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ABSTRACT

Motivation The de Bruijn graph is fundamental to the analysis
of next generation sequencing data and so, as datasets of DNA
reads grow rapidly, it becomes more important to represent de
Bruijn graphs compactly while still supporting fast assembly. Previous
implementations of compact de Bruijn graphs have not supported
node or edge deletion, however, which is important for pruning
spurious elements from the graph.

Results Belazzougui et al. (2016b) recently proposed a compact
and fully dynamic representation, which supports exact membership
queries and insertions and deletions of both nodes and edges.
In this paper, we give a practical implementation of their data
structure, supporting exact membership queries and fully dynamic
edge operations, as well as limited support for dynamic node
operations. We demonstrate experimentally that its performance is
comparable to that of state-of-the-art implementations based on
Bloom filters.

Availability and Implementation Our source-code is publicly
available at https://github.com/csirac/dynamicDBG under
an open-source license.

1 INTRODUCTION

The de Bruijn graph was first introduced in the context of
bioinformatics by Idury and Waterman (1995) and was later applied
to the context of genome assembly by Pevzner ez al. (2001). Since
this initial application, the de Bruijn graph has become ubiquitous
in the assembly and analysis of next generation sequencing data.
More formally, in the edge-centric kth-order de Bruijn for a set of
reads, the nodes are the set of all (k — 1)-mers in the reads and
there is an edge from node u to node v if and only if there is a k-
mer in the reads with prefix v and suffix v. Short-read assemblers
typically use the Eulerian approach to find contiguous sequences
(contigs) in the genome. Some assemblers use a single value of
k, such as ABySS (Simpson et al., 2009) and Velvet (Zerbino and
Birney, 2008), while other use several values of k in turn, such as
IDBA (Peng et al., 2010) and SPAdes (Bankevich et al., 2012).
Aside from assembly, de Bruijn graphs are also used for error
correction of sequence data (Salmela and Rivals, 2014) and variant
discovery (Igbal et al., 2012).

Due to their widespread use and the large size of modern datasets,
it is important that we use compact representations of de Bruijn
graphs that can still be built quickly and support fast operations.

Several authors have proposed representations built on Bloom
filters (Bloom, 1970), which is a space-efficient probabilistic data
structure built on multiple hash functions that are used to test
whether an element is in a set, with the possibility of false positives.
For example, Pell et al. (2012) store each k-mer in a Bloom filter,
enabling the graph to be constructed and represented in 4 bits per
k-mer but not with exact accuracy. This inexactness introduces false
edges and branching. To ameliorate this shortcoming, Chikhi and
Rizk (2013) encoded the de Bruijn graph using a Bloom Filter and
an additional data structure that detects false positives. Even with
this addition, they are able to assemble a human genome using
5.7GB of memory. Salikhov et al. (2014) introduce the concept of
“cascading Bloom filters” that also enable false positive detection
and demonstrate that they are able to reduce the memory usage
by 30-40% (in comparison to Chikhi and Rizk (2013)). In 2015,
Holley et al. (2015) released the Bloom Filter Trie, which is another
succinct data structure for the colored de Bruiin graph, which is a
variant of the traditional de Bruijn graph.

By their nature, inserting an element into a Bloom filter is
usually fairly easy since it requires only the setting of a few
bits; however, deleting an element is more difficult. Moreover,
compact representations of de Bruijn graphs seldom allow for
easy insertions. The exceptions to this are the data structures of
Belazzougui et al. (2016a) and Belazzougui ef al. (2016b), which
both support insertions and deletions of nodes and edges. The
first is based on an extension by Bowe et al. (2012) of FM-
indexes (Ferragina and Manzini, 2005) (which was further extended
by Boucher et al. (2015)) and stores a pointer-based representation
of recently updated nodes and edges that is incorporated into the
main representation through periodic rebuilding. The second is
based on a combination of Karp-Rabin hashing (Karp and Rabin,
1987) and minimal perfect hashing (Hagerup and Tholey, 2001),
and supports exact membership queries. It is not clear that a
complete implementation of either of these data structures would be
practical but, fortunately, the second data structure becomes much
simpler if we concern ourselves primarily with exact membership
queries and insertions and deletions of edges. In particular, edge
deletions are interesting because sequencing errors give rise to
spurious nodes and edges, which are often useful to remove before
assembly. Node deletions can be simulated by edge deletions, by
removing all the edges incident to a node and considering that
isolated nodes are effectively deleted.
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In this paper, we implement the simple version of Belazzougui
et al.’s hash-based data structure mentioned above, together with
limited support for node insertion and removal, and we demonstrate
experimentally that its performance is comparable to that of state-
of-the-art implementations based on Bloom filters; in addition
to the support of dynamic edge operations, our implementation
efficiently supports small numbers of dynamic node operations. In
Section 3 we review Belazzougui et al.’s design. We describe our
implementation in Section 4, and the results of our experiments in
Section 5.

