
Sparse Dynamic Programming on DAGs with Small Width∗

VELI MÄKINEN, ALEXANDRU TOMESCU, ANNA KUOSMANEN, and TOPI PAAVI-
LAINEN, Helsinki Institute for Information Technology, Department of Computer Science, University

of Helsinki, FINLAND

TRAVIS GAGIE, EIT, Diego Portales University, CHILE

RAYAN CHIKHI, CNRS, CRIStAL, University of Lille, FRANCE

The minimum path cover problem asks us to find a minimum-cardinality set of paths that cover all the nodes

of a directed acyclic graph (DAG). We study the case when the size k of a minimum path cover is small,

that is, when the DAG has a small width. This case is motivated by applications in pan-genomics, where the
genomic variation of a population is expressed as a DAG. We observe that classical alignment algorithms

exploiting sparse dynamic programming can be extended to the sequence-against-DAG case by mimicking the

algorithm for sequences on each path of a minimum path cover and handling an evaluation order anomaly

with reachability queries.
Namely, we introduce a general framework for DAG-extensions of sparse dynamic programming. This

framework produces algorithms that are slower than their counterparts on sequences only by a factor k . We

illustrate this on two classical problems extended to DAGs: longest increasing subsequence and longest common
subsequence. For the former, we obtain an algorithm with running time O (k |E | log |V |). This matches the

optimal solution to the classical problem variant when the input sequence is modeled as a path. We obtain an

analogous result for the longest common subsequence problem. We then apply this technique to the co-linear
chaining problem, which is a generalization of both of the above two problems. The algorithm for this problem

turns out to be more involved, needing further ingredients, such as an FM-index tailored for large alphabets,

and a two-dimensional range search tree modified to support range maximum queries. We also study a general

sequence-to-DAG alignment formulation that allows affine gap costs in the sequence.

The main ingredient of the proposed framework is a new algorithm for finding a minimum path cover of a

DAG (V ,E) in O (k |E | log |V |) time, improving all known time-bounds when k is small and the DAG is not

too dense. In addition to boosting the sparse dynamic programming framework, an immediate consequence

of this new minimum path cover algorithm is an improved space/time tradeoff for reachability queries in

arbitrary directed graphs.

CCS Concepts: • Theory of computation → Graph algorithms analysis; Packing and covering prob-
lems; Dynamic programming; • Applied computing→ Computational genomics;

Additional Key Words and Phrases: pattern matching, longest common subsequence, co-linear chaining,

pan-genomics

∗
This is an extended version of a conference paper [26].

Authors’ addresses: Veli Mäkinen, veli.makinen@helsinki.fi; Alexandru Tomescu, alexandru.tomescu@helsinki.fi; Anna

Kuosmanen, anna.kuosmanen@helsinki.fi; Topi Paavilainen, Helsinki Institute for Information Technology, Department

of Computer Science, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, FINLAND; Travis

Gagie, EIT, Diego Portales University, Av. Ejército 441, Santiago, CHILE, travis.gagie@gmail.com; Rayan Chikhi, CNRS,

CRIStAL, University of Lille, Bâtiment M3 extension, Avenue Carl Gauss, Villeneuve d’Ascq Cedex, 59655, FRANCE,

rayan.chikhi@univ-lille.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/0-ART0 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

0:2 Mäkinen, V. et al

ACM Reference Format:
Veli Mäkinen, Alexandru Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie, and Rayan Chikhi.

2019. Sparse Dynamic Programming on DAGs with Small Width. 0, 0, Article 0 (2019), 21 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A path cover of a directed acyclic graph (DAG) G = (V ,E) is a set of paths such that every node of

G belongs to some path (note that the paths are not required to be disjoint). A minimum path cover
(MPC) is one having the minimum number of paths. The size of a MPC is also called the width ofG .
Many DAGs commonly used in genome research, such as graphs encoding human variations [10]

and graphs modeling gene transcripts [21], can consist, in the former case, of millions of nodes and,

in the latter case, of thousands of nodes (see [31] for a survey of such pan-genomics approaches).
However, they generally have a small width on average; for example, splicing graphs for most genes

in human chromosome 2 have width at most 10 [46, Fig. 7]. To the best of our knowledge, among

the many MPC algorithms [8, 9, 18, 23, 36, 41], there are only three whose complexities depend on

the width of the DAG. Say the width of G is k . The first algorithm runs in time O (|V | |E | + k |V |2)
and can be obtained by slightly modifying an algorithm for finding a minimum chain cover in

partial orders from [15]. The other two algorithms are due to Chen and Chen: the first one works

in time O (|V |2 + k
√
k |V |) [8], and the second one works in time O (max(

√
|V | |E |,k

√
k |V |)) [9].

In this paper we present a MPC algorithm running in time O (k |E | log |V |). This is better than
all previous algorithms when k is small. For example, this holds for k = o(

√
|V |/ log |V |) and

|E | = O (|V |3/2) (and with smaller k , the graph can be denser). Our algorithm is based on a standard

reduction of a minimum flow problem to a maximum flow problem [2].

We then proceed to show that some problems (like alignments) that admit efficient sparse dynamic
programming solutions on sequences [13] can be extended to DAGs, so that their complexity

increases only by the minimum path cover size k . Namely, our improvement applies to many

cases where a data structure over previously computed solutions is maintained and queried for

computing the next value. Our new MPC algorithm enables this, as its complexity is generally of

the same form as that of solving the extended problems. Careful bookkeeping is necessary due to

the evaluation order not matching the reachability order among the nodes of the path cover. Given

a path cover, our technique first computes so-called forward propagation links indicating how the

partial solutions in each path in the cover must be synchronized.

To best illustrate the versatility of the technique itself, we show how to compute a longest

increasing subsequence (LIS) in a labeled DAG, in time O (k |E | log |V |). This matches the optimal

solution to the classical problem on a single sequence when it is modeled as a path (where k = 1).

