF_ThetaU[i]), i=1..5)];
phi :=

3 2
[u[] = c , u[x] = 3 c , u[x, x] = 6 c, u[x, x, x] = 6, u[x, x, x, x] = 0]

Let us double check that phi actually is a non-differential solution of the polynomial equations
of L.

> subs (phi, L);
[0, 0, 0, 0]

In order to form the formal power series solution (which turns out to be a polynomial, here), let us
assign a generic formal power series to generic u

> generic_u := add (u[x$(i-1)]*x^(i-1)/(i-1)!, i = 1..5);
generic_u :=

2 3 4
u[] + x u[x] + 1/2 x u[x, x] + 1/6 x u[x, x, x] + 1/24 x u[x, x, x, x]

and replace the derivatives by the values listed in phi. We have got our differential solution.

> ubar := subs (phi, generic_u);
3 2 2 3

ubar := c + 3 x c + 3 x c + x

> factor (ubar);
3

(c + x)
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6.6 Concluding Remarks
This chapter owes a lot to [2].

Under some conditions, formal power series solutions provide analytic solutions. This is nicely
explained in [6, 7]. See also [5, 4] which give the most general rankings ensuring the analyticity of
the power series solutions of orthonomic systems, with analytic initial conditions.

The method for computing formal power series solutions permits to expand solutions for initial
values that do not annihilate the initials and the separants of the regular differential chain, i.e. for
regular initial values. The case of initial values that annihilate some initials or separants is much
more complicated and the general problem: given a regular differential chain and an expansion
point, does there exist a formal power series solution of the regular differential chain, centered
at that point, is undecidable (a decision algorithm would solve Hilbert’s tenth problem). See [3,
Theorem 4.11] for the key result and [1, 6.1.5, page 100] for the application to regular differential
chains.
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Chapter 7

Regular Differential Chains

This chapter aims at proving Proposition 29. First we recall some basic elements of differential
algebra. For more details, see Section 5.2, page 39.

Let R = K{U} be a differential polynomial ring where K is a differential field of characteristic
zero, U is a finite set of differential indeterminates uk, endowed with a finite set of derivations
{δ1, . . . , δm}. Let Θ denote the multiplicative monoid of derivation operators, generated by the m
derivations. Assume the infinite set of derivatives ΘU is ordered w.r.t. a ranking, so that the
leading derivative, the initial and the separant of any differential polynomial of R \ K are well
defined.

Recall that a differential polynomial f is said to partially reduced w.r.t. a differential polyno-
mial p if f does not depend on any proper derivative of the leading derivative of p. In the sequel, A
denotes a triangular set of n differential polynomials of R \K, pairwise partially reduced. If f is
any differential polynomial, then prem(f,ΘA) denotes the full remainder of f by all the derivatives
of A.

In the case m ≥ 2, the set A may involve critical pairs i.e. pairs {p1, p2} ⊂ A such that the
leading derivatives θ1 u of p1 and θ2 u of p2 are derivatives of some same differential indeterminate u.
Define θ12 = lcm(θ1, θ2) and the ∆-polynomial associated to the pair as

∆(p1, p2) = s1
θ12
θ2

p2 − s2
θ12
θ1

p1 ,

where s1, s2 are the separants of p1, p2. The critical pair is said to be solved if

prem(∆(p1, p2),ΘA) = 0

The set A is said to be coherent if all its critical pairs are solved.
Let h denote the product of the initials and the separants of A. Distinguish the differential

ideal [A] : h∞, which is the ideal generated by ΘA, saturated by h

[A] : h∞ = {f ∈ R | ∃ d ≥ 0 , fd ∈ (ΘA)}

from the non-differential ideal (A) : h∞, which is the ideal generated by A, saturated by h

(A) : h∞ = {f ∈ R | ∃ d ≥ 0 , fd ∈ (A)} .

Definition 5 A triangular set A of pairwise partially reduced differential polynomials of R is said
to be a regular differential chain if it satisfies the following conditions:
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a the initial ik of pk is regular in R/(p1, . . . , pk−1) :(i1 · · · ik−1)
∞ for 2 ≤ k ≤ n (algorithmic regular

chain criterion);

b the separant sk of pk is regular in R/(A) : (i1 · · · in)∞ for 1 ≤ k ≤ n;

c A is coherent, i.e. all critical pairs of A are solved (meaningful only if m ≥ 2).

Condition a implies that A is a regular chain (Proposition 5). Condition b implies that (A) :
(i1 · · · in)∞ = (A) : h∞ hence that the regular chain A can be used for recognizing zero and zero-
divisors in R/(A) : h∞. Condition c implies that A satisfies the hypotheses of Proposition 22
(Rosenfeld’s Lemma). Last observe that, since h contains the separants of A as factors, the ideal
(A) : h∞ satisfies the hypotheses of Proposition 17 (Lazard’s Lemma).

7.1 Important Properties
This section is actually a sequence of Propositions listing the properties of regular differential chains.
Many propositions are split in two parts, in order to separate the properties implied by Rosenfeld
and Lazard Lemmas from the ones implied by the regular chain condition.

Proposition 27 Let A be a coherent triangular set of pairwise partially reduced differential poly-
nomials of R, f be a differential polynomial of R and g = prem(f,Θ∗A), where Θ∗ denotes the set
of proper derivation operators.

Then f is zero in R/[A] : h∞ if and only if g is zero in R/(A) : h∞.

Proof The differential polynomial is zero in R/[A] : h∞ if and only if g is zero in R/[A] : h∞. The
partial remainder g is partially reduced w.r.t. A. By Rosenfeld Lemma (Proposition 22), g is zero
in R/[A] : h∞ if and only if g is zero in R/(A) : h∞. □

Proposition 28 Let A be a regular differential chain, h be the product of the initials and separants
of A and f be a differential polynomial of R.

Then prem(f,ΘA) = 0 if and only if f is zero in R/[A] : h∞.

Proof The implication ⇒ is clear.
In order to prove the implication ⇐, let us consider some f ∈ [A] : h∞ and denote g =

prem(f,ΘA) (the full remainder of f by A). Since g is partially reduced w.r.t. A, Proposition 22
(Rosenfeld’s Lemma) applies and g ∈ (A) : h∞. Since g = prem(g,A) and A is a regular chain and
(A) : (i1 · · · in)∞ = (A) : h∞, we have g = 0 (Proposition 5). □

The following Proposition is sometimes called the “lifting of Lazard’s Lemma” to differential
algebra. It relies on the notion of associated differential prime ideal of a radical differential ideal,
introduced in Proposition 24, page 53.

Proposition 29 Let A be a coherent triangular set of pairwise partially reduced differential poly-
nomials of R, h be the product of its initials and separants and R1 be the ring of the differential
polynomials partially reduced w.r.t. A.

Then the differential ideal [A]:h∞ is radical and there is a one-to-one correspondence between the
associated differential prime ideals P1, . . . ,Pr of [A] :h∞ and the associated prime ideals p1, . . . , pr
of the non-differential ideal (A) : h∞ of R1. The correspondence is given by pi = Pi ∩ R1 for
1 ≤ i ≤ r.

58



Proof Let f be a differential polynomial such that fd ∈ [A] : h∞ for some d ≥ 0. Let g =
prem(f,Θ∗A) where Θ∗ denotes the set of all proper derivation operators (so that g is the partial
remainder of f by A). Then gd ∈ [A] : h∞. Since g is partially reduced w.r.t. A, Proposition 22
(Rosenfeld’s Lemma) applies and gd ∈ (A) : h∞. Since h contains each separant of A as a factor,
Proposition 17 (Lazard’s Lemma) applies and g ∈ (A) : h∞. Therefore, g ∈ [A] : h∞ and so does f .
The differential ideal [A] : h∞ is thus radical.