2 RELATED WORK

In the previous section, we briefly discussed Bloom filter data
structures for constructing and storing de Bruijn graph. Another
direction is to represent the graph using succinct data structures,
which is a data structure that uses an amount of space that is
bounded closely to the theoretical minimum. Conway and Bromage
(2011) gave a lower bound for the number of bits required to store a
de Bruin graph, and then proposed a succinct data structure using
bitmaps. Bowe et al. (2012) proposed a succinct representation
based upon Burrows-Wheeler transforms (Burrows and Wheeler,
1994), and showed the de Bruijn graph can be represented in
4m + o(m) bits where m being the number of edges. Boucher et al.
(2015) augmented this data structure to build a representation that
for a given value of K constructs all k'th-order de Bruijn graphs,
where k' < K, using only twice the space needed to construct
the K'th-order de Bruijn graph. This data structure of Bowe ef al.
(2012) is combined with ideas from IDBA (Peng et al., 2010) in a
metagenomics assembler called MEGAHIT (Li et al., 2015). Chikhi
et al. (2014) implemented the de Bruijn graph using an FM-index
and minimizers. Most recently, Belazzougui et al. (2016a) also
extend the work of Bowe er al. (2012) in order to allow for efficient
node and edge insertions and deletions. SplitMEM (Marcus et al.,
2014) is a related algorithm to create a colored de Bruijn graph from
a set of suffix trees representing the other genomes.

3 ALGORITHM

Belazzougui et al.’s data structure for a kth-order de Bruijn graph G
is most-easily described in layers. At the base is a Karp-Rabin hash
function that accepts either a (k— 1)-mer and returns an integer hash
value in O(k) time, or accepts a (k — 1)-mer v, its hash value and a
character ¢, and returns in O(1) time the hash value of the (k — 1)-
mer obtained from v by deleting its first character and appending
c (or, symmetrically, deleting its last character and prepending c).
Storing this function takes asymptotically negligible space.

The next level of the data structure is a minimal perfect hash
function that in O(1)-time maps integers to values in {0, ..., n—1},
where n is the number of nodes in G. We note that the minimal
perfect hash function is bijective when restricted to the Karp-
Rabin hash values of the nodes in G. Storing this function takes
O(n + 1g k + 1g |X]) bits, where X is the alphabet (i.e., {A,C,G, T}
in this paper). The construction algorithm is Las-Vegas randomized:
any function it returns has these properties and with high probability
it returns a function in O(kn)-time with the probability taken over
the random bits.

To support insertions and deletions of nodes as well as of edges,
one option would be to use a dynamic minimal perfect hash
function. This would require more space than a static minimal
perfect hash function and the construction algorithm can return a
faulty function with low probability. Therefore, in order to provide
dynamic node functionality, we supplemented the static minimal
perfect hash function with a binary search tree mapping (k — 1)-
mers to hash values. When the number of dynamic node operations
is small, say n/1000, this scheme does not significantly increase
the space occupancy of the hash function; if the binary search
tree requires about 42 bytes of overhead per element inserted, in
total the hash function would have increased by 0.33 bits per node
after n/1000 insertions. Hence, we denote the composition of the
minimal perfect hash function and the Karp-Rabin hash function as
f:¥*1 5 {0,...,n — 1}. We note that once we have computed
f(v) foranode v in G, we can compute f(w) in O(1)-time for any
neighbour w of v.