We also illustrate our technique with the longest common subsequence (LCS) problem between a

labeled DAG G = (V ,E) and a sequence S .
We then demonstrate the use of the framework on a more complex problem—co-linear chain-

ing (CLC)—first introduced in [32]. It has been proposed as a model of the sequence alignment prob-

lem that scales to massive inputs, and has been a subject of recent interest (see e.g. [29, 38, 42, 47, 51–

53]). In the CLC problem, the input is directly assumed to be a set of N pairs of intervals in the two

sequences that match (either exactly or approximately). The CLC alignment solution asks for a

subset of these plausible pairs that maximizes the coverage in one of the sequences, and whose

elements appear in increasing order in both sequences. The fastest algorithm for this problem runs

in the optimal O (N logN) time [1].

We define a generalization of the CLC problem between a sequence and a labeled DAG. As

motivation, we mention the problem of aligning a long sequence, or even an entire chromosome,

to a DAG storing all known variations of a population with respect to a reference genome (such

, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Sparse Dynamic Programming on DAGs with Small Width 0:3

as the above-mentioned [10]). Here, the N input pairs match intervals in the sequence with paths

(also called anchors) in the DAG. This problem is not straightforward, as the topological order of

the DAG might not follow the reachability order between the anchors. Existing tools for aligning

DNA sequences to DAGs (BGREAT [27], vg [20]) rely on anchors, and our techniques have the

potential to impact the design of such tools.

The algorithm we propose for the CLC extension is more involved, and we we will develop it in

stages.

We conclude with a general alignment-specific formulation of the framework that admits affine

gap costs, and has the LIS, LCS, and a limited variant of CLC as special cases.

Related work. Extending pattern matching to DAGs has been studied before [3, 30, 33, 37, 39].

On a graph with nodes labeled with characters, finding a path matching a pattern with a minimum

number of edit operation can be done in O (m |E |) time [33], wherem is the pattern length and E is

the set of edges. There is a matching conditional lower bound holding already for the linear case of

the graph being a single path: The edit distance between two strings of length n cannot be computed

in O (n2−ϵ) time, for any constant ϵ > 0, unless the Strong Exponential Time Hypothesis (seth)

fails [4]. This quadratic boundary has been the motivation to study sparse dynamic programming

solutions on sequences [13]. We extend the work on sparse dynamic programming to the case

where one of the inputs is a DAG. To compare the obtained results to the non-sparse setting, let us

consider the longest common subsequence problem. Being a special case of the problem studied

in [33], finding the longest common subsequence of an input sequence of length n and a path in

a DAG can be done in O (n |E |) time. Our sparse dynamic algorithm for the same problem works

in O (k |E | log |V | + (|V | + n) logn + k |M | log logn) time, whereM is the set of matching character

pairs between the sequence and the graph. For small k and |M | this can be significantly better than

the non-sparse solution.

Notation. To simplify notation, for any DAG G = (V ,E) we will assume that V is always

{1, . . . , |V |} and that 1, . . . , |V | is a topological order on V (so that for every edge (u,v) we have
u < v). We will also assume that |E | ≥ |V | − 1. A labeled DAG is a tuple (V ,E, ℓ, Σ) where (V ,E) is
a DAG, and ℓ : V 7→ Σ assigns to the nodes labels from Σ, Σ being an ordered alphabet.

For a path P = (v1, . . . ,vt) in G, let the label of P , denoted ℓ(P), be the concatenation of the

labels of the nodes of P , namely ℓ(v1) · · · ℓ(vt). Moreover, the first node of P will be called its

startpoint, and its last node will be called its endpoint. For a nodev ∈ V , we denote by N − (v) the set
of in-neighbors of v and by N + (v) the set of out-neighbors of v . If there is a (possibly empty) path

from node u to node v we say that u reaches v . We denote by R− (v) the set of nodes that reach v .
We denote a set of consecutive integers with interval notation [i ..j], meaning {i, i + 1, . . . , j}. For

a pair of intervalsm = ([x ..y], [c ..d]), we usem.x ,m.y,m.c , andm.d to denote the four respective

endpoints. We also consider pairs of the formm = (P , [c ..d]) where P is a path, and usem.P to

access P . For a setM we may fix an order, to access an element asM[i].
In Table 1 we summarize some of these notations, together with some other notions which will

be introduced later.

2 THE MPC ALGORITHM
In this section we assume basic familiarity with network flow concepts; see [2] for further details.

In the minimum flow problem, we are given a directed graph G = (V ,E) with a single source and

a single sink, with a demand d : E → Z for every edge. The task is to find a flow of minimum

value (the value is the sum of the flow on the edges exiting the source) that satisfies all demands

(such a flow is called feasible). The standard reduction from the minimum path cover problem to

a minimum flow one (see, e.g. [35]) creates a new DAG G∗ by replacing each node v with two

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:4 Mäkinen, V. et al

Notation Definition

(V ,E, ℓ, Σ)
A labeled DAG, where (V ,E) is a DAG, and ℓ : V 7→ Σ assigns labels

from an ordered alphabet Σ to the nodes.

ℓ(P)
For a labeled DAG (V ,E, ℓ, Σ) and a path P = (v1, . . . ,vt) in it, the label
of P is ℓ(P) = ℓ(v1) · · · ℓ(vt).

R− (v) For a DAGG and a nodev , R− (v) is the set of nodes that reachv , namely

that have a (possibly empty) path to v .

last2reach[v, i]
For a path cover P1, . . . , PK of a DAG, last2reach[v, i] is the last node
on Pi different from node v , that reaches v , if this node exists.

forward[u]
In a DAG, the forward propagation links from a node u is the set

forward[u] of pairs (v, i), such that (v, i) ∈ forward[u] holds for any
node v and index i with last2reach[v, i] = u.

index[v, i]
For a path cover P1, . . . , PK , index[v, i] is the position ofv in Pi , starting
from 0, or −1 if v does not appear in Pi .