The intersection of a prime ideal of R and the subring R1 ⊂ R is a prime ideal of R1. Therefore,
(A) :h∞ = ∩ri=1pi where pi = Pi∩R1 is prime for 1 ≤ i ≤ r. We thus only need to prove that none
of the pi is redundant. We assume p1 is redundant and we seek a contradiction by proving that P1

is redundant too. Let f ∈ ∩ri=1Pi and g = prem(f,Θ∗A). We have g ∈ ∩ri=2pi hence g ∈ (A) : h∞
since we have assumed p1 is redundant. Therefore, g ∈ [A] : h∞, so does f and P1 is redundant. □

The following Propositions deal with the notion of zero-divisors in differential residue class rings.
Some explanations are provided in Chapter 1.

Proposition 30 Let A be a coherent triangular set of pairwise partially reduced differential poly-
nomials of R, h be the product of its initials and separants, f be a differential polynomial of R and
g = prem(f,Θ∗A), where Θ∗ denotes the set of proper derivation operators.

Then f is a zero-divisor in R/[A] : h∞ if and only if g is a zero-divisor in R/(A) : h∞.

Proof Let R1 the ring of the differential polynomials partially reduced w.r.t. A, P an associated
differential prime of [A] :h∞ and p = P∩R1. By Proposition 29, the prime ideal p is an associated
prime ideal of (A) : h∞.

The differential polynomial f ∈ P if and only if g ∈ p.
The differential polynomial f is a zero-divisor in R/[A] : h∞ if and only if f belongs to an

associated differential prime ideal of [A] : h∞.
The differential polynomial g is a zero-divisor in R/(A) : h∞ if and only if g belongs to an

associated prime ideal of (A) : h∞. □

The following Proposition relies on the notion of iterated resultant, which is introduced in
Chapter 3. In the case m ≥ 2, the set ΘA is not triangular so that the differential polynomial
of ΘA to be used for computing a resultant needs not be uniquely defined. In such a case, pick
any of the possible differential polynomials.

Proposition 31 Let A be a regular differential chain, h be the product of the initials and separants
of A and f be a differential polynomial of R.

Then res(f,ΘA) = 0 if and only if f is a zero-divisor in R/[A] : h∞.

Proof Decompose res(f,ΘA) = res(g,A) where g = res(f,Θ∗A) and Θ∗ is the set of proper
derivation operators.

Since all elements of Θ∗A have leading degrees equal to 1, we have g = ± prem(f,Θ∗A) (see
Corollary 1, page 10). By Proposition 30, f is a zero-divisor in R/[A] : h∞ if and only if g is a
zero-divisor in R/(A) :h∞. By Proposition 5, page 23 and the fact that (A) :h∞ = (A) : (i1 · · · in)∞,
the differential polynomial g is a zero-divisor in R/(A) : h∞ if and only if res(g,A) = 0. □
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7.2 Concluding Remarks
It seems that the term “regular differential chain” was introduced for the first time in [2], by analogy
with the regular chains studied in Chapter 3.

There is a relationship with the notion of characteristic set, a notion introduced by Ritt [3,
I, 5, page 5], then by Kolchin in a restricted case [1, I, 10, page 81]. Let R be a differential
polynomial ring endowed with a ranking. Characteristic sets are particular cases of autoreduced
sets (a notion introduced by Kolchin [1, I, 9, page 77]) i.e. sets of pairwise fully reduced differential
polynomials. According to Ritt, a characteristic set of a set E ⊂ R is an autoreduced subset of E
which is minimal, in some sense, among all autoreduced subsets of E. The minimality condition
is somewhat complicated but ensures the following target property: if C is a characteristic set
of E and f is a nonzero differential polynomial, fully reduced w.r.t. C, then the characteristic sets
of E ∪ {f} are smaller than C. If A is a regular differential chain, then its elements need not
be pairwise fully reduced but it is always possible to reduce them without changing their leading
derivatives nor their leading degrees. The resulting set is both a regular differential chain and a
characteristic set (in Ritt and Kolchin sense) of the differential ideal [A] : h∞, where h denotes the
product of the initials and separants of A. In summary, a regular differential chain A has the same
leading derivatives and leading degrees than any characteristic set of the differential ideal [A] : h∞.
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Chapter 8

Normal Forms

Let R = K{U} be a differential polynomial ring where K is a differential field of characteristic
zero, U is a finite set of differential indeterminates uk, endowed with a finite set of derivations
{δ1, . . . , δm}. Let Θ denote the multiplicative monoid of derivation operators, generated by the m
derivations. Assume the infinite set of derivatives ΘU is ordered w.r.t. a ranking, so that the
leading derivative, the initial and the separant of any differential polynomial of R \ K are well
defined.

Recall that a differential polynomial f is said to partially reduced w.r.t. a differential polyno-
mial p if f does not depend on any proper derivative of the leading derivative of p. In the sequel, A
denotes a triangular set of n differential polynomials of R \K, pairwise partially reduced. If f is
any differential polynomial, then prem(f,ΘA) denotes the full remainder of f by all the derivatives
of A.

According to Definition 5, page 57, a triangular set A of pairwise partially reduced differential
polynomials of R is said to be a regular differential chain if it satisfies the following conditions:

a the initial ik of pk is regular in R/(p1, . . . , pk−1) : (i1 · · · ik−1)
∞ for 2 ≤ k ≤ n (algorithmic regular

chain criterion);

b the separant sk of pk is regular in R/(A) : (i1 · · · in)∞ for 1 ≤ k ≤ n;

c A is coherent, i.e. all critical pairs of A are solved (meaningful only if m ≥ 2).

We have not recalled the definition of the coherence, which does not play any role in this chapter.
See Definition 4, page 44.

Let A be a regular differential chain. Let A = [A] : h∞ (the differential ideal generated by A,
saturated by h) where h is the product of the initials and separants of A. Then, given any f ∈ R,
we have prem(f,ΘA) = 0 if and only if f is zero in R/[A] :h∞ (Proposition 28) and res(f,ΘA) = 0
if and only if f is a zero-divisor in R/[A] : h∞ (Proposition 31).

The regular differential chain A permits to compute normal forms of differential polynomials
of R and, more generally of differential fractions with denominators regular in R/[A] : h∞.

Split the set ΘU of the derivatives into L = ldA (the leading derivatives of A) and N = ΘU\ΘL
(the set of the derivatives of ΘU which are not derivatives of any element of L). Then K[N ∪ L]
is the ring of the differential polynomials partially reduced w.r.t. A.
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Definition 6 Let A be a regular differential chain, L = ldA and N = ΘU \ ΘL. Let a be a
nonzero differential polynomial of R. An inverse of a is any fraction f/g of nonzero differential
polynomials such that f ∈ K[N ∪ L] and g ∈ K[N ] and a f = g in R/A.

Proposition 32 Let A be a regular differential chain, L = ldA and N = ΘU \ ΘL. Let a be a
nonzero differential polynomial of R. A differential polynomial a ∈ R admits an inverse if and only
if a is regular in R/A.

Proof Let b = prem(a,Θ∗A) be the partial remainder of a by A (where Θ∗ is the set of proper
derivation operators). By Proposition 30, a is regular in R/A if and only if b is regular in R/A.
Moreover, there exists a power product ha of separants of A such that ha a = b mod [A]. Observe
ha ∈ K[N ∪ L]. Let now g = res(b, A) = res(b,ΘA) since b is partially reduced w.r.t. A. By
Proposition 31, b is regular in R/A if and only if g ̸= 0. Observe g ∈ K[N ]. Using Proposition 12,
page 27, we see that there exists a differential polynomial u ∈ K[N ∪L] such that u b = g mod (A).
Therefore a is regular in R/A if and only if there exists a differential polynomial f = ha u ∈ K[N∪L]
and a nonzero differential polynomial g ∈ K[N ] such that a f = g mod [A] i.e. an inverse f/g of a.
□

The proof of the above Proposition actually provides an algorithm for computing an inverse
of a whenever it exists. One may also use the algorithm AlgebraicInverseNonZero given in
Figure 3.1, page 30, instead of computing the resultant. A feature of this variant is that the inverse
computation may fail even if the inverse exists, exhibiting a factorization of some element of A.