The third layer is a pair of n-by-3 binary arrays IN and OUT that
indicate which incoming and outgoing edges are incident to each
node. If f(v) = 4 then IN[¢][j] = 1 if and only if there is an edge to
v from a node that starts with the (j + 1)st character in the alphabet;
symmetrically, OUT[¢][j] = 1 if and only if there is an edge from v
to a node that ends with the (j + 1)st character in the alphabet. Each
array takes | Y| bits per node, so 4n bits in total in this paper.

Next, suppose v and w are (k — 1)-mers such that f(v) = 4, v
starts with the lexicographically (j + 1)st character in the alphabet,
f(w) = 7', w ends with the lexicographically (j' + 1)st character
in the alphabet, and the last k& — 2 characters in v are the first & — 2
characters of w. Belazzougui et al. showed that, if OUT[¢][j] = 1 and
IN['][5'] = 1 then either both v and w are in G or neither are. That
is, assuming either v or w is in G, if OUT[¢][j] = 1 and IN[¢'][j'] = 1
then the edge (v, w) is also in G. Of course, if either OUT[¢][j] = 0
or IN[#'][§'] = O then the edge (v, w) is not in G.

Using IN and OUT, if we start at a node v we think is in G then
we can explore its entire connected component in the underlying
undirected graph (i.e., all the nodes from which v is reachable in G
and all the nodes which can be reached from v). If we encounter a
discrepancy between IN and OUT — i.e., an edge (u, w) that IN says
is incident to w but OUT says is not incident to u, or vice versa —
then we can deduce that v was in fact not in GG. Unfortunately, the
absence of such a discrepancy does not confirm that v is in G.

To be able to verify whether nodes are in GG, Belazzougui et al.
use a fourth layer, consisting of a forest of shallow rooted trees. The
edges in this forest are a subset of the edges in the undirected graph
underlying G. We choose the trees to have minimum size of k 1g | 2|
and maximum height of 3k lg |X|, except that we allow a tree to be
smaller than & 1g || when it covers an entire connected component
in the underlying undirected graph. We store a binary search tree to
map from the hash values of roots to their (k — 1)-mer values, mark
the numbers between 0 and n — 1 to which f maps those (k — 1)-
mers and, for each non-root node v, we mark the edge incident to v
that leads to v’s parent in the forest!. Altogether the third and fourth
layers take 2n|X| + n ([1g(2|X2|)] + 1) 4 n bits, so 13n bits in this
paper, plus possibly & [lg |X|] bits for each connected component in
the underlying undirected graph.

' To mark the requisite edges and hash values for the forest, we store 4 =
[1g(2|X])] + 1 bits per node.
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Given a node v, if f(v) is marked as being the hash value of a
root, then we can check in O(k + lgn) time whether v is in G by
first looking up the (k — 1)-mer corresponding to f(v) using binary
search and comparing it to the (k — 1)-mer of v. Otherwise, we
assume v is in G, follow the edge to its parent u (checking there is
no discrepancy between IN and OUT), and check that w is in G. If
v really is in G, then in O(k) time we reach the root and verify it,
thus also verify v (and all its ancestors). If v is not in G, then either
we will take too many steps trying to reach a root, or we will find a
discrepancy between IN and OUT along the way, or when we reach
a root we will find the (k — 1)-mer we are trying to check there is
not the one we have stored.

If we insert an edge between two nodes in the same connected
component of the underlying undirected graph, or insert an edge
between two connected components each larger than klg|X|, or
delete an edge that is not in the forest, then we can simply update
IN and OUT without updating the forest. Updating the forest when
an edge is inserted between two connected components, at least one
of which is smaller than klg |X|, or when an edge in the forest is
deleted, is the most complicated part of the data structure. Since we
cannot summarize this layer quickly, we leave its full description to
Section 4, where we give the details of our implementation.