T .update(k, val)
Given a search tree T , for the leaf w with key(w) = k , update
value(w) = val.

T .RMaxQ (l , r)
Given a search tree T , return maxw : l ≤key(w)≤r value(w) (Range Maxi-
mum Query).

Table 1. Key notations used in this paper.

nodes v−,v+, adds the edge (v−,v+) and adds all in-neighbors of v as in-neighbors of v−, and all

out-neighbors of v as out-neighbors of v+. Finally, the reduction adds a global source with an

out-going edge to every node, and a global sink with an in-coming edge from every node. Edges

of type (v−,v+) get demand 1, and all other edges get demand 0. The value of the minimum flow

equals k , the width ofG , and any decomposition of it into source-to-sink paths induces a minimum

path cover in G.
Our MPC algorithm is based on the following simple reduction of a minimum flow problem

to a maximum flow one (see e.g. [2]): (i) find a feasible flow f : E → Z; (ii) transform this into a

minimum feasible flow, by finding a maximum flow f ′ inG in which every e ∈ E now has capacity

f (e) − d (e). The final minimum flow solution is obtained as f (e) − f ′(e), for every e ∈ E.
We solve step (i) in timeO (k |E | log |V |) by finding a path cover inG∗ whose size is larger than k

only by a factor O (log |V |). This is based on the classical greedy set cover algorithm, see e.g. [50,

Chapter 2]: at each step, select a path covering most of the remaining uncovered nodes. The

following lemma shows how to do this, by dynamic programming.

Lemma 2.1. Let G = (V ,E) be a DAG, and let k be the width of G. In time O (k |E | log |V |), we can
compute a path cover P1, . . . , PK of G, such that K = O (k log |V |).

Proof. The algorithm works by choosing, at each step, a path that covers the most uncovered

nodes. For every node v ∈ V , we store m[v] = 1, if v is not covered by any path, and m[v] = 0

otherwise. We also store u[v] as the largest number of uncovered nodes on a path starting at v . The
values u[·] are computed by dynamic programming, by traversing the nodes in inverse topological

order and setting u[v] = m[v] + maxw ∈N + (v) u[v]. Initially we have m[v] = 1 for all v . We then

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:5

compute u[v] for all v , in time O (|E |). By taking the node v with the maximum u[v], and tracing

back along the optimal path starting at v , we obtain our first path in time O (|E |). We then update

m[v] = 0 for all nodes on this path, and iterate this process until all nodes are covered. This takes

overall time O (K |E |), where K is the number of paths found.

This algorithm analysis is identical to that of the classical greedy approximation algorithm for

the set cover problem [50, Chapter 2], because the universe to be covered is V and each possible

path in G is a possible covering set, which implies that K = O (k log |V |). □

This path cover induces a flow of valueO (k log |V |). Thus, for step (ii) we need to shrink this flow
into a flow of value k . If we run the Ford-Fulkerson algorithm, this means there are O (k log |V |)
successive augmenting paths, each of which can be found in time O (|E |). This gives a time bound

for step (ii) of O (k |E | log |V |). Combining Lemma 2.1 with this observation, we obtain our first

result:

Theorem 2.2. Given a DAGG = (V ,E) of width k , the MPC problem on G can be solved in time
O (k |E | log |V |).

Our approach for Theorem 2.2 is similar to the one from [15] for finding the minimum number k
of chains to cover a partial order of size n. A chain is a set of pairwise comparable elements. The

algorithm from [15] runs in time O (kn2), and it has the same features as ours: it first finds a set of

O (k logn) chains in the same way as we do (longest chains covering most uncovered elements),

and then in a second step reduces these to k . However, if we were to apply this algorithm to DAGs,

it would run in time O (|V | |E | + k |V |2), which is slower than our algorithm for small k . This is
because it uses the classical reduction given by Fulkerson [18] to a bipartite graph, where each edge

of the graph encodes a pair of elements in the relation. Since DAGs are not transitive in general, to

use this reduction one needs first to compute the transitive closure of the DAG, in time O (|V | |E |).
Finally, we mention that such an approximation-refinement approach has also been applied to

other covering problems on graphs, such as a 2-hop cover [11].

3 THE DYNAMIC PROGRAMMING FRAMEWORK
In this section we give an overview of our approach and introduce a few technical notions. Our aim

is to single out its key features, so that it is easier to check if other problems can also benefit from

it. However, we do not prove general necessary or sufficient conditions, nor general correctness

results. Correctness will be proved for each application of this framework.

Suppose we have a problem involving DAGs that is solvable, for example by dynamic program-

ming, by traversing the nodes in topological order. Thus, assume also that a partial solution at

each node v is obtainable from all (and only) nodes R− (v) of the DAG that can reach v , plus some

other independent objects, such as another sequence. Furthermore, suppose that at each node v we

need to query (and maintain) a data structure T that depends on R− (v), so that the query result

TR− (v) .Query(·) of the data structure at nodev is obtainable from the query results TR− (vi) .Query(·)
at previous nodesvi , where {v}∪

⋃
i R
− (vi) = R− (v) and the sets R− (vi) are not necessarily disjoint.

We express this with the following formula:

TR− (v) .Query(·) =
⊕
i

TR− (vi) .Query(·). (1)

In the above, we let

⊕
be some operation on the query results, such as min or max. See Fig. 1

for a conceptual illustration.

In order to obtain such sets R− (vi), our key idea is to decompose the graph into a path cover

P1, . . . , PK , and perform the computation only along these paths. We will employ K data structures

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:6 Mäkinen, V. et al

Fig. 1. A conceptual representation of the decomposition of the set R− (v) of nodes that reach v into three
sets R− (v1),R− (v2),R− (v3).