Definition 7 Let A be a regular differential chain, L = ldA and N = ΘU \ ΘL. Let a/b be a
differential fraction, with b regular in R/A. A normal form of a/b modulo A is any differential
fraction f/g such that

1 f is fully reduced with respect to A ;

2 g belongs to K[N ] (and is thus regular in R/A),

3 a/b = f/g in R/A.

Proposition 33 Let a/b be a differential fraction, with b regular in R/A. The normal form f/g
of a/b exists and is unique. In particular,

4 a is zero in R/A if and only if its normal form is zero ;

5 f/g is a canonical representative of the residue class of a/b in the total quotient ring of R/A.

Moreover,

6 each irreducible factor of g divides the denominator of an inverse of b, or of some initial or
separant of A .

Proof One first proves the uniqueness of the normal form. Assume f ′/g′ is another normal form
of a/b. Then, by 3, f/g = f ′/g′ in R/A, which implies that f g′ − f ′ g is zero in R/A. By 1 and 2,
we have prem(f g′ − f ′ g,ΘA) = f g′ − f ′ g. By Proposition 28 we then have f g′ − f ′ g = 0. The
two fractions are thus equal.

62



function NF (a/b, A)
Parameters

a/b is a differential fraction with a, b ∈ R.
A = {p1, . . . , pn} is a regular differential chain, defining a differential ideal A.

Result
the normal form of a/b modulo A or an error.

begin
zb/tb := an inverse of b modulo A
(fn+2, gn+2) := (zb a, tb)
zi/ti := an inverse of each separant si of A
using Ritt’s partial reduction algorithm, compute d1, . . . , dn ∈ N and

rn+1 ∈ K[N ∪ L] such that sd11 · · · sdnn fn+2 ≡ rn+1 mod A

fn+1 := zd11 · · · zdnn rn+1

gn+1 := td11 · · · tdnn gn+2

denote vi = ld pi (1 ≤ i ≤ n) and assume vn > · · · > v1
for ℓ from n to 1 by −1 do
rℓ := prem(fℓ+1, pℓ, vℓ)
let iℓ denote the initial of pℓ
let dℓ ∈ N be such that idℓℓ fℓ+1 ≡ rℓ mod (pℓ)
zℓ/tℓ := an inverse of iℓ modulo A

fℓ := zdℓℓ rℓ
gℓ := tdℓℓ gℓ+1

od
return f1/g1

the rational fraction may be reduced by means of a gcd computation
of multivariate polynomials over the field K
end

Figure 8.1: The NF function.

The NF algorithm in Figure 8.1 returns a fraction. To prove the existence of the normal form,
it is sufficient to prove that the fraction returned by the NF algorithm in Figure 8.1 satisfies 1, 2
and 3.

1. The differential polynomial rn+1 is a partial remainder. It is thus partially reduced with
respect to A. The differential polynomials z1, . . . , zn lie in K[N ∪ L] i.e. are partially reduced
w.r.t. A. Thus fn+1 is partially reduced w.r.t. A. Let now n ≥ ℓ ≥ 1 be a loop index. Assume fℓ+1

is partially reduced w.r.t. A and deg(fℓ+1, vk) < deg(pk, vk) for each n ≥ k > ℓ. Consider the se-
quence of instructions of the loop body. After the pseudodivision, we have deg(rℓ, vℓ) < deg(pℓ, vℓ).
Moreover, since deg(iℓ, vℓ) = 0, we have deg(zℓ, vℓ) = 0. Thus fℓ is partially reduced w.r.t. A and,
using the fact that pℓ does not depend on vℓ+1, . . . , vn, one has deg(fℓ, vk) < deg(pk, vk) for each
n ≥ k ≥ ℓ. Putting the above argument in an inductive proof, one sees that f = f1 is partially
reduced w.r.t. A and deg(f1, vk) < deg(pk, vk) for each n ≥ k ≥ 1 i.e. that f is fully reduced
w.r.t. A.

2. One actually proves 6, which implies 2. All the differential polynomials gi are products of
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denominators of inverses of b and of the initials and separants of A. They belong to K[N ]. The
final reduction may simply remove some factors of g1.

3. At the beginning of the function, a/b = fn+2/gn+2 in R/A. After the partial reduction step,

a

b
=

fn+2 s
d1
1 · · · sdnn zd11 · · · zdnn

gn+2 s
d1
1 · · · s

dn
n zd11 · · · z

dn
n

in R/A .

Simplify sd11 · · · sdnn fn+2 as rn+1 and each product si zi as ti. One sees that a/b = fn+1/gn+1 in R/A.
Let now n ≥ ℓ ≥ 1 be a loop index, consider the sequence of instructions of the loop body and
assume that a/b = fℓ+1/gℓ+1 in R/A. After the pseudodivision step,

a

b
=

fℓ+1 i
dℓ
ℓ zdℓℓ

gℓ+1 i
dℓ
ℓ zdℓℓ

in R/A .

Simplify idℓℓ fℓ+1 as rℓ and each product iℓ zℓ as tℓ. One sees that a/b = fℓ/gℓ in R/A. Putting the
above argument in an inductive proof, 3 is proved.

This concludes the proof of the existence of the normal form. One proceeds with the three last
points.

4. It follows from the uniqueness, 3 and the fact that 0 is a normal form.
5. It follows from 3 and the uniqueness of normal forms.
6. It was proved in 2, above. □

Proposition 34 Let a/b and a′/b′ be two differential fractions with b and b′ regular in R/A. Denote
f/g and f ′/g′ their normal forms. Then

(i) NF
(
a

b
+

a′

b′
, A

)
=

f

g
+

f ′

g′
,

(ii) NF
(
a

b
· a

′

b′
, A

)
= NF

(
f

g
· f

′

g′
, A

)
,

(iii) NF
(
θ
(a
b

)
, A

)
= NF

(
θ

(
f

g

)
, A

)
for each derivation operator θ. Moreover, each irreducible

factor of the denominator of this rational differential fraction divides the denominator of an
inverse of b, or of some initial or separant of A.

Proof (i). The differential fraction on the right hand-side is (f g′ + f ′ g)/(g g′). The numerator
is reduced w.r.t. A and the denominator g g′ ∈ K[N ]. It is thus a normal form. Equality follows
from the uniqueness.

(ii). It follows from Definition 7, 3 and the uniqueness normal forms.
(iii). The first statement follows from Definition 7, 3 and the uniqueness of normal forms. The

second statement follows from Proposition 33, 6. □

8.1 Concluding Remarks
This chapter owes a lot to [1] and [2].
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Chapter 9

The RosenfeldGroebner Algorithm

The version described here is quite close to the one implemented in the BLAD libraries [1], which is
called by the RosenfeldGroebner function of the MAPLE package. The algorithm first computes
regular differential systems (Definition 8), which are differential systems of polynomial equations
and inequations A = 0, S ̸= 0 over which Proposition 22 (Rosenfeld’s Lemma) and Proposition 17
(Lazard’s Lemma) apply. The set A is then converted into regular chains (hence regular differential
chains), by a non-differential algorithm.

Let R = K{U} be a differential polynomial ring where K is a differential field of characteristic
zero, U is a finite set of differential indeterminates uk, endowed with a finite set of derivations
{δ1, . . . , δm}. Let Θ denote the multiplicative monoid of derivation operators, generated by the m
derivations. Assume the infinite set of derivatives ΘU is ordered w.r.t. a ranking, so that the
leading derivative, the initial and the separant of any differential polynomial of R \ K are well
defined.

Recall that a differential polynomial f is said to partially reduced w.r.t. a differential polyno-
mial p if f does not depend on any proper derivative of the leading derivative of p. In the sequel, A
denotes a triangular system of differential polynomials of R \K, pairwise partially reduced. If f is
any differential polynomial, then prem(f,ΘA) denotes the full remainder of f by all the derivatives
of A.