The bounds for this data structure are summarized in the
following theorem:

THEOREM 1. Given a kth-order |X|-ary de Bruijn graph G with
n nodes, with high probability in O(kn + no) expected time we can
store G in O(|X|n) bits plus O(klg|X|) bits for each connected
component in the underlying undirected graph, such that checking
whether a node is in G takes on average O(klg || + 1g(n)) time,
listing the edges incident to a node we are visiting takes O(|X])
time, crossing an edge takes O(1) time, and inserting or deleting an
edge takes on average O(klg|X| + 1gn) time. If at most n/1000
nodes are added or removed from the data structure, then adding or
removing an isolated node takes on average O(lgn) time, and the
space occupancy does not significantly increase.

Specific Differences from Belazzougui et al. (2016b). The most
significant divergence from Belazzougui et al. (2016b) is our use of
a static minimal perfect hash function rather than the dynamic one
proposed in the Belazzougui paper; to support limited hash changes,
we supplement this static hash function with a binary search tree to
map (k — 1)-mers to hash values. In addition, 1) each node stores
an extra bit to indicate if it is a tree root, which improves the time
required to identify a root at the cost of 1 bit per node, and 2) the
mapping of hash values of tree roots to (k — 1)-mers is stored in
a binary search tree, which results in an additional O(lgn) factor
whenever access to the set of root (k — 1)-mers is desired; how to
store these roots was not addressed in Belazzougui et al. (2016b).

4 IMPLEMENTATION

Next, we give the implementation details of the dynamic data
structure that we described in the previous section. In particular,
the data structure is composed of the following: a hash function f
that maps (k — 1)-mers to {0, ...,n — 1} where n is the number of
nodes in the de Bruijn graph, the matrices IN and OUT that encode
the edges of the de Bruijn graph, and a forest covering the nodes of
the de Bruijn graph. We describe the construction of each of these in

Sections 4.1 to 4.3. In addition, our implementation allows for exact
membership queries and vertex, edge removal and addition, which
are described in Sections 4.4 and 4.5 respectively.

4.1 Hash function

The data structure relies upon a hash function f to map (k—1)-mers
to {0, ...,n — 1} where n is the number of nodes in the de Bruijn
graph. Let IV be the set of (k — 1)-mers from the input reads. The
hash function in our implementation is a composition h o g that is
bijective on N, where g is a Karp-Rabin hash function (Karp and
Rabin, 1987) that is injective on NV, and h is a minimal perfect hash
function (Hagerup and Tholey, 2001) on g(N). We next provide
definitions of Karp-Rabin and minimal perfect hash functions.

DEFINITION 1. (Karp-Rabin) Suppose we have a subset S of
the universe U of all possible strings of length k over an alphabet
¥ ={0,...,0 — 1}. Given a prime P and baser € [0,P — 1], a
Karp-Rabin hash function g is a function defined over U such that
g(z1..zr) = (X1, zir') mod P.

DEFINITION 2. Minimal perfect hash A minimal perfect hash
Sfunction h for a set of size n, S, is a function defined on the universe
such that h is one-to-one on S and the range is {0, ...,n — 1}.

First, we discuss the procedure to generate the Karp-Rabin hash
function g; the minimal perfect hash function h is then constructed
using the computed Karp-Rabin values. The prime P is chosen
to be the smallest prime greater than (k — 1)n® in order to
give a high probability of injectivity. Next, r is chosen from a
uniform distribution on 0 to P — 1; after choosing r, we have a
valid candidate for function g. The powers of ¥ mod P and r~*
mod P are precomputed; to compute 7 ~! mod P, it is necessary
to employ the generalized Euclidean algorithm. Next, g is tested for
injectivity. The above process repeats with increasing primes until g
is injective. After g has been generated, the minimal perfect hash h
on the image of g is constructed using the library BBHash (Limasset
et al., 2017). After this construction, the image of ¢ is discarded,
and only the precomputed powers of r mod P, the value of 7~ *
mod P, prime P itself, and g are stored.

