
Adaptable Mutation Testing For Continuous
Integration Environments

Ali Parsai, Alessandro Murgia, and Serge Demeyer
University of Antwerp

Middelheimlaan 1
2020 Antwerpen, Belgium

Email: {ali.parsai, alessandro.murgia, serge.demeyer}@uantwerpen.be

Coen De Roover
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene, Belgium

Email: cderoove@vub.ac.be

Abstract—With the introduction of agile methods, the impor-
tance of a high-quality test suite became a crucial factor in the
development of fault-free software. Mutation testing is known to
be able to accurately measure the quality of a test suite. However,
it is computationally intensive and consequently has not yet
found widespread adoption in industry. Therefore, we propose to
adopt the Cha-Q change-centric meta-model to improve mutation
testing and make it more efficient for continuous integration
environments.

I. INTRODUCTION

One of the major goals in software engineering is to provide
developers with tools that can automate the mundane tasks,
and as such, ease the software maintenance. One of those
mundane tasks is software testing. This task is indispensable as
long as we want to develop a software system without faults
during software maintenance. The advent of agile processes
with their emphasis on test-driven development [3] and con-
tinuous integration [4], [11] implies that developers want (and
need) to test their changed components early and often [18].
As a result, the test suite is a crucial part of the development
cycle.

After the introduction of agile development techniques,
the focus on testing has shifted more on the quality of the
test suite. Consequently, the metrics adopted to evaluate such
quality have become important for both industry and academia.
For the former, it is a practical means to improve the effec-
tiveness of the testing practices; for the latter, it is important
to assess the validity of agile methods and comparison of
different testing strategies. Mutation testing [12], [9] provides
a repeatable and scientific approach to measure the quality
of the test suite, and it is proven to simulate the faults
realistically [2], [14]. This is due to the fact that the faults
introduced by each mutant are modeled after the common
mistakes developers often make [13]. Mutation testing consists
of two phases: first, generating faulty versions of the code
by injecting a single fault (creating a first-order mutant), or
multiple faults (creating a higher-order mutant) into the code
and then, executing the test suite on this faulty version of the
code to determine the outcome. The result is calculated by the
percentage of the faults that resulted in failure of at least one
test (killed mutants) divided by the total number of created
mutants.

Although the idea of mutation testing has been introduced
in the late 1970s, it has not found widespread use in real
scenarios due to its computationally intensive nature. Even
though mutation testing is proven by academic research to be
de jure approach to quantify test suite quality, difficulties of
this technique has caused simple code coverage metrics (e.g.
statement and branch coverage) to become de facto standard
test suite quality metric in industry. Therefore to be practical in
industrial settings, it is crucial to smoothen the integration of
mutation testing in the continuous integration cycle, and make
use of the benefits [22] of this technique. However, this is
not an easy task for four reasons. First, the overall process
of building and testing the software is often complicated.
Second, the tools used during the build process are not easily
replaceable. Third, there is a lack of mature mutation testing
tools and as consequence major build management systems
have not developed common standards or requirements for
such tools. Fourth, there is a lower demand for mutation
testing due to a lack of background knowledge about the
advantages it offers. For this reason, the development of new
mutation testing tools is hindered, and their smooth integration
is unlikely. Therefore, introduction of a tool capable of easy
integration is the first step in popularizing the use of mutation
testing.

To overcome the problem of integration, we propose a
solution based on the Cha-Q1 infrastructure2 [8]. The Cha-
Q environment aims to strike a balance between agility and
reliability through change-centric quality assurance tools. This
environment offers a first-class representation of software
artifact changes. Making use of this infrastructure allows easy
integration with compatible continuous integration tools, and
easier transformation into new settings supported by Cha-Q
infrastructure.

Our proposal is (i) to create a mutation testing tool on
top of Cha-Q meta model, (ii) use ChaQeko/X (a tool under
development in Cha-Q). ChaQeko/X is a program transforma-
tion tool based on Ekeko/X [7]. Its main characteristic is to
be template-driven. We exploit this characteristic to provide
customizable mutation operators, and adaptable to the needs

1Change-centric Quality Assurance
2http://soft.vub.ac.be/chaq/

Software
Mutant

Generation

Mutant
Mutant
Mutant
Mutant
Mutant

Test Suite

Test
Execution

Mutant
Mutant
Survived

Mutant
MutantKilled

Fig. 1. Mutation testing procedure

of the developer.

