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INTRODUCTION

Assembly input : reads R are substrings of an unknown genome g.
Two reads (r , r ′) k -overlap if a suffix of r matches a suffix of r ′ over exactly k
characters.

String graph SGk (R)

I Directed graph
I V = R
I E = {(r , r ′) ∈ R2 s.t. r k -overlaps r ′}
I Transitively reduced, contained reads removed

ab bc cd dg gh

de ef fc
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STRING GRAPH ASSEMBLY

Assembly problem

I Find a path which visits each node of SGk (R) at least once (generalized
Hamiltonian Path), minimizing path-string length. [Nagarajan 09]

I NP-hard, reduces from shortest common superstring. [Medvedev 07]

Practically :

repeats → many min-cost solutions : (e.g.
abcdef cdijcdgh, abcdijcdef cdgh )

imperfect coverage → several unconnected components

ab bc cd dg gh

de ef fc

di ij jc
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I NP-hard, reduces from shortest common superstring. [Medvedev 07]

Practically :

repeats → many min-cost solutions : (e.g.
abcdef cdijcdgh, abcdijcdef cdgh )

imperfect coverage → several unconnected components

Heuristics
I Output set of linear paths (contigs) from the string graph
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PAIRED READS IN ASSEMBLY

Paired reads
I Set of reads pairs (r1, r2) ∈ (R1, R2) such that in genome, G = ..r1sr2..,
|s| is known

I Reads assembly is often related to jigsaw puzzles.
I With paired reads data, a paired jigsaw puzzle can be defined.
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PAIRED READS IN ASSEMBLY

Paired jigsaw problem

I Solve the puzzle with pairs of jigsaw pieces linked by a string, string has
to be tightened in the solution.

I NP-complete, graphical reduction (right) to classical jigsaw.
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PAIRED READS IN ASSEMBLY

Scaffolding problem

I Construct a bi-directed contig graph
I V = {contigs}
I E = {(c1, c2) s.t. |{(r1, r2), r1 ∈ c1, r2 ∈ c2}| ≥ t}
I Find an ordering of contigs (scaffold) that contains a maximal number of

valid links. [Gao 11]

Scaffolding requires a complete set of contigs.
Can paired information be used at read-level assembly ?
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PAIRED READS IN ASSEMBLY

Three recent approaches to incorporate paired reads in the reads graph.

1. Paired de Bruijn graph [Medvedev 11]
I Vertices are paired k -length substrings of (r1, r2) : (k1|k2).

I Edges : (AG|TG)
(AGC|TGT )→ (GC|GT )

2. Mate pair graph (based on the string graph) [Donmez 11]
I Find paths between pairs in the string graph.
I Vertices are pairs, edges are overlapping paths between two mate-pairs.

3. Greedy with paired consistency [Nuwantha 10]

I All these approaches aim to produce contigs.
I Is it possible to use paired information to generate scaffolds locally ?
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PAIRED STRING GRAPHS

Paired string graph PGk (R1 × R2)

I Directed graph
I V = R1 ∪ R2

I Eo = {(r , r ′) ∈ (R1 ∪ R2)
2 s.t. r k -overlaps r ′} (overlap edges)

I Ep = {(r1, r2) ∈ R1 × R2} (paired edges)
I Transitive reduction on overlap edges only

ab bc cd dg gh

de ef fc
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PAIRED ASSEMBLY PROBLEM
Mixed path p Succession of vertices linked by overlap or paired edges

e.g. p = ab → bc 99K fc
Path-string of p Classical path-string with gaps over paired edges

e.g. path-string(p) = abc �2 fc

Paired assembly problem

I Find a generalized Hamiltonian Path of PGk (R1 × R2) satisfying paired
edges constraints, minimizing path-string length.

I Heuristics : non-branching paths.

ab bc cd dg gh

de ef fc
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NON-BRANCHING PATHS
Assuming error-free sequencing with perfect coverage, exact insert size.