The hash value of (k — 1)-mer a = ay ...ax—1 may be found
by first computing the sum Zf;ll a;r* mod P using the stored
powers of 7, which can be done in O(k) time. Once the Karp-Rabin
value g(a) is computed, we use the perfect hash function A to find
h(g(a)). In the case that we have the Karp-Rabin value g(a’) of a
(k — 1)-mer a' that is a neighbor of a in the de Bruijn graph, then
we can update the value of g(a’) and get g(a) in O(1) time. For
example, suppose a’ is an out neighbor of a, ie. a’ = az...ax.
Then g(a) = (g9(a’) —ar - 7*~') -7+ a1 -7 mod P. Similarly, if
a’ is an in neighbor of a, a’ = ao ... ax—2, then g(a) = (g(a’) —
aop-T)- r '+ ap_1-r7"' mod P.

Limited support for dynamic nodes. In order to allow for node
insertions and deletions, a map is added on top of the minimum
perfect hash function described above. The map takes (k — 1)-mers
added after the initial construction of the graph to their hash value.
Whenever the hash value of a kmer is computed, the map is first
checked for a hash value before falling back upon the minimum
perfect hash function.

When a (k — 1)-mer is added, we assign it hash value m + 1,
where m is the maximum value previously assigned to any kmer. If
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a (k — 1)-mer is deleted from the graph, we delete the kmer from
the new nodes map if it was a newly added kmer. Otherwise, no
modifications are made to the hash function.

4.2 INand OUT

The edges of the de Bruijn graph G are stored in two binary
matrices, IN and OUT, each having n rows and 4 columns. The
rows correspond to (k — 1)-mers, while the columns correspond to
letters A, G, T', and C, respectively.

To construct IN and OUT, first all k-mers are extracted from the
input reads; IN and OUT are initialized to 0. For each k-mer, which
represents an edge in the de Bruijn graph, we compute the hash
value of the prefix (k — 1)-mer and then use the hash value update
described in Section 4.1 in order to find the hash value of the suffix
(k — 1)-mer. The corresponding entries of IN and OUT are then
updated to 1. This process takes O(km) time where m is the number
of edges in the de Bruijn graph. Notice that an improvement on the
construction time could be made if the (k — 1)-mers were read in
order of their appearance in each input read, since the hash value
update could be used for all but the first (k — 1)-mer in each read.

4.3 Forest

In this section we summarize the procedure to construct the forest,
which is a division of the directed de Bruijn graph into undirected
trees of bounded height, where only the (k — 1)-mer of the root of
each tree is stored. In our implementation |X| is 4, and hence the
tree heights are bounded by 3o and the minimum size of a tree is a,
where o = (k — 1) lg |X| = 2(k — 1).

The forest is constructed within a single Breadth-First-Search
(BFS) through the undirected graph underlying the de Bruijn graph.
The following process is performed for each connected component.
We first choose a starting node for the BFS, s, in the component. s
is set as a root in the forest, and its (k — 1)-mer is stored. As we
visit each node n, we set n’s parent in the forest to be its parent in
the BFS by storing the following 3 bits: 1 bit to indicate whether the
parent is accessed via IN or OUT, and 2 bits to indicate which of the
4 letters labels the edge to the parent. In addition, we store 1 bit to
indicate whether n is a root in the forest or not.

In order to ensure that every tree has a height in the appropriate
range, we also store new roots as we go along using the following
process. For each node n in the component, we define a node r(n)
that is an ancestor of n in the BFS representing the root of the forest
tree that n is in; initially, (n) = s for all n, and a newly discovered
node in the BFS is assigned the same r as its parent. In addition,
for each node n, we record the distance d(n) from n to r(n). Once
we have reached a node n’ that is of distance greater than 2c from
r(n'), wesetr(n’) = n’ and d(n’) = 0; that is, we remember n’ as
a potential root and start measuring distance to n’ in the nodes below
n' in the BFS. Once we have reached a node n that is of distance o
from r(n), we store r(n) as a root.

This way, both the new tree with root v’ and the tree we have
broken off from are both of height at least o and at most 3«; since
a tree of height o contains at least o nodes, this procedure ensures
the minimum size of each tree as well. The only exception is if a
connected component is of smaller size than «; in this case, a single
tree is created by the above procedure that spans the connected
component. The time complexity of this procedure is O(n + m).
Figure 1 illustrates the forest creation procedure.

4.4 Membership Query

Given a (k — 1)-mer z, one can query the data structure for
membership of z in the nodes of the de Bruijn graph. We describe
the implementation of this membership query in this section.