In the case m ≥ 2, the set A may involve critical pairs i.e. pairs {p1, p2} ⊂ A such that the
leading derivatives θ1 u of p1 and θ2 u of p2 are derivatives of some same differential indeterminate u.
Define θ12 = lcm(θ1, θ2) and the ∆-polynomial associated to the pair as

∆(p1, p2) = s1
θ12
θ2

p2 − s2
θ12
θ1

p1 ,

where s1, s2 are the separants of p1, p2. The critical pair is said to be solved if

prem(∆(p1, p2),ΘA) = 0

The set A is said to be coherent if all its critical pairs are solved.

Definition 8 (regular differential system)
A regular differential system is a system A = 0, S ̸= 0 of differential polynomial equations and

inequations of R such that

• A is a triangular set of differential polynomials, pairwise partially reduced;
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• S contains the initials and separants of A and only involves differential polynomials partially
reduced w.r.t. A;

• A is coherent i.e. all critical pairs of A are solved (meaningful only if m ≥ 2).

The following proposition collects some important properties of regular differential systems.

Proposition 35 Let A = 0, S ̸= 0 be a regular differential system, h denote the product of the
elements of S and f be any differential polynomial of R. Then

1. the ideal (A) : h∞ is radical;

2. the differential ideal [A] : h∞ is radical;

3. The differential polynomial f is zero in R/[A] : h∞ if and only if prem(f,Θ∗A) is zero in
R/(A) : h∞, where Θ∗ denotes the set of all proper derivation operators;

4. The differential polynomial f annihilates over every solution of the regular differential system
if and only if f ∈ [A] : h∞.

Since A is not a regular chain, it is possible that [A] : h∞ = R. This is the case if and only if
(A) : h∞ = R (by Rosenfeld’s Lemma). If this happens, the system is said to be inconsistent.

9.1 An Ordinary Differential Example
Consider the following system of the differential polynomial ring R = Q{u, v} endowed with a single
derivation δx.

(Σ1) uxx + v = 0, u2x + v = 0.

Let us fix the ranking such that u≫ v which eliminates u and its derivatives. Leading derivatives
are then uxx and ux. The first equation is not partially reduced w.r.t. the second one. To reduce
it, proceed as follows: differentiate twice the second equation

2ux uxx + vx = 0

and replace uxx by −vx/(2ux) in the first one, which yields

− vx
2ux

+ v = 0.

Then replace the first equation by the reduced one or, more precisely, by its numerator. Let us
split cases, pose that ux ̸= 0 and consider separately the solutions of (Σ1) which annihilate ux. One
gets

(Σ2) uxx + v = 0, u2x + v = 0, ux = 0

and
(Σ3) 2 v ux − vx = 0, u2x + v = 0, ux ̸= 0.

Consider (Σ2). Plug the third equation in the second one and its first derivative in the first equation.
One gets v = 0. This system then simplifies to a regular differential system

(Σ4) ux = 0, v = 0
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whose solutions are u(x) = c and v(x) = 0, where c is an arbitrary constant. System (Σ4) is a
regular differential chain. Let us now come back to (Σ3). The two first equations have the same
leading derivtaive. This system is thus not triangular. Let us apply Ritt’s reduction algorithm as
follows: replace ux by vx/(2 v) in the second equation. This gives( vx

2 v

)2
+ v = 0.

Take the numerator, provided that v ̸= 0 and consider separately the solutions of (Σ3) which
annihilate v. One gets a new splitting.

(Σ5) 2 v ux − vx = 0, u2x + v = 0, v = 0, ux ̸= 0

and
(Σ6) 2 v ux − vx = 0, v2x + 4 v3 = 0, ux ̸= 0, v ̸= 0.

Consider (Σ5). Simplifying, one gets

(Σ7) u2x = 0, v = 0, ux ̸= 0.

It is a regular differential system. An algorithm such as regCharacteristic can then be applied.
By means of a gcd computation between u2x = 0 and ux ̸= 0, it proves that the system is inconsistent.
Come back to (Σ6). It is not yet a regular differential system because the separant 2 vx of the second
equation does not belong to the inequation set. Perform another splitting and consider separately
the solutions of (Σ6) which annihilate vx from the ones which do not annihilate it. One gets

(Σ8) 2 v ux − vx = 0, v2x + 4 v3 = 0, vx = 0, ux ̸= 0, v ̸= 0.

(Σ9) 2 v ux − vx = 0, v2x + 4 v3 = 0, vx ̸= 0, ux ̸= 0, v ̸= 0.

Argumenting as for (Σ7), one sees that (Σ8) is inconsistent. System (Σ9) is a regular differential
system. Its equation set even forms a regular differential chain. We can then drop the inequation
ux ̸= 0 which is not an initial nor a separant of the chain. The solutions of (Σ9) are u(x) =
c1− ln(x+c2) and v(x) = −1/(x+c2)

2 where c1 and c2 are arbitrary constants. Here is a summary
of the computations.

Σ1

Σ2

ux = 0

Σ3

Σ6

Σ4

Σ5 Σ7

Σ8

Σ9

ux ̸= 0

v = 0

v ̸= 0

vx = 0

vx ̸= 0

{
u(x) = c,
v(x) = 0

inconsistent

inconsistent

 u(x) = c1 − ln(x+ c2),

v(x) = −
1

(x+ c2)2
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Every solution of (Σ1) is a solution of (Σ4) or of (Σ9) and conversely. By Proposition 26, we
have √

[uxx + v, u2x + v] = [ux, v] ∩ [2 v ux − vx, v2x + 4 v3] : (v vx)∞.

By Proposition 28, a differential polynomial f belongs to
√

[Σ1] if and only if it is reduced to zero
by both (Σ4) and (Σ9). This is the case for f = vxx + 6 v2.

9.2 An Example with Partial Derivatives
Consider the system {f1, f2, f3} from the differential polynomial ring Q{u, v} endowd with the
two derivations δx and δy.

(Σ1) u2y − 4u = 0, ux − vx u = 0, vy = 0.

Let us fix the following ranking:

· · · > uxx > uxy > uyy > vxx > vxy > vyy > ux > uy > vx > vy > u > v.

The leading derivatives are then uy, ux and vy. The system is then triangular and its elements are
pairwise partially reduced. Is it coherent? The two first equations form a critical pair {f1, f2}.
Form

∆(f1, f2) = 2uuy vxy + 2u2y vx − 4ux.

Reduce it by (Σ1). One gets a fourth equation f4 = u vx = 0 that we add to the system:

(Σ2) u2y − 4u = 0, ux − vx u = 0, vy = 0, u vx = 0.

The former critical pair {f1, f2} is now solved. However, the new critical pair {f3, f4} arises.
Before forming the ∆-polynomial, let us split cases on the initial of f4 and consider separately the
solutions of (Σ2) which annihilate u from the ones which do not annihilate it. One gets

(Σ3) u2y − 4u = 0, ux − vx u = 0, vy = 0, u vx = 0, u = 0

and
(Σ4) u2y − 4u = 0, ux = 0, vy = 0, vx = 0, u ̸= 0.

System (Σ3) simplifies to
(Σ5) vy = 0, u = 0

which constitutes a regular differential system and, even, a regular differential chain. Its solutions
are u(x, y) = 0 and v(x, y) = φ(x) where φ(x) is an arbitrary function of x.