Non-branching paths p

I For each internal node, in-degree of 1 w.r.t path in-edge type, similarly
for out-degrees.

I e.g. contigs : p = ab → bc → cd
I p = cd → de→ ef → fc → cd
I as well as scaffolds : p = ab 99K ef 99K gh
I in-branching and out-branching paths are also valid sequences

ab bc cd dg gh

de ef fc
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PRACTICAL CASES

Two problems with non-branching paths in actual sequencing :

1) Imperfect pairing coverage : cannot extend on the basis of a single paired
edge

ab bc

cd de

cf fg

2) Additional overlap branching : branching due to errors, biological
variations

ab bc cd de

cX Xe

ef fg
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PRACTICAL CASES : 1) UNDETECTED PAIRED BRANCHING

We cannot trust single paired edges anymore.

I Assume bounded insert deviation i
I Consider a simple (overlap) path p of length 2i + 1 with central node n

Heuristic : n 99K n′ can be included in a non-branching path if :

Property 1 :
The sub-graph of opposite mates of p is a simple path of central node n′.

In other words, p′ is the only region that appears after p.

ab bc cd ef fg gh
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PRACTICAL CASES : 2) ADDITIONAL OVERLAP BRANCHING

Bubble and dead-end traversal.

Variant sub-graph from node n
A sub-graph is a variant sub-graph from node n if its BFS tree has a single
node of depth d .

Property 2 :
n→ n′ can be included in a non-branching path if n, n′ are part of a variant
sub-graph.

ab bc cd de

cX Xe

ef fg
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PRACTICAL NON-BRANCHING PATHS

In summary, practical non-branching paths extend non-branching paths with
two properties.

for paired edges n 99K n′ :

Property 1 :
The sub-graph of opposite mates of p is a simple path of central node n′.

for overlap edges n→ n′ :

Property 2 :
Both nodes are part of a variant sub-graph.
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LOCALIZED ASSEMBLY

Constructing explicitly the whole paired string graph is too memory-intensive.
I Proposed “Enhanced greedy” assembly approach :

I Greedily construct a sub-graph starting from a specific read.
I Stop when the sub-graph is not a PNBP anymore, don’t reuse nodes.
I Repeat as long as there are unused reads.

This allows to perform targeted scaffolds assembly (around a region of
interest).

I Extends recent unpaired targeted assembly approaches (TASR and
Mapsembler).
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EXPERIMENTAL VALIDATION

Focus : Illumina assemblies. Assembly of two E. coli-based datasets.

I Experimental haploid is E. coli SRX000429 run, 2x36 bp (200 bp insert),
80x coverage.

I Simulated diploid is E. coli with artificial SNPs, 2x75 bp (500 bp insert),
100x coverage.

Scaffold N50 results (no mis-joins) :

Dataset Our method Velvet (dBG) Ray (greedy)

Exp. haploid 101.8 95.3 87.3
Sim. diploid 134.1 132.6 10.2

I At least on bacterial genomes, localized scaffold construction yields
similar results to classical scaffolding methods

I Practical non-branching paths overcome greedy assembly limitations
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EXPERIMENTAL VALIDATION

Running time (6 threads) and memory consumption for the experimental
dataset :

Ressources Our method Velvet (dBG) Ray (greedy)

Running time (min) 7 8 16
Memory usage (Gb) 0.6 2.4 3.2

I Paired reads are indexed using a k -mer based hashing scheme.
I Erroneous k -mers are discarded early. Each k -mer references only a

few reads [Chapuis 11].
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CONCLUSION

Our contribution
I Paired string graphs, direct construction of scaffolds from reads.
I Localized assembly using practical non-branching paths, overcomes

greedy assemblers limitations.

Future directions/questions

I Mate-pairs probably cannot be included in this formalism. Looking
forward build to a Chinese Postman common sub-paths scaffolder.
[Nagarajan 09]

I Is these a non-heuristic gap-closing formalism for de Bruijn/string
graphs ?
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