Fig. 2. A path cover P1, P2, P3 of a DAG. We mark in gray the set R− (v) of nodes that reach v .

Fig. 3. The same DAG as in Fig. 2. For each path Pi , we marked the node vi = last2reach[v, i], namely the
last node on path Pi , different from v , that reaches v . We show in gray the three sets R− (v1),R− (v2),R− (v3)
into which R− (v) is decomposed. We draw with dashed lines the forward links from each vi to v . Note that
the nodes vi also have other outgoing forward links: see Example 4.3 for all forward links from v3.

T1, . . . ,TK , such that, after processing node v on path Pi , data structure Ti stores the correct result
for R− (v). See Figures 2 and 3 for an example.

Our second idea concerns the order in which the nodes on these K paths are processed. Because

the answer at v depends on R− (v), we cannot process the nodes on the K paths (and update

the corresponding Ti ’s) in an arbitrary order. As such, for every path i and every node v , we
distinguish the last node on path i different from v that reaches v (if it exists). We will call this

node last2reach[v, i]. See Figure 3 for an example. We note that this insight is the same as in [24],

which symmetrically identified the first node on a chain i that can be reached from v (a chain is a

subsequence of a path). The following observation is the first element for using the decomposition

(1).

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:7

Observation 1. Let P1, . . . , PK be a path cover of a DAG G = (V ,E), and let v ∈ V . For every
i ∈ [1..K], if last2reach[v, i] exists, let vi = last2reach[v, i] and let Ri = R− (vi). Otherwise, if
last2reach[v, i] does not exist, let Ri = ∅. Then it holds that R− (v) = {v} ∪

⋃K
i=1 Ri .

Proof. It is clear that {v} ∪
⋃K

i=1 Ri ⊆ R− (v). To show the reverse inclusion, consider a node

u ∈ R− (v). Since P1, . . . , PK is a path cover, then u appears on some Pi . Since u reaches v , then
u = v , or u appears on Pi before last2reach[v, i], or u = last2reach[v, i]. Therefore u = v , or u
appears in some Ri , as desired. □

This allows us to identify, for every node u, a set of forward propagation links forward[u],
where (v, i) ∈ forward[u] holds for any node v and index i with last2reach[v, i] = u (see

Fig. 3 and also Example 4.3 for some illustrations of this concept). Observe also that every node

can have at most K incoming forward links, for each of the K paths of the path cover, and thus

���
⋃

u ∈V forward[u]��� = O (K |V |).

These propagation links are the second element in the decomposition. Once we have computed

the correct value at u, we update the corresponding data structures Ti for all paths i to which u
belongs. We also propagate the query value of Ti in the decomposition (1) for all nodes v with

(v, i) ∈ forward[u]. This means that when we come to process v , we have already correctly

computed all terms in the decomposition (1) and it suffices to apply the operation

⊕
to these

terms.

The next lemma shows how to compute the values last2reach (and, as a consequence, all

forward propagation links), also by dynamic programming.

Lemma 3.1. LetG = (V ,E) be a DAG, and let P1, . . . , PK be a path cover ofG . For every v ∈ V and
every i ∈ [1..K], we can compute last2reach[v, i] in overall time O (K |E |).

Proof. For each Pi and every node v on Pi , let index[v, i] be the position of v in Pi , starting
from 0. Our algorithm actually computes last2reach[v, i] as the index of this node in Pi . Initially,
we set last2reach[v, i] = −1 for all v and i . At the end of the algorithm, last2reach[v, i] = −1
will hold precisely for those nodes v that cannot be reached by any node of Pi (different than v
itself).

We traverse the nodes in topological order. For each node v and every i ∈ [1..K], we do as

follows. If v is on Pi , we set last2reach[v, i] = index[v, i]. Otherwise, we set

last2reach[v, i] = max

u ∈N − (v)
last2reach[u, i].

Observe that after computing the values last2reach[v, i] for each node v and every i ∈ [1..K],
we incorrectly have that for every path Pi on which v appears, we have last2reach[v, i] =
index[v]. As such, we must set last2reach[v, i] to the index of the previous node of v , namely

last2reach[v, i] = index[v] − 1 (so that last2reach[v, i] also gets set to −1 if v is the first node

on path Pi). □

An immediate application of Theorem 2.2 and of the values last2reach[v, i] is for solving
reachability queries (see Sect. 4.1). Another simple application is an extension of the longest
increasing subsequence (LIS) problem to labeled DAGs (see Sect. 4.2).

The LIS problem, the longest common subsequence (LCS) problem of Section 5, co-linear chaining
(CLC) problem of Section 6, as well as anchored global alignment under affine gaps costs of Section 7

make use of the following standard data structure (see e.g. [28, p.20]).

Lemma 3.2. The following two operations can be supported with a balanced binary search tree T in
time O (logn), where n is the number of leaves in the tree.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:8 Mäkinen, V. et al

• update(k, val): For the leafw with key(w) = k , update value(w) = val.
• RMaxQ (l , r): Return maxw : l ≤key(w)≤r value(w) (Range Maximum Query).

Moreover, the balanced binary search tree can be constructed inO (n) time, given then pairs (key, value)
sorted by component key.

In some of the solutions we can exploit a faster data structure summarized below.

Lemma 3.3. Consider the operations of Lemma 3.2 for keys in range [0..n] so that the query range is
semi-infinite (0, r) and updates are only allowed to increase the value. Then there is a data structure T
that can be constructed in O (n log logn) time and that supports these restricted versions of operations
in amortized O (log logn) time.