Consider system (Σ4). The critical pair {f1, f2} is solved. The critical pair {f3, f4} is solved
also since ∆(f3, f4) = 0. This system is thus coherent. It is not yet a regular differential system
for the separant uy of f1 does not belong to the inequation set. Let us split cases:

(Σ5) u2y − 4u = 0, ux = 0, vy = 0, vx = 0, uy = 0, u ̸= 0

and
(Σ6) u2y − 4u = 0, ux = 0, vy = 0, vx = 0, uy ̸= 0, u ̸= 0.
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System (Σ5) is inconsistent. The new equation uy = 0 permits to simplify the first one and obtain
u = 0, which contradicts the inequation u ̸= 0. The system (Σ6) is a regular differential system. Its
equation set form a regular differential chain. An algorithm such as regCharacteristic permits to
prove that the inequation u ̸= 0, which is not an initial or a separant of the chain, is regular modulo
the ideal defined by the chain. It is thus discarded. The solutions of (Σ6) are u(x, y) = (y + c1)

2

and v(x, y) = c2 where c1 and c2 are arbitrary constants. Here is a summary of the computations.

Σ1 Σ2

Σ3

u = 0

{
u(x, y) = 0,
v(x, y) = φ(x)

u ̸= 0

{f1, f2} not processed {f1, f2} solved

{f3, f4} not processed

Σ4

coherent

Σ5 inconsistent

Σ6

{
u(x, y) = (y + c1)2,
v(x, y) = c2

uy = 0

uy ̸= 0

Every solution of (Σ1) is a solution of (Σ3) or of (Σ6), and conversely. As in the ordinary case,
we have √

[u2y − 4u, ux − vx u, vy] = [u, vy] ∩ [u2y − 4u, ux, vy, vx] : (uy)∞.

One also sees that u and vx do not belong to the radical of the differential ideal generated by Σ1

while their product does. This ideal is thus not prime.

9.3 Pseudo-Code
The following function gathers as input a system of differential polynomial equations and inequa-
tions A0 = 0, S0 ̸= 0 as well as a ranking O. It returns a list of regular differential chains A1, . . . , At

such that (denoting h0 the product of elements of S0 and hk the product of the initials and separants
of Ak, for 1 ≤ k ≤ t) √

[A0] : h∞0 = [A1] : h∞1 ∩ · · · ∩ [At] : h∞t .

When still being processed a system is a quadruple ⟨A, D, P, S⟩ where A is (somewhat) the set of
the already processed equations, D is the set of critical pairs to be processed, P is the set of the
equations to process and S is the set of the inequations.

The function relies on two sub-algorithms: the function complete, given afterwards and the
function regCharacteristic, which transforms a regular differential system as a possibly empty
intersection of differential ideals presented by regular differential chains. This function is completely
non-differential. It relies on the ideas sketched in Chapter 3 and is detailed in [3].

Splittings are handled through a list toDo of quadruples to be processed and a liste Done of
regular differential chains. The two insertions of quadruples performed before complete is called
correspond to splittings. The first one correspond to the case of the vanishing of the initial of f .
The second one corresponds to the case of the non-vanishing of the initial, and the vanishing of the
separant. The complete function covers the case of the non-vanishing of both the initial and the
separant of f .
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function RosenfeldGroebner (A0, S0, O)
begin
toDo := [⟨∅, ∅, A0, S0⟩]
Done := []
while toDo is not empty do

Pick a quadruple ⟨A, D, P, S⟩ from toDo
if D = P = ∅ then

Make all elements of A pairwise partially reduced
if this operation did not change leading derivatives nor leading degrees then

Make the elements of S partially reduced w.r.t. A
Append to Done the regular differential chains obtained by applying

regCharacteristic over A = 0, S ̸= 0
fi

else
if P ̸= ∅ then

Pick a differential polynomial f from P
else

Pick a critical pair {p1, p2} from D
f := ∆(p1, p2)

fi
g := prem(f,ΘA)
if g = 0 then

Append ⟨A, D, P, S⟩ to toDo
elif g /∈ K

Let v be the leading derivative, d the leading degree,
i the initial and s the separant of g

gi := g − i vd

gs := d g − v s
Append ⟨A, D, P ∪ {i, gi}, S⟩ to toDo
Append ⟨A, D, P ∪ {s, gs}, S ∪ {i}⟩ to toDo
Append complete (⟨A, D, P, S⟩, g) to toDo

fi
fi

od
return Done

end

9.3.1 The complete Subalgorithm
The complete function inserts the new equation g /∈ K in the list A. We want to keep the set
of leading derivatives of A pairwise partially reduced. We thus remove from A every differential
polynomial f whose leading derivative is a derivative of the one of g. Removed equations are not lost:
they are elements of critical pairs of D. Observe that, according to Definition 2, page 43, some of
the critical pairs may not define a ∆-polynomial. In the implementation of the RosenfeldGroebner
(and in the MAPLE package), the definition of ∆-polynomials was generalized to cover this case.
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function complete (⟨A, D, P, S⟩, f)
begin
Ā := the union of {g} and the set of the elements of A whose leading derivatives

are not a derivative of the one of g
D̄ := the union of D and the set of all critical pairs that can be formed between g

and any element of A
P̄ := P
S̄ := the union of S and the initial and the separant of g
return ⟨Ā, D̄, P̄ , S̄⟩

end

9.3.2 The regCharacteristic Subalgorithm
It is a non-differential algorithm essentially applying the ideas given in Chapter 3 and, in particular,
the algorithms given in Figures 3.1, page 30 and 3.2, page 31.

The input is a regular differential system A0 = 0, S0 ̸= 0. The output is a possibly empty set
of regular differential chains A1, . . . , Ar such that

(A0) : h∞0 = ∩ri=1(Ai) : h∞i

where h0 is the product of the elements of S0 and hi is the product of the initials and separants
of Ai for 1 ≤ i ≤ r. The algorithm ultimately relies on Proposition 4. Denote A0 = {p1, . . . , pn}.
All computations are performed in R0 = K0[x1, . . . , xn] where xi is the leading derivative of pi
and K0 is the field obtained by moving all other derivatives in the ground field of the equations.

The algorithm builds a sequence of sets (Fi) as follows. Initially, F0 = {(A0 = 0, S0 ̸= 0)}.
Assume Fi = {(A1 = 0, S1 ̸= 0), . . . , (At = 0, St ̸= 0)}. Two cases may arise:

1. each Ai is monic and each Si is empty, for 1 ≤ i ≤ t. Then, after clearing denominators,
return {A1, . . . , At};

2. there exists some A = 0, S ̸= 0 in Fi such that A contains some non-monic polynomial or S
is not empty. Then apply one of the rules R1 or R2 over A = 0, S ̸= 0, giving a possibly
empty set F̄ . Define Fi+1 = Fi \ {(A = 0, S ̸= 0)} ∪ F̄ .

R1: try to make a polynomial monic. This rule applies if there exists some non-monic
polynomial pk ∈ A such that p1, . . . , pk−1 ∈ A are monic. Three cases may arise:

1. the initial of pk is zero in R0/(p1, . . . , pk−1) (see Proposition 5). Then F̄ = ∅;

2. an inverse of the initial of pk in R0/(p1, . . . , pk−1) could be computed by the algorithm
AlgebraicInverseNonZero given in Figure 3.1. Then F̄ = {(A′ = 0, S ̸= 0)} where A′

is obtained from A by making pk monic, using the inverse;

3. the algorithm AlgebraicInverseNonZero raised the exception “inversion of a zero-divisor”
and returned a triple (j, f, g) such that 1 ≤ j < k and pj = f g in R0/(p1, . . . , pj−1). Then
F̄ = {(Af , S ̸= 0), (Ag, S ̸= 0)} where Af = A \ {pj} ∪ {f} and Ag = A \ {pj} ∪ {g}.
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R1: try to get rid of an inequation. This rule applies if there exists some s ∈ S such that
the leading variable of s is xk and p1, . . . , pk ∈ A are monic. Three cases may arise:

1. s is zero in R0/(p1, . . . , pk) (see Proposition 5). Then F̄ = ∅;

2. an inverse of s in R0/(p1, . . . , pk) could be computed by the algorithm AlgebraicInverseNonZero
given in Figure 3.1. Then F̄ = {(A = 0, S′ ̸= 0)} where S′ = S \ {s};

3. the algorithm AlgebraicInverseNonZero raised the exception “inversion of a zero-divisor”
and returned a triple (j, f, g) such that 1 ≤ j < k and pj = f g in R0/(p1, . . . , pj−1). Then
F̄ = {(Af , S ̸= 0), (Ag, S ̸= 0)} where Af = A \ {pj} ∪ {f} and Ag = A \ {pj} ∪ {g}.