Whether a (k — 1)-mer z is a member of the data structure can be
found by traveling up towards a root in the forest. First, we hash z,
and we find the node in the forest corresponding to this hash value.
Using the data stored for that forest node and z’s (k — 1)-mer, the
parent’s (supposed) (k — 1)-mer is computed. The parent’s hash
value is then found by using the hash update procedure described
in Section 4.1. We then verify that such an edge exists between
the two (k — 1)-mers in the de Bruijn graph by checking IN and
OUT. If z, the (k — 1)-mer that we are querying for membership,
is not a (k — 1)-mer in the graph, it may be the case that IN and
OUT contradict the existence of an edge between the nodes. We can
therefore eliminate the possibility of membership for some (k — 1)-
mers and return false through this check. While the above test has
not failed, we repeat the process with the parent’s (kK — 1)-mer
until we have reached a forest root or we have moved up 6(k — 1)
times, that being the maximum tree height. In the latter case, the
membership of x is returned false. Otherwise, if a root is reached,
the (k — 1)-mer of the root computed from traveling up the tree
can be compared to the stored (k — 1)-mer of the root. In this
case, whether x is a member depends on whether the two are equal.
An illustration of the membership query procedure can be found in
Figure 2.

ATTC ATTC ATTC
GATT GATT
ATTT,

(2) (b) (©)

Fig. 2. Illustration of membership query procedure for (k—1)-mer "ATTC".
”ATTC?” is first hashed to find the corresponding node in the forest. Using the
data stored for that node, it is determined that the "ATTC” node has parent
along an out edge with letter ”G”. The data in OUT for the hashed value
of "GATT” is confirmed for a 1 for letter ”C”. The procedure continues for
"GATT” and so on, until finally reaching a node which is a root and has
its (k — 1)-mer stored. The membership of "ATTC” is then determined by
comparing "ATTT” with the stored (k — 1)-mer.

4.5 Updating

The data structure is dynamic with respect to edge addition and
removal. In this section, we describe the procedure for updating
the data structure. Both edge addition and edge removal use a tree
merging procedure, which we describe first. As in previous sections,
o is 4 and we define o = (k — 1) lg |2] = 2(k — 1).

Merge trees procedure The merge trees procedure takes as input an
ordered pair of (k — 1)-mers (u, v) such that edge (u, v) or (v, u) is
in the de Bruijn graph and merges their respective trees T, 1, into
a single tree. The procedure to merge the trees works as follows.
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@  ® © @ © ®

Fig. 1. Tllustration of the forest creation procedure, with o = 1. The black nodes are roots in the forest and the gray nodes are potential roots. An edge from
node a to node b represents node b being the parent of node a. In stage (d), the gray nodes are at a height of 2a. 4+ 1, and so are potential roots. In stage (e),
the furthest node from the root is at a height of 3 + 1, and so the potential root is stored in the forest, forming a new tree as shown in stage (f).

First, we hash both w and v in O(k) time. We then reverse all of
the forest edges from w to its root r,, in O(«) time, ensuring that all
of T, is below u. Next, we unstore 7, as a root in O(lg(n)) time.
Finally, we update the forest edge of u to ensure that its parent is v
in O(1) time. So in total, this procedure requires O(k + lg n) time.
An illustration of the merge trees procedure can be found in Figure
3.

() (b (©

Fig. 3. Illustration of the merge trees procedure with input nodes » and v. In
(b), the single forest edge on the path from u to the root is reversed, so that
all nodes in u’s tree can travel up to it. In (c) the root of u’s tree is unstored
and v is set as u’s parent.