Proof. Recall that a van Emde Boas tree [48, 49] supports maintaining a subset S of [1..n] under
insertions (S = S ∪ {i}) and deletions (S = S \ {i}). It also supports operations predecessor(i) and
successor(i), that give the largest element of S smaller than i , and smallest element larger than

i , respectively. These operations take O (log logn) time. There is a simple reduction to support

semi-infinite range maximum queries [19]: We store the values in an auxiliary array V [0..n] (with
all values initialized to −∞) and keep an invariant that S contains only the keys k such that V [k]
is a left-most answer to some semi-infinite range maximum query. This means that values V [k],
k ∈ S , form a strictly increasing series in V [1..n]. That is, query RMaxQ (0, r) can be answered

by V [predecessor(r + 1)] (or by −∞ if no such predecessor exists). To maintain this invariant,

we initially set S = {0} and update it on each operation update(k, val) as follows. If val ≤ V [k]
or val ≤ V [predecessor(k)] we do nothing. Otherwise, we insert i to S (if it is not yet there),

set V [k] = val, and delete all elements j of S succeeding k with V [j] ≤ V [k]. These deletions
(each preceded by a successor-operation) can be amortized to the update-operations as each such

operation causes at most one insertion. □

Throughout the paper we assume that the data structure of Lemmas 3.2 is initialized with

(key, value) pairs with each value = −∞. (The structure of Lemma 3.3 gets implicitly initialized

accordingly.)

4 TWO SIMPLE APPLICATIONS
4.1 Reachability queries
Recall Theorem 2.2 and the values last2reach[v, i]. If we have all these O (k |V |) values, then we

can answer in constant time whether a node y is reachable from a node x (with x , y), as in [24]:

we check

index[x , i] ≤ index[last2reach[y, i], i],

where index[v, i] is defined as the position of v in Pi , starting from 0 (defined in the proof of

Lemma 3.1), Pi is any path containing x , and we take by convention index[−1, i] = −1. Recall also
that reachability queries in an arbitrary graph can be reduced to solving reachability queries in

its DAG of strongly connected components, because nodes in the same component are pairwise

reachable. See Table 2 for existing tradeoffs for solving reachability queries.
1

Corollary 4.1. Let G = (V ,E) be an arbitrary directed graph and let the width of its DAG of
strongly connected components be k . In time O (k |E | log |V |) we can construct from G an index of size
O (k |V |), so that for any x ,y ∈ V we can answer in O (1) time whether y is reachable from x .

1
Note that [8] incorrectly attributes to [24] query time O (logk), and as a consequence [25, 45] incorrectly mention query

time O (logk) for [8].

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:9

Construction time Index size Query time Reference

O (k |E | log |V |) O (k |V |) O (1) this paper

O (|V |2 + k
√
k |V |) O (k |V |) O (1) [8]

O (k |E |) O (k |V |) O (log2 k) [25]

O (k (|V | + |E |)) O (k |V |) O (k) or O (|V | + |E |) [54]

Table 2. Previous comparable space/time tradeoffs for reachability queries. Compiled from [45, Table 1].

4.2 The LIS problem
The longest increasing subsequence (LIS) problem asks us to delete the minimum number of values

from an input sequence s1 · · · sn such that the remaining values form a strictly increasing series of

values. Here the input sequence is assumed to come from an ordered alphabet Σ. For example, on

input sequence 1, 4, 2, 3, 7, 5, 6, from the alphabet Σ = {1, 2, 3, 4, 5, 6, 7}, the unique optimal solution

is 1, 2, 3, 5, 6. Such a longest increasing subsequence can be found in O (n logn) time [17]. This is

optimal in the comparison model of computation, but can be improved to O (n log logL) [12] on an

integer alphabet and the RAM model of computation, where L is the length of the solution.

Let us consider an O (n logn) solution that can be easily modified to O (n log logn) time on an

integer alphabet. We first map Σ to a subset of {1, 2, . . . ,n} with an order-preserving mapping, in

O (n logn) time (by e.g. sorting the sequence elements, and relabeling by the ranks in the order of

distinct values). We then store, at every index i of the input sequence, the value LLIS[i] defined
as the length of the longest strictly increasing subsequence ending at i and using the i-th symbol.

The values LLIS[i] can be computed by dynamic programming, by storing all previous key-value

pairs (sj , LLIS[j]) in the data structure T of Lemma 3.3, and querying T .RMaxQ (0, si − 1). Notice
that by definition we have LLIS[j ′] ≤ LLIS[j] for all j ′ < j such that sj′ = sj . Hence, updates on T
never try to decrease the value and condition of Lemma 3.3 holds. In fact, this feature is common

to all the subsequent algorithms and we will omit mentioning this in the sequel.

Consider the following extension of the LIS problem to a labeled DAG G = (V ,E, ℓ, Σ) of width
k . Among all paths P in G, and among all subsequences of the label ℓ(P) of P , we need to find a

longest strictly increasing subsequence.

We now explain how to extend the previous dynamic programming algorithm for this prob-

lem. We analogously map Σ to a subset of {1, 2, . . . , |V |} with an order-preserving mapping in

O (|V | log |V |) time, as above. Recall that we assume V = {1, . . . , |V |}, where 1, . . . , |V | is a topo-
logical order. Assume also that we have K paths to cover V and forward[u] is computed for all

u ∈ V .

For each node v , we aim to analogously compute LLIS[v] as the length of a longest strictly

increasing subsequence of the labels of all paths ending at v , with the property that ℓ(v) is the last
element of this subsequence.