Proposition 36 The regCharacteristic algorithm terminates.

Proof If all inverse computations succeed, the termination is clear. Each time a zero-divisor is
exhibited, the triangular set A is split in two triangular sets, obtained by replacing a polynomial
of A by two polynomials with strictly lower leading degrees. Cases can thus only be split finitely
many times. □

9.3.3 Termination Proof
Proposition 37 The RosenfeldGroebner function terminates.

Proof Every infinite locally finite tree involves a branch of infinite length (König’s Lemma).
Locally finite means that finitely many edges start from each node.

The function builds a locally finite tree of quadruples. It is thus sufficient to prove that no
branch has infinite length.

The call to complete modifies A. Using essentially the arguments developed in Proposition 19,
page 41 (Dickson’s Lemma), it is possible to prove that it can only be called finitely many times.
This function is the only one to enlarge D. In all branches of the tree, the list D thus remains
finite and we can slightly cheat, assume D does not exist and that all ∆-polynomials are present
in P from the beginning.

The two other operations which are likely to generate a quadruple consist in extracting a
differential polynomial f from P and to replace them by at most two differential polynomials which
have either lower leading derivative or same leading derivative and lower leading degree than f . By
Proposition 19, these operations can only be performed finitely many times.

Eventually, the regCharacteristic algorithm is performed finitely many times. Each call
terminates by Proposition 36. □

9.4 Concluding Remarks
This chapter owes a lot to [2, chapter 9]. The regCharacteristic algorithm is borrowed from [3].

An analogue of Buchberger’s second criterion to avoid useless critical pairs does exist. Some
further efficient criteria are presented in [2, section 9.5].

By applying a primary decomposition algorithm over each regular differential chain, one would
obtain a representation of the radical of the differential ideal defined by the input system as a finite
intersection of prime differential ideals. However, this intersection does not need to be irredundant
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and the problem of computing an irredundant decomposition is theoretically wide open. See1 [4,
IV, 9, page 166].

In non-differential algebra, the principal ideal theorem permits to cut some branches in the
splitting tree. Indeed, if the input system involves n equations then every regular chain that
involves more than n equations is necessarily redundant. The argument is a dimension-theoretic
one. In differential algebra, we only know that if the input system involves a single equation, then
every regular differential chain that involves more than one equation is necessarily redundant [4,
IV, 14, Theorem 5, page 185]. This result is part of the Low Power Theorem. See [5, III, 1, page
57] or [4, IV, 15, Theorem 6, page 187]. The general case is wide open and is one of the questions
for investigation stated by Ritt [5, Appendix, 10, page 178]. In the MAPLE package, the interface
of the RosenfeldGroebner function permits the user to assume the conjecture holds. By default,
the conjecture is assumed not to hold.
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Chapter 10

The Henri-Michaelis-Menten Formula

Final models do not require any deep ideal theory but intermediate, temporary models do.
In this chapter, one considers models designed as systems of parametric — every model is

parametric — ordinary differential equations. Final models, the ones which occur in books, are
usually very simple, from an ideal-theoretic point of view. However, on the long path leading to
the final model, the modeler may need to study the consequences of various hypotheses, which can
sometimes be formulated as equations. The investigation of these intermediate, temporary models,
that book readers usually do not see, may actually require a much more intrincated ideal theory.

This chapter develops such an example. It owes a lot to [3]. It shows that the famous Henri-
Michaelis-Menten formula [4, 7] can be obtained by encoding the hypotheses which lead to it as
differential equations and simplifying them through a differential elimination process.

We start with the following chemical reaction system. It describes the transformation of a
substrate S into a product P , in the presence of some enzyme E. An intermediate complex C is
formed.

E + S
k1−−−→←−−−
k−1

C
k2−−−→ E + P . (10.1)

It is interesting to note that a chemical reaction system may be endowed with at least eight
dynamics: the state space may be discrete or continuous, the time may be discrete or continuous,
and the evolution rules may be deterministic or stochastic. See [8]. These eight dynamics have
something in common, which is provided by a graph such as (10.1) and could be summarized in
the stoichiometry matrix of the system. See [5] for more details on the informations that can be
extracted from the stoichiometry matrix.

In this chapter, we focus on the case of a continuous state space, continuous time, and deter-
ministic evolution (the deterministic model). The symbols k1, k−1, k2 then denote reaction rates
and are considered as parameters.

The sought Henri-Michaelis-Menten formula is Formula (10.2). It features two parameters Vmax
and K which are rational functions of k1, k−1, k2.

dS
dt (t) = −

Vmax S(t)

K + S(t)
(10.2)

Let us first build the deterministic model of (10.1) using the mass-action law. The four func-
tions correspond to the concentrations of the corresponding chemical species. The matrix N is the
stoichiometry matrix.
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> with (LinearAlgebra):
> X := <E(t), S(t), C(t), P(t)>:
> V := <k[1]*E(t)*S(t), k[-1]*C(t), k[2]*C(t)>:
> N := <<-1, -1, 1, 0> | <1, 1, -1, 0> | <1, 0, -1, 1>>:
> X, N, V;

[E(t)] [-1 1 1]
[ ] [ ] [k[1] E(t) S(t)]
[S(t)] [-1 1 0] [ ]
[ ], [ ], [ k[-1] C(t) ]
[C(t)] [ 1 -1 -1] [ ]
[ ] [ ] [ k[2] C(t) ]
[P(t)] [ 0 0 1]

Here is a first formulation of the dynamical system.

> madm := map (diff, X, t) = N . V;
[d ]
[-- E(t)]
[dt ]
[ ]
[d ] [-k[1] E(t) S(t) + k[-1] C(t) + k[2] C(t)]
[-- S(t)] [ ]
[dt ] [ -k[1] E(t) S(t) + k[-1] C(t) ]

madm := [ ] = [ ]
[d ] [k[1] E(t) S(t) - k[-1] C(t) - k[2] C(t) ]
[-- C(t)] [ ]
[dt ] [ k[2] C(t) ]
[ ]
[d ]
[-- P(t)]
[dt ]

This is a final model. The differential ideal generated by these polynomial differential equations
is prime. Differential algebra is not useful here.

10.1 An Overly Simplifying Assumption
For a while, one could read in the Wikipedia that the Henri-Michaelis-Menten formula could be
obtained by assuming that the rate change of the complex C(t) is zero. In the web page, the authors
started to use this assumption in their proof and then carefully forgot it, because it actually leads
to a useless system.

The RosenfeldGroebner function permits to represent the radical A of the differential ideal
generated by a given input system as a finite intersection of differential ideals, presented by regular
differential chains. By the differential Nullstellensatz (Proposition 25, page 53), A can be viewed
as the set of all the equations that are consequences of the input system.

> with(DifferentialAlgebra);

Let us now define a differential polynomial ring, endowed with the ranking

(the derivatives of C,E, P, S)≫ (the parameters k1, k−1, k2) .
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> R := DifferentialRing
(blocks = [[C,E,P,S], [k[1](),k[-1](),k[2]()]], derivations = [t]);

R := differential_ring

Let us now add to madm the hypothesis that C(t) is a constant, obtaining a new system called
madm approx.