II. BACKGROUND

This section provides background information about muta-
tion testing, and program transformation.

a) Mutation Testing: Mutation Testing is a fault-based
testing technique to quantify the quality of a test suite. The
idea of mutation testing was first mentioned in a class paper by
Lipton (as reported by Offutt et al. in [21]) and later developed
by DeMillo, Lipton, and Sayward [9]. The first implementation
of a mutation testing tool was done by Timothy Budd in
1980 [5].

The procedure for mutation testing is as follows: First, faulty
versions of the software are created by introducing a single
fault into the system (Mutation). This is done by applying a
known transformation on a certain part of the code (Mutation
Operator). After generating the faulty versions of the software
(Mutants), the test suite is executed on each one of these
mutants. If there is an error or failure during the execution of
the test suite, the mutant is regarded as killed (Killed Mutant).
On the other hand, if all tests pass, it means that the test
suite could not catch the fault, and the mutant has survived
(Survived Mutant). An overview of this procedure can be seen
in Figure 1.

Mutation Coverage =
Killed Mutants

All Mutants
(1)

The final result is calculated using Equation 1. This metric
provides a detailed image of the quality of a test suite, as it
makes sure that the kind of faults simulated by the mutation
operators are covered by the tests and therefore reducing the
chance of missing such faults in the final product.

b) Mutation Operators: A mutation operator is a known
transformation that introduces a single fault into the code.
The first set of the mutation operators designed were reported
in [15]. In 1996, Offutt et al [20] identified the set of sufficient
mutation operators. This reduced set of operators remained
more or less intact in future research papers.

With the popularity of the object-oriented programming
paradigm, there was a need to design new mutation operators
to simulate the bugs that occur only in this kind of programs.
Several studies proposed new mutation operators [17], [6], and

some demonstrated the usefulness of object-oriented opera-
tors [16], [10]. Nevertheless, sufficient mutation operators are
by far the most implemented set of mutation operators, and
only few tools implement the newer object-oriented mutation
operators.

III. PROPOSED IDEA

The adoption of the Cha-Q infrastructure allows us to offer
three advantages over classical mutation testing. For each we
briefly describe the context of the problem along with our
proposed solution.

A. Customizable mutation operators
One important aspect of mutation testing is the use of mu-

tation operators to generate mutants. These mutation operators
are usually based on a simple fault model. However, this
simplicity usually means that lots of mutable statements are
found, and as a result lots of mutants are generated. This leads
to adverse effects on performance of this procedure, and does
not allow mutation testing to scale to larger software.

The use of simple mutation operators to generate the in-
jected faults is justified based on two fundamental assump-
tions. First, Competent Programmer Hypothesis [9], [1] states
that a competent developer will only make mistakes that can
be solved by few syntactic changes. Second, Coupling Effect
Hypothesis states that “complex mutants are coupled to simple
mutants in such a way that a test data set that detects all simple
mutants in a program will also detect a large percentage of the
complex mutants” [19]. Even though both these hypotheses
are true for simple units, the integration of objects introduces
complex new faults that cannot be detected and solved as
easily. Thus, there is a need for more complex fault models
to be introduced to tackle this problem. We propose to create
mutation operators using code templates. Using ChaQeko/X
allows us to give the developer the option to define their own
mutation operators. These mutation operators can be more
complex than the simple mutation operators that are being
widely used. This also means that they will generate less
mutants, and they can target types of faults that are relevant
to the project itself rather than the generic faults.

B. Migration to new platforms with little effort
Generally, mutation testing tools are designed to work in

a certain environment (e.g. language, platform, or continuous
integration system). It is not easy to adapt mutation testing
tools to work on environments other than the ones they were
originally planned for. This is because the choice of mutation
operators, build structures, and the parsers are environment-
dependent. We propose the adoption of Cha-Q infrastructure
in order to make our mutation testing tool more environment-
agnostic. Since the tool will rely on Cha-Q infrastructure
for most of its environment-dependent components (such as
parsers, and code manipulators), once Cha-Q infrastructure is
deployed, the tool can be migrated to the new platform with
little effort. In Addition, all other tools built upon Cha-Q can
be integrated as well. This also makes it more enticing for

companies to adopt, since they would get several useful tools
at once, reducing the cost of deployment for each of them.

C. Mutation testing in small incremental steps
Generally, mutation testing needs to be performed once per

revision. This means that even if two revisions of the same
project are rather similar, still the mutation testing must be
performed completely on both. We propose to use the facilities
offered by the Cha-Q infrastructure to identify the changes
between two revisions, and apply mutant testing only on the
entities that are relevant to those changes. In this manner, we
reduce the computational effort to perform mutation testing
heavily, allowing it to be employed in a continuous integration
environment efficiently.