For each i ∈ [1..K], we let Ti be the data structure of Lemma 3.3. We start with setting

Ti .update(0, 0) to indicate that any position can start a new increasing subsequence. For each

v ∈ V , we also initialize LLIS[v] = 0. The algorithm proceeds in the fixed topological order-

ing. Assume now that we are at some position u, and have already updated all search trees as-

sociated with the covering paths going through u. For every (v, i) ∈ forward[u], we update

LLIS[v] = max(LLIS[v],Ti .RMaxQ (0, ℓ(v) − 1) + 1). Once the algorithm reaches v in the topolog-

ical ordering, value LLIS[v] has been updated from all u ′ such that (v, i) ∈ forward[u ′]. It remains

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:10 Mäkinen, V. et al

to show how to update each Ti when reaching v , for all covering paths i on which v occurs. This is

done as Ti .update(ℓ(v), LLIS[v]). See Example 4.3 and Figure 4 for examples.

The final answer to the problem is maxv ∈V LLIS[v], with the actual LIS to be found with a

standard traceback. The algorithm runs inO (|V | log |V | +K |V | log log |V |) time. With Theorem 2.2

plugged in, we have K = k and the total running time becomes O (k |E | log |V | + |V | log |V | +
k |V | log log |V |) = O (k |E | log |V |), under our assumption |E | ≥ |V | − 1. The following theorem

summarizes this result.

Theorem 4.2. Let G = (V ,E, ℓ, Σ) be a labeled DAG of width k , where Σ is an ordered alphabet.
We can find a longest increasing subsequence in G in time O (k |E | log |V |).

When the DAG is just a labeled path with |E | = |V | − 1 (modeling the standard LIS problem),

then the algorithm from Lemma 2.1 returns one path (K = 1). The complexity is thenO (|V | log |V |),
matching the best possible bound for the standard LIS problem [17]. For integer alphabets Σ =
{1, 2, ..,n} the standard LIS problem can be solved in O (n log logL) time [12], for L ≤ n being the

length of the solution. In this setting our algorithm comes close with itsO (n log logn) bound when
restricted to a single path.

Fig. 4. Example of the LIS problem on a DAG where each node is labeled by an integer. One seeks a longest
increasing sequence of a path label, among all paths of the DAG.

Example 4.3. We detail the steps needed for solving a LIS instance on the DAG from Figures 2

and 3, with node labels as shown in Fig. 4 above. As an example, observe that the forward links

exitingv3, namely the set forward[v3], is the set {(a, 3), (b, 3), (v2, 3), (c, 3), (v, 3)}. We do not draw

these links, but we draw instead the forward links incoming to v .
Assume now that the topological order first contains the nodes of P3 until v3, followed by the

nodes of P2 until v2, and then by the nodes of P1 until v1.

• Whenwe reachv3 on P3, we have computed LLIS[v3] = 5 and have performedT3.update(7, 5).
At this point, T3 contains (0, 0), (1,−∞), (2,−∞), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5), . . . , (10,−∞).
We then perform updates along the forward links exiting v3, including the forward link from

v3 to v . As such, we update LLIS[v] = max(LLIS[v],T3.RMaxQ (0, 7) + 1) = max(0, 6) = 6.

• Whenwe reachv2 on P2, we have computed LLIS[v2] = 4 and have performedT2.update(6, 4).
At this point, T2 contains (0, 0), (1,−∞), (2,−∞), (3, 1), (4,−∞), (5, 3), (6, 4), . . . , (10,−∞).
(Keep in mind that there is also a forward link from v3 to v2, not drawn.) We then perform

updates along the forward links exiting v2, including the forward link from v2 to v . As such,
we update LLIS[v] = max(LLIS[v],T2.RMaxQ (0, 7) + 1) = max(6, 4 + 1) = 6.

• Whenwe reachv1 on P1, we have computed LLIS[v1] = 3 and have performedT1.update(9, 3).
At this point, T1 contains (0, 0), (1,−∞), . . . , (5, 2), (6,−∞), (7, 1), (8,−∞), (9, 3), (10,−∞).
We then perform updates along the forward links exiting v1, including the forward link from

v1 tov . As such, we update LLIS[v] = max(LLIS[v],T1.RMaxQ (0, 7)+1) = max(6, 3+1) = 6.

• Whenwe finally reachv , all forward links tov have been processed, and the value LLIS[v] = 6

is final and correct.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:11

5 THE LCS PROBLEM
Consider a labeled DAG G = (V ,E, ℓ, Σ) and a sequence S ∈ Σ∗, where Σ is an ordered alphabet.

We say that the longest common subsequence (LCS) between G and S is a longest subsequence C of

any path label in G such that C is also a subsequence of S .
We will modify the LIS algorithm of Sect. 4.2 minimally to find an LCS between a DAG G and a

sequence S .
For any c ∈ Σ, let S (c) denote set {j | S[j] = c}. For each node v and each j ∈ S (ℓ(v)), we aim to

store in LLCS[v, j] the length of the longest common subsequence between S[1..j] and any label of

a path ending at v , among all subsequences having ℓ(v) = S[j] as the last symbol.

Assume we have a path cover of size K and forward[u] computed for all u ∈ V . Assume also we

have mapped Σ to {0, 1, 2, . . . , |S | + 1} inO ((|V | + |S |) log |S |) time (e.g. by sorting the symbols of S ,
binary searching labels of V , and then relabeling by ranks, with the exception that, if a node label

does not appear in S , it is replaced by |S | + 1).
Let Ti be a data structure of Lemma 3.3. We start by setting Ti .update(0, 0), for each i ∈ [1..K],

so that any (v, j) with ℓ(v) = S[j] can start a new common subsequence. We also initialize

LLCS[v, j] = 0 for all (v, j). The algorithm proceeds in fixed topological ordering on G. At a node
u, for every (v, i) ∈ forward[u] we now update an array LLCS[v, j] for all j ∈ S (ℓ(v)) as follows:
LLCS[v, j] = max(LLCS[v, j],Ti .RMaxQ (0, j − 1) + 1). The update step of Ti when the algorithm

reaches a node v , for each covering path i containing v , is done as Ti .update(j ′, LLCS[v, j ′]) for all
j ′ such that j ′ ∈ S (ℓ(v)).
The final answer to the problem is maxv ∈V , j ∈S (ℓ(v)) LLCS[v, j], with the actual LCS to be found

with a standard traceback. The algorithm runs in O ((|V | + |S |) log |S | + K |M | log log |S |) time,

where M = {(v, j) | v ∈ V , j ∈ [1..|S |], ℓ(v) = S[j]}, and assuming a cover of K paths is given.