> madm_approx :=
[ seq (lhs (madm) [i] = rhs (madm) [i], i = 1 .. Dimension (X)),
diff (C(t),t) = 0 ];

d
madm_approx := [-- E(t) = -k[1] E(t) S(t) + k[-1] C(t) + k[2] C(t),

dt

d
-- S(t) = -k[1] E(t) S(t) + k[-1] C(t),
dt

d d
-- C(t) = k[1] E(t) S(t) - k[-1] C(t) - k[2] C(t), -- P(t) = k[2] C(t),
dt dt

d
-- C(t) = 0]
dt

In the simplification process, we do not want to discuss the possible vanishing of any expression
depending on the three parameters: we want the simplification to be “generic”. The algebraic way
to formulate this consists in moving the three parameters in the ground field of the equations.
Indeed, in a field, every quantity which is not zero is invertible, and cannot vanish.

> Field := field (generators = [k[1],k[-1],k[2]]);
Field := field(generators = [k[1], k[-1], k[2]])

Let us now simplify the system over the ground field Field.

> ideal := RosenfeldGroebner (madm_approx, R, basefield = Field);
ideal := [regular_differential_chain, regular_differential_chain]

We have got two cases, represented by two regular differential chains. The two chains are very
simple and obviously define prime differential ideals which are not included in each other. The
intersection is thus irredundant (Proposition 24, page 53).

> Equations (ideal);
d d d d

[[-- E(t), -- P(t), C(t), S(t)], [-- P(t), -- S(t), C(t), E(t)]]
dt dt dt dt

A differential polynomial belongs to the differential ideal A generated by madm approx if and only
if it belongs to both its associated differential prime ideals. We thus see that S(t)E(t) ∈ A while
S(t), E(t) /∈ A. With less algebraic words, the equations of madm approx imply that C(t) = 0 and
that, either S(t) = 0 or E(t) = 0.
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This is afterwards easy to understand: if C(t) were not zero, then it would tend to zero and
would thus not be a constant. We thus need C(t) to be zero and to remain zero. Then the reaction
labelled by k1 must not fire. This implies that either S(t) = 0 or E(t) = 0.

Obviously, our assumption leads to overly simplified models. It is however a nice example of a
naturally occuring intermediate, temporary model, generating a non-prime differential ideal.

10.2 The Right Approximation
It relies on the idea that the set of reactions can be split into two subsets: the set of the fast
reactions and the one of the slow reactions. Here, the fast reactions are the ones labelled with
k1, k−1. The slow reaction is the third one, labelled with k2.

The first step consists in simplifying (10.1) by forgetting everything about the dynamics of
the fast reactions, except that they exist i.e. that there is some conservation of the flow (quite
interesting: we are somehow coming back to the part of the dynamics which is common to the eight
dynamics). This we encode by representing this unknown flow by a new unknown function F1(t).
We then obtain the following reaction system where F1(t) has the dimension of a flow.

E + S
F1(t)−−−→←−−−
−F1(t)

C
k2−−−→ E + P .

The second step consists in restricting this generalized dynamics to the algebraic variety defined
by the fast reactions of (10.1), if there were no slow reactions, i.e. to the variety defined by the
algebraic equation

k1E(t)S(t)− k−1C(t) = 0 .

Together, the two steps lead to the following system (a DAE, actually):
> sys := [

diff(E(t),t) = - F[1](t) + k[2]*C(t),
diff(S(t),t) = - F[1](t),
diff (C(t),t) = - k[2]*C(t) + F[1](t),
diff (P(t),t) = k[2]*C(t),
0 = k[1]*E(t)*S(t) - k[-1]*C(t)

];

d d
sys := [-- E(t) = -F[1](t) + k[2] C(t), -- S(t) = -F[1](t),

dt dt

d d
-- C(t) = -k[2] C(t) + F[1](t), -- P(t) = k[2] C(t),
dt dt

0 = k[1] E(t) S(t) - k[-1] C(t)]

We are now going to simplify sys by eliminating the unknown flow F1(t). We thus choose a ranking
such as

(the derivatives of F1)≫ (the derivatives of C,E, P, S)≫ (the parameters) .
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> R := DifferentialRing
(blocks = [F[1], [C,E,P,S], [k[1](),k[-1](),k[2]()]],
derivations = [t]);

R := differential_ring

As above, we want the simplification to be generic. We thus move the parameters to the base field
of the equations.

> Field := field (generators = [k[1],k[-1],k[2]]);
Field := field(generators = [k[1], k[-1], k[2]])

The simplification process represents the differential ideal defined by sys as an intersection of three
differential ideals, presented by regular differential chains.

> ideal := RosenfeldGroebner (sys, basefield = Field, R);
ideal := [regular_differential_chain, regular_differential_chain,

regular_differential_chain]

Here are their equations, in “solved” form i.e. with leading derivatives on the left hand-sides.

> Equations (ideal, solved);
2 2

-E(t) S(t) k[1] k[2] - E(t) S(t) k[1] k[-1] k[2]
[[F[1](t) = - --------------------------------------------------,

%1

2 2
d E(t) S(t) k[1] k[2] d E(t) S(t) k[1] k[2]
-- E(t) = ---------------------, -- P(t) = -------------------,
dt %1 dt k[-1]

2 2
d E(t) S(t) k[1] k[2] + E(t) S(t) k[1] k[-1] k[2]
-- S(t) = - -------------------------------------------------,
dt %1

E(t) S(t) k[1]
C(t) = --------------],

k[-1]

d k[-1]
[F[1](t) = 0, -- P(t) = 0, C(t) = 0, E(t) = - -----, S(t) = 0],

dt k[1]

d k[-1]
[F[1](t) = 0, -- P(t) = 0, C(t) = 0, E(t) = 0, S(t) = - -----]]

dt k[1]

2
%1 := E(t) k[1] k[-1] + S(t) k[1] k[-1] + k[-1]

79



The first component is the interesting one since it corresponds to a nonzero flow. The differential
equation which gives the evolution of the substrate S(t) does not exactly look like the Michaelis-
Menten formula. To get the real formula, one needs to take into account some “minor” hypotheses.
We then introduce new constants for initial values and the two constants K and Vmax, leading to
an extended differential polynomial ring.

> R := DifferentialRing
(blocks = [F[1], [E,C,P,S],

[k[1](),k[-1](),k[2](),C0(),E0(),P0(),S0(),K(),Vmax()]],
derivations = [t]);

R := differential_ring

Some algebraic relations hold among the parameters: initial values which are supposed to be zero
and relations just meant to rename constants.

> relations_among_params :=
Tools:-PretendRegularDifferentialChain
([P0 = 0, C0 = 0, K = k[-1]/k[1], Vmax = k[2]*E0], R);

relations_among_params := regular_differential_chain

As above, we move parameters in the base field of the equations. This time, however, this field is
defined by generators and relations.

> Field := field
(generators = [k[1],k[-1],k[2],C0,E0,P0,S0,K,Vmax],
relations = relations_among_params);

Field := field(generators = [k[1], k[-1], k[2], C0, E0, P0, S0, K, Vmax],

relations = regular_differential_chain)

We also need two linear conservation laws (that could have been automatically extracted from the
stoichiometry matrix).

> conservation_laws :=
[E(t) + C(t) = E0 + C0,
S(t) + C(t) + P(t) = S0 + C0 + P0];

conservation_laws := [E(t) + C(t) = E0 + C0, S(t) + C(t) + P(t) = S0 + C0 + P0]

We are now ready to simplify the whole system.

> ideal := RosenfeldGroebner
([ op(sys), op(conservation_laws) ],
R, basefield = Field);

ideal := [regular_differential_chain]

Let us pick the formula which gives the evolution of S(t).

> formula := Equations (ideal[1], solved, leader=diff(S(t),t));
2

d S(t) Vmax + S(t) K Vmax
formula := [-- S(t) = - ----------------------------]

dt 2 2
S(t) + 2 S(t) K + E0 K + K
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Not yet! One still needs to neglect the term KE0, assuming S0 ≫ E0.

> formula := normal (subs (K*E0=0, formula));
d S(t) Vmax

formula := [-- S(t) = - ---------]
dt S(t) + K

The formula can also be obtained by looking for the equation which gives the evolution of P (t).