IV. CONCLUSION

Mutation testing is a proven method of quantifying test suite
quality. However, it is computationally intensive, and it has not
found widespread use in industry. Thus, we propose an idea
with three distinct advantages over classical mutation testing
to increase the chance of its adoption by industry:

1) Customizable mutation operators
2) Migration to new platforms with little effort
3) Mutation testing in small incremental steps
Using Cha-Q infrastructure, we can build a tool on top of

ChaQeko/X with the advantages described above.

ACKNOWLEDGEMENTS

This work has been sponsored by the Institute for the
Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen) under project number 120028
entitled Change-centric Quality Assurance (CHAQ).

REFERENCES

[1] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton,
and Frederick G Sayward. Mutation analysis. Technical report, DTIC
Document, 1979.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? [software testing]. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, pages
402–411, May 2005.

[3] Kent Beck. Test Driven Development: By Example. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[4] G. Booch. Object Oriented Design: With Applications. The
Benjamin/Cummings Series in Ada and Software Engineering. Ben-
jamin/Cummings Pub., 1991.

[5] Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD
thesis, Yale University, New Haven, CT, USA, 1980. AAI8025191.

[6] Huo Yan Chen and Su Hu. Two new kinds of class level mutants for
object-oriented programs. In Systems, Man and Cybernetics, 2006. SMC
’06. IEEE International Conference on, volume 3, pages 2173–2178, Oct
2006.

[7] C. De Roover and K. Inoue. The ekeko/x program transformation tool.
In Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th
International Working Conference on, pages 53–58, Sept 2014.

[8] Coen De Roover, Christophe Scholliers, Viviane Jonckers, Javier Prez,
Alessandro Murgia, and Serge Demeyer. The implementation of the cha-
q meta-model: A comprehensive, change-centric software representation.
In Electronic Communications of the European Association of Software
Science and Technology, Post-Proceedings of the 8th International
Workshop on Software Quality and Maintainability (SQM14), 65, 2014.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
April 1978.

[10] Anna Derezinska and Marcin Rudnik. Quality Evaluation of Object-
oriented and Standard Mutation Operators Applied to C# Programs. In
Proceedings of the 50th International Conference on Objects, Models,
Components, Patterns, TOOLS’12, pages 42–57, Berlin, Heidelberg,
2012. Springer-Verlag.

[11] Martin Fowler. Continuous integration. Technical report, http://www.
martinfowler.com/, May 2006. http://www.martinfowler.com/articles/
continuousIntegration.html.

[12] R.G. Hamlet. Testing programs with the aid of a compiler. Software
Engineering, IEEE Transactions on, SE-3(4):279–290, July 1977.

[13] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. Software Engineering, IEEE Transactions on,
37(5):649–678, Sept 2011.

[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing?
Technical Report UW-CSE-14-02-02, University of Washington, 2014.

[15] K. N. King and A. Jefferson Offutt. A fortran language system for
mutation-based software testing. Software: Practice and Experience,
21(7):685–718, 1991.

[16] Hyo-Jeong Lee, Yu-Seong Ma, and Yong-Rae Kwon. Empirical Eval-
uation of Orthogonality of Class Mutation Operators. In Proceedings
of the 11th Asia-Pacific Software Engineering Conference, APSEC ’04,
pages 512–518, Washington, DC, USA, 2004. IEEE Computer Society.

[17] Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt. Inter-class mutation
operators for java. In Software Reliability Engineering, 2002. ISSRE
2003. Proceedings. 13th International Symposium on, pages 352–363,
2002.

[18] John D. McGregor. Test early, test often. Journal of Object Technology,
6(4):7–14, May 2007. (column).

[19] A. Jefferson Offutt. Investigations of the software testing coupling effect.
ACM Trans. Softw. Eng. Methodol., 1(1):5–20, January 1992.

[20] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch,
and Christian Zapf. An experimental determination of sufficient mutant
operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118, April 1996.

[21] A.Jefferson Offutt and RolandH. Untch. Mutation 2000: Uniting the
orthogonal. In W.Eric Wong, editor, Mutation Testing for the New
Century, volume 24 of The Springer International Series on Advances
in Database Systems, pages 34–44. Springer US, 2001.

[22] BenH. Smith and Laurie Williams. On guiding the augmentation of
an automated test suite via mutation analysis. Empirical Software
Engineering, 14(3):341–369, 2009.