Notice that |M | can be Ω(|V | |S |). With Theorem 2.2 plugged in, the total running time becomes

O (k |E | log |V | + (|V | + |S |) log |S | + k |M | log log |S |).

Theorem 5.1. Let G = (V ,E, ℓ, Σ) be a labeled DAG of width k , and let S ∈ Σ∗, where Σ is an
ordered alphabet. We can find a longest common subsequence betweenG and S in timeO (k |E | log |V |+
(|V | + |S |) log |S | + k |M | log log |S |), where M is the set of characters in the sequences that match,
namelyM = {(v, j) | v ∈ V , j ∈ [1..|S |], ℓ(v) = S[j]}.

When G is a path, the bound improves to O ((|V | + |S |) log |S | + |M | log log |S |), which nearly

matches the fastest sparse dynamic programming algorithm for the LCS on two sequences [13]. On

two sequences of lengthn andm, respectively, the algorithm of [13] runs in timeO (n log(min(m, |Σ|)+
d log log(min(d,nm/d))), where d ≤ |M | is the number of so-called dominant matches, which are a

subset of the |M | total pairs of characters in the two sequences that match. Notice that our algorithm

has a difference in the log log-factor due to a different data structure, which does not work for this

order of computation.

6 CO-LINEAR CHAINING
We start with a formal definition of the co-linear chaining problem (see Figure 5 for an illustration),

following the notions introduced in [28, Section 15.4].

Problem 1 (Co-linear chaining (CLC)). Let T and R be two sequences over an alphabet Σ, and
let M be a set of N pairs ([x ..y], [c ..d]). Find an ordered subset S = s1s2 · · · sp of pairs from M such
that
• sj−1.y < sj .y and sj−1.d < sj .d , for all 1 ≤ j ≤ p, and
• S maximizes the ordered coverage of R, defined as

coverage(R, S) = |{i ∈ [1..|R |] | i ∈ [sj .c ..sj .d] for some 1 ≤ j ≤ p}|.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:12 Mäkinen, V. et al

T

R

Fig. 5. In the co-linear chaining problem between two sequences T and R, we need to find a subset of pairs
of intervals (i.e., anchors) so that (i) the selected intervals in each sequence appear in increasing order; and
(ii) the selected intervals cover in R the maximum number of positions. The figure shows an input for the
problem, and highlights in gray an optimal subset of anchors. Figure taken from [28].

The definition of ordered coverage between two sequences is symmetric, as we can simply

exchange the roles of T and R. But when solving the CLC problem between a DAG and a sequence,

we must choose whether we want to maximize the ordered coverage on the sequence R or on the

DAG G. We will consider the former variant.

First, we define the following precedence relation:

Definition 6.1. Given two paths P1 and P2 in a DAG G, we say that P1 precedes P2, and write

P1 ≺ P2, if one of the following conditions holds:

• P1 and P2 do not share nodes and there is a path inG from the endpoint of P1 to the startpoint
of P2, or
• P1 and P2 have a suffix-prefix overlap and P2 is not fully contained in P1; that is, if P1 =
(a1, . . . ,ai) and P2 = (b1, . . . ,bj) then there exists a k ∈ {max(1, 2 + i − j), . . . , i} such that

ak = b1, ak+1 = b2, . . . , ai = b1+i−k .

We then extend the formulation of Problem 1 to handle a sequence and a DAG (see Figure 6 for

an illustration).

Problem 2 (CLC between a seqence and a DAG). Let R be a sequence, let G be a labeled
DAG, and let M be a set of N pairs of the form (P , [c ..d]), where P is a path in G and c ≤ d are
non-negative integers (with the interpretation that the path label ℓ(P) matches the substring R[c ..d]).
Find an ordered subset S = s1s2 · · · sp of pairs fromM such that
• for all 2 ≤ j ≤ p, it holds that sj−1.P ≺ sj .P and sj−1.d < sj .d , and
• S maximizes the ordered coverage of R, analogously defined as coverage(R, S) = |{i ∈
[1..|R |] | i ∈ [sj .c ..sj .d] for some 1 ≤ j ≤ p}|.

To illustrate the main technique of this paper, let us for now only seek solutions where paths in

consecutive pairs in a solution do not overlap in the DAG. Suffix-prefix overlaps between paths

turn out to be challenging; we will postpone this case until Sect. 6.3.

Problem 3 (Overlap-limited CLC between a seqence and a DAG). Under the same hypothe-
ses as in Problem 2, find an ordered subset S = s1s2 · · · sp of pairs fromM such that
• for all 2 ≤ j ≤ p, it holds that there is a non-empty path from the last node of sj−1.P to the first
node of sj .P and sj−1.d < sj .d , and
• S maximizes coverage(R, S).

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:13

Fig. 6. An illustration of the CLC problem between a sequence and a DAG. We show three substrings of R
and their matches in G, and highlight with thick lines an optimal subset of pairs.

First, let us consider a trivial approach to solve Problem 3. Assume we have ordered inO (|E |+N)
time theN input pairs asM[1],M[2], . . . ,M[N], so that the endpoints ofM[1].P ,M[2].P , . . . ,M[N].P
are in topological order, breaking ties arbitrarily. We denote byC[j] the maximum ordered coverage

of R[1..M[j].d] using the pairM[j] and any subset of pairs from {M[1],M[2], . . . ,M[j − 1]}.