> NormalForm (diff (P(t),t), ideal[1]);
S(t) Vmax
---------
S(t) + K

10.3 Concluding Remarks
The example of the Henri-Michaelis-Menten equation is actually connected to the well-known quasi-
steady state approximation technique, which belongs to the singular perturbation theory and is
related to the Tikhonov Theorem. See [6] for details. The quasi-steady state approximation of a
dynamical system is not an algorithmic method in general, since 1) it requires the knowledge of
the fast and slow variables of the system and 2) these variables may need to be obtained through
some change of coordinates from the model variables. However, in the particular case of dynamical
systems arising from chemical reaction systems endowed with the mass-action law, the process is
algorithmic, provided that reaction sets are split into two sets: the fast and the slow reactions.
Observe reactions are not variables. As far as we know, this important fact was noticed first in
[9]. Our contribution consisted in noticing that the whole symbolic treatment could be achieved
by differential elimination. We could then apply the overall method for approximating rigorously
more complicated models featuring genetic clocks [2, 1]. The approximated models were then simple
enough to permit the study of their Hopf bifurcations.
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Chapter 11

Parameter Estimation

This section borrows quite some material from [4, 1].

11.1 The Problem

..1. 2.

k12

.

k21

.Ve .

u(t)

Figure 11.1: A two-compartment model featuring three parameters.

The academic two-compartment model depicted in Figure 11.1 is a close variant of [7, (1), page
517] endowed with an input u(t). Compartment 1 represents the blood system and compartment 2
represents some organ. Both compartments are supposed to have unit volumes. The function u(t),
which has the dimension of a flow, represents a medical drug, injected in compartment 1. The drug
diffuses between the two compartments, following linear laws: the proportionality constants are
named k12 and k21. The drug exits compartment 1, following a law of Michaelis-Menten type. Such
a law indicates a hidden enzymatic reaction. In general, it depends on two constants Ve and ke.
For the sake of simplicity, it is assumed that ke = 1. The state variables in this system are x1(t)
and x2(t). They represent the concentrations of drug in each compartment. This information is
sufficient to write the two first equations of the mathematical model (11.1). The last equation
of (11.1) states that the output, denoted y(t), is equal to x1(t). This means that only x1(t) is
observed: some numerical data are available for x1(t) but not for x2(t). The problem addressed
here then consists in estimating the three parameters k12, k21 and Ve from these data and the
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knowledge of u(t).

ẋ1(t) = −k12 x1(t) + k21 x2(t)−
Ve x1(t)

1 + x1(t)
+ u(t) ,

ẋ2(t) = k12 x1(t)− k21 x2(t) , (11.1)

y(t) = x1(t) .

11.2 The Input-Output Equation
Differential algebra provides an algebraic framework for polynomial differential systems. Differential
systems involving rational fractions, such as (11.1), are theoretically easily handled since there is
a straightforward method to convert them into polynomial form. Observe that differential algebra
imposes a restriction which is important to us, since it reduces its applicability to control theory:
the solutions of the systems under study are supposed to belong to integral domains (e.g. an
equation such as u(t) v(t) = 0 would imply that u(t) = 0 or v(t) = 0) and must be differentiable
infinitely many times. See Chapter 6. The input u(t) of (11.1) must then be smooth. One cannot
study the case of a piecewise constant function u(t) without leaving the realm of differential algebra.

Subtract right-hand sides from left-hand sides of (11.1). Multiply the first equation by its
denominator and state that this latter is nonzero. One obtains a system of three differential
polynomial equations and one inequation:

p1 = p2 = p3 = 0 , 1 + x1 ̸= 0 . (11.2)

The left-hand sides of (11.2) belong to the differential polynomial ring

R = Q(k12, k21, Ve){y, x1, x2} .

The three symbols y, x1, x2 are the differential indeterminates. To this system, one associates the
differential ideal

A = [p1, p2, p3] : (1 + x1)
∞.

The ideal A is defined as the ideal of R generated by the three differential polynomials and their
derivatives up to any order, saturated by the multiplicative family generated by 1+x1. This means
that if any differential polynomial of the form (1 + x1) g belongs to A, then g itself belongs to A.
It can be proved that A is a prime (hence radical) differential ideal1.

> restart;
> with (DifferentialAlgebra):
> with (Tools):

Let us assign the input system to syst.
1The primality of A can be established, roughly speaking, as follows: if it were not prime, one of the three

differential polynomials p1, p2, p3 (viewed as univariate polynomials in their leading derivatives) could be factorized.
This cannot happen because their leading degrees are 1.
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> syst := [
diff (x1(t),t) = - k12*x1(t) + k21*x2(t) - Ve*x1(t)/(1+x1(t)) + u(t),
diff (x2(t),t) = k12*x1(t) - k21*x2(t),

y(t) = x1(t) ];

d Ve x1(t)
syst := [-- x1(t) = -k12 x1(t) + k21 x2(t) - --------- + u(t),

dt 1 + x1(t)

d
-- x2(t) = k12 x1(t) - k21 x2(t), y(t) = x1(t)]
dt

Let us assign to R a differential polynomial ring endowed with the ranking

(the derivatives of y)≫ (those of x1, x2)≫ (those of u)≫ (the parameters) .

The parentheses following the parameters in the last block indicate that these symbols are param-
eters.

> R := DifferentialRing (derivations = [t],
blocks = [y,[x1,x2],u,[k12(),k21(),Ve()]]);

R := differential_ring

The call to RosenfeldGroebner below does not transform the equations of syst. It only aims at
letting the package determine that 1) the input system already is a regular differential chain with
respect to the above ranking and 2) the differential ideal defined by the input system is prime.

> ideal := RosenfeldGroebner (syst, R);
ideal := [regular_differential_chain]

Let us assign to ideal the first element of the returned list.

> ideal := ideal [1]:

In order to compute the input-output equation, let us now assign to io R the same mathematical
differential polynomial ring as R, but endowed with the following ranking

(the derivatives of x1, x2)≫ (the derivatives of y, u)≫ (the parameters) , (11.3)

> io_R := DifferentialRing (derivations = [t],
blocks = [[x1,x2],[y,u],[k12(),k21(),Ve()]]);
io_R := differential_ring

The following call to RosenfeldGroebner does perform a differential elimination task: it computes
another regular differential chain, defining the same prime differential ideal A, with respect to
the ranking (11.3). The RosenfeldGroebner function applies here the algorithm presented in [3],
which develops an idea initially stated in [6]: it avoids splitting cases since A is prime and a regular
differential chain is already known, which permits to recognize zero in R/A.

> io_ideal := RosenfeldGroebner (ideal, io_R);
io_ideal := regular_differential_chain
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Here are the defining equations of io ideal. The leading derivatives, with respect to the ranking,
appear on the left hand sides of the equations. For legibility, the raw output of the command
is pretty-printed. This pretty-printing operation could possibly be performed automatically, by
means of the algorithm described in [2] and implemented by François Lemaire, but is not yet well
integrated to the MAPLE package. I thus do not want to give the corresponding commands. We
may however expect the software to systematically provide an output close to the following one in
the future.

> Equations (io_ideal, solved);
[+ some pretty-printing]

Ve Ve y(t) k12 - u(t) /d /y(t)\\
[x1(t) = y(t), x2(t) = --- - -------------- + --------------- + |-- |----||,

k21 k21 (1 + y(t)) k21 \dt \k21 //

2
d
--- y(t) =
2

dt

k21 Ve /d / Ve \\
-k21 Ve + u(t) k21 + -------- + |-- |(-k12 - k21) y(t) + u(t) + --------||]

1 + y(t) \dt \ 1 + y(t)//

The third equation of io ideal is the input-output equation of the dynamical system under study.
It can be used to prove the global structural identifiability of the dynamical system. It may also
be used to estimate the unknown parameters from the knowledge of y(t) and u(t), by means of
numerical methods. See [5, 1] and references therein for more details.

11.3 Numerical Estimation
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