Edge addition procedure When an edge (u, v) is added between two
(k—1)-mers, we hash both w and v in O (k) time and update IN and
OUT in O(1) time. Suppose u belongs to tree T, and v belongs to
tree T),. First, we check whether either of the trees is below the
minimum size in O(«) time. If neither T3, nor T, is below the
minimum size, or if T, = T, the procedure exits since no update
to the forest is necessary. Otherwise, suppose both 7T, and T, are
below the minimum size «. In this case, the merge trees procedure
is called with input (u,v). If exactly one of the trees is below the
minimum size, let s,! € {u, v} be the nodes corresponding to the
smaller, larger trees, respectively. We compute the depth of [ in its
tree in O(«) time. Then, if the depth of [ is at most 2, we simply
call the merge trees procedure with pair (s, ), and the smaller tree is
merged into the larger. Finally, consider the case where the depth of

I exceeds 2c.. We simply travel up « steps from ! in O(«) time, and
store that node as a root in O(lgn) time. We then call merge trees
for (s, 1), and the smaller tree is merged into the new tree created in
which [ has depth «.. This procedure requires a total of O(k + lgn)
time.

Edge removal procedure The edge removal procedure takes as input
edge (u, v) to be deleted from the de Bruijn graph. First, we hash u
and v in O(k) time and update IN and OUT in O(1) time. Next, we
check the forest edges of u, v to see if one contains the other as its
parent in its tree in O(1) time. If so, the forest is modified as follows.
First, the child node ¢ € {u, v} is stored as a root in O(lg(n)) time,
breaking off its subtree as a new tree in the forest. We then look at
the trees T}, containing the former parent; we check if T}, is below
the minimum size « in O(«) time. If it is, we examine each node
x in T}, and look for an edge in the de Bruijn graph that is incident
with both z and T, a tree such that T, # T%, in O(«) time. If a
tree T is found, let y € T, such that edge (x,y) or (y,x) is in
the de Bruijn graph. Then the merge trees procedure is called with
pair (z,y) to merge T}, into T;,. However, the resulting tree 7" may
violate the height constraint, so we check the depth d,. of z in T" in
O(«) time. Then, we find the deepest node below z in T” (there are
at most a nodes to check). If the deepest node below x is of depth
greater than 3«, we create a new tree by traveling up 2« steps from
the deepest node and breaking off the subtree below the resulting
node by storing it as a root in O(1g(n)) time. After this is done, the
tree containing p has been fixed so that, if possible, the minimum
size and maximum height conditions are satisfied. Finally, the tree
T. containing c is checked to see if it is below the minimum size in
O(a) time, and if it is, exactly the same procedure as above is run
with 7. The procedure requires a total of O(k + lgn) time.

Node addition procedure The node addition procedure takes in the
(k — 1)-mer to be added to the de Bruijn graph. First, the hash
function is updated as described in Section 4.1. New rows (8 bits
total) are added to the end of IN and OUT in O(1) amortized time,
and 4 bits corresponding to the new node are added to the forest in
O(1) time. In addition, the node is initially an isolated component,
and therefore its (k — 1)-mer is stored as a forest root in O(lg(n))
time.

Downl oaded from https://academ c. oup. cont bi oi nf ormati cs/ advance-articl e-abstract/doi/10. 1093/ bi oi nf or mati cs/ bt y500/ 5043010
by Serials Record user
on 17 July 2018



Crawford et al.

Table 1. Sizes of each data structure. For each dataset, the columns of Table
1 show the number of unique 27-mers and the size of each constructed data
structure in bits per node.

Narmer BOSS BFT FDBG
93K 57 604 16.6
370K 55 550 16.5
1.5M 54 505 16.5
5.4M 5.1 48.6 16.4
18M 4.8 478 16.2
66M 5.1 470 16.2
210M 53 454 16.1
860M 53 448 16.2

Node removal procedure The node removal procedure takes in a
(k — 1)-mer already in the graph. First, each edge intersecting with
the node is removed using the edge removal procedure described in
Section 4.5 in O(k + 1g n) time. The (k — 1)-mer then corresponds
to an isolated node in the forest, which is next unstored as a forest
root. Finally, the hash function is updated as described in Section
4.1. The bits corresponding to the node in IN and OUT, the forest,
and the initial static hash function remain in the data structure.

5 EXPERIMENTS

In this section, we evaluate that our implementation (FDBG) in
comparison with reference implementations of Bloom Filter Trie
(BFT) (Holley et al., 2015) and the data structure (BOSS) of
Bowe et al. (2012). All data structures are evaluated in terms of
construction time, final size, and query time. FDBG is shown to be
faster but larger than BOSS and slower but smaller than BFT.

The data structures are evaluated using read data from E. coli
K-12 substr. MG1655, consisting of 27 million paired-end 100
sequence reads (NCBI SRA accession ERA000206) generated from
an [llumina Genome Analyzer II. To create datasets of varying sizes,
we partitioned the read data into disjoint sets of reads. For each
dataset, the columns of Table 1 show the number of of nodes in
the de Bruijn graph No7.mer and the size in bits per node of each
constructed data structure.

To construct the de Bruijn graph, we set £ = 28. We performed
all evaluations on a server with Intel(R) Xeon(R) CPU E5-2680 v2
@ 2.80GHz and 256 GB RAM.

Construction Time and Space Figure 4(a) shows the time required
to construct each data structure, while the final size of each data
structure is shown in Table 1. In our evaluation, the construction
time of FDBG is comparable with the time required for BFT and
BOSS and scales linearly with the number of 27-mers, as predicted
by the discussion before Theorem 1. The main bottleneck for FDBG
construction is the creation of the forest, which requires a depth-first
search of the graph; this depth-first search also requires all k-mers
to be loaded into memory; hence, more engineering on this step
could improve both the memory and time required for construction
of FDBG.

As shown in Table 1, the final data structure of FDBG requires
roughly 3 times the space of BOSS and less than 1/3 the space
of BFT. The memory required by FDBG scales linearly with the

number of 27-mers, also in agreement with Theorem 1. In practice,
our implementation takes 13 bits per node (an extra bit is stored
to indicated whether each node is a root) in addition to the space
required for BBHash (Limasset et al., 2017); across all tests,
BBHash required at most 4 bits per node, which yields the practical
= 17 bits per node required by our implementation of FDBG.

Membership Query Time Next, we evaluate the average time
required for each data structure to answer membership queries:
whether 27-mer w is present in the de Bruijn graph. First, we
generated 10° random 27-mers and show the mean query time in
Fig. 4(b) (Random Query) — the mean query time of FDBG is slower
than BFT, it is an order of magnitude faster than BOSS and remains
on the order of microseconds as the number of 27-mers in the graph
increases. However, since these 27-mers were generated uniformly
randomly, most of these 27-mers were not in the de Bruijn graph.
Often, FDBG is able to detect that a 27-mer is not a member of the
graph without a full tree traversal up to the root.

A second test of the mean query time was performed where each
27-mer is selected randomly from the set of 27-mers known to be in
the graph. For FDBG, each one of these queries requires a full tree
traversal to the root node. Results are shown in Fig. 4(b) (Member
Query). As expected, member queries take longer than random
queries, for each data structure. However, even on the largest graph
tested, the average time for querying a 27-mer in FDBG is at most a
few tens of microseconds and is still much faster than BOSS.

Edge Deletion and Addition In order to evaluate the dynamic aspect
of our data structure, we report the average time required for an edge
or vertex removal and addition to the FDBG data structure, as shown
in Fig. 4(c).

For edge removal, 50000 edges originally present in the de Bruijn
graph were uniformly randomly selected for removal. After an edge
is removed, the forest is updated as described above. After all
edges were removed, we reinserted all removed edges back into
the de Bruijn graph. For node removal, we followed a similar
procedure: a node is randomly selected for removal; before removal,
all of its incident edges are removed. Then, we added the removed
nodes (with incident edges) back into the data structure. The time
required to update the data structure is drastically lower than the
time required to construct the structure from scratch, always by
more than three orders of magnitude.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a succinct de Bruijn graph representation
that allows for insertion and deletion of nodes and edges. Our
experiments demonstrate that FDBG requires significantlty less
memory than competing dynamic de Bruijn graph representations
(BFT), and has efficient construction and query time. Lastly, we
believe the development of dynamic de Bruijn graphs suggests
future application updating a graph directly from data streaming.
This would bypass the need from downloading large datasets but
opens the door to other problems—such as querying public data sets
to determine when to update a stored graph.
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Fig. 4. (a): Construction time (s). (b): Mean time (s) for membership queries. (¢): Mean time (s) for changes to the FDBG data structure.
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