Theorem 6.2. Overlap-limited co-linear chaining between a sequence and a labeled DAG G =
(V ,E, ℓ, Σ) (Problem 3) on N input pairs can be solved in O ((|V | + |E |)N) time.

Proof. First, we reverse the edges ofG. Then we mark the nodes that correspond to the path

endpoints for every pair. After this preprocessing we can start computing the maximum ordered

coverage for the pairs as follows: for every pairM[j] in topological order of their path endpoints for

j ∈ {1, . . . ,N } we do a depth-first traversal starting at the startpoint of pathM[j].P . Note that since
the edges are reversed, the depth-first traversal checks only pairs whose paths are predecessors of

M[j].P .
Whenever we encounter a node that corresponds to the path endpoint of a pairM[j ′], we first

examine whether it fulfills the criterion M[j ′].d < M[j].c (call this case (a)). The best ordered

coverage using pairM[j] after all suchM[j ′] is then

Ca
[j] = max

j′ :M[j′].d<M[j].c
{C[j ′] + (M[j].d −M[j].c + 1)}, (2)

where C[j]′ is the best ordered coverage when using pairsM[j ′] last.
If pairM[j ′] does not fulfill the criterion for case (a), we then check whetherM[j].c ≤ M[j ′].d ≤

M[j].d (call this case (b)). The best ordered coverage using pair M[j] after all such M[j ′] with
M[j ′].c < M[j].c is then

Cb
[j] = max

j′ :M[j].c≤M[j′].d≤M[j].d
{C[j ′] + (M[j].d −M[j ′].d)}. (3)

Inclusions, i.e.M[j].c ≤ M[j ′].c , can be left computed incorrectly in Cb
[j], since there is a better or

equally good solution computed in Ca
[j] or Cb

[j] that does not use them [1].

Finally, we take C[j] = max(Ca
[j],Cb

[j]). Depth-first traversal takes O (|V | + |E |) time and is

executed N times, for O ((|V | + |E |)N) total time. □

However, we can do significantly better than O ((|V | + |E |)N) time. In the next sections we will

describe how to apply the framework from Section 3 here.

6.1 Co-linear chaining on sequences revisited
We now describe the dynamic programming algorithm from [1] for the case of two sequences, as

we will then reuse this same algorithm in our MPC approach.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:14 Mäkinen, V. et al

First, sort input pairs inM by the coordinate y into the sequenceM[1],M[2], . . . ,M[N], so that

M[i].y ≤ M[j].y holds for all i < j. This will ensure that we consider the overlapping ranges in

sequence T in the correct order. Then, we fill a table C[1..N] analogous to that of Theorem 6.2

so that C[j] gives the maximum ordered coverage of R[1..M[j].d] using the pair M[j] and any

subset of pairs from {M[1],M[2], . . . ,M[j − 1]}. Hence, maxj C[j] gives the total maximum ordered

coverage of R.
Consider Equations (2) and (3). Nowwe can use an invariant technique to convert these recurrence

relations so that we can exploit the range maximum queries of Lemma 3.2:

Ca
[j] = (M[j].d −M[j].c + 1) + max

j′ :M[j′].d<M[j].c
C[j ′]

= (M[j].d −M[j].c + 1) + T .RMaxQ (0,M[j].c − 1),

Cb
[j] = M[j].d + max

j′ :M[j].c≤M[j′].d≤M[j].d
{C[j ′] −M[j ′].d }

= M[j].d + I.RMaxQ (M[j].c,M[j].d),

C[j] = max(Ca
[j],Cb

[j]).

For these to work correctly, we need to have properly updated the trees T and I for all j ′ ∈ [1..j−1].
That is, we need to call T .update(M[j ′].d,C[j ′]) and I.update(M[j ′].d,C[j ′] − M[j ′].d) after
computing each C[j ′]. The running time is O (N logN).

Figure 5 illustrates the optimal chain on our schematic example. This chain can be extracted by

modifying the algorithm to store traceback pointers.

Theorem 6.3 ([1, 42]). Problem 1 on N input pairs can be solved in the optimal O (N logN) time.

6.2 Co-linear chaining on DAGs using a minimum path cover
Let us now modify the above algorithm to work with DAGs, using the main technique of this paper.

Theorem 6.4. Problem 3 on a labeled DAG G = (V ,E, ℓ, Σ) of width k and a set of N input pairs
can be solved in time O (k |E | log |V | + kN logN) time.

Proof. Assume we have a path cover of size K and forward[u] computed for all u ∈ V . For each

path i ∈ [1..K], we create two binary search trees Ti and Ii . As a reminder, these trees correspond

to coverages for pairs that do not, and do overlap, respectively, on the sequence. Moreover, recall

that in Problem 3 we do not consider solutions where consecutive paths in the graph overlap.

As keys, we useM[j].d , for every pairM[j], and additionally the key 0. Recall that the value of

every key is initialized to −∞.

After these preprocessing steps, we process the nodes in topological order, as detailed in Al-

gorithm 1. If node v corresponds to the endpoint of some M[j].P , we update the trees Ti and

Ii for all covering paths i containing node v . Then we follow all forward propagation links

(w, i) ∈ forward[v] and update C[j] for each path M[j].P starting at w , taking into account

all pairs whose path endpoints are in covering path i . Before the main loop visits w , we have

processed all forward propagation links tow , and the computation of C[j] has taken all previous

pairs into account, as in the naive algorithm, but now indirectly through the K search trees. Ex-

ceptions are the pairs overlapping in the graph, which we omit in this problem statement. The

forward propagation ensures that the search tree query results are indeed taking only reachable

pairs into account. While C[j] is already computed when visitingw , the startpoint ofM[j].P , the
added coverage with the pair is updated to the search trees only when visiting the endpoint.

There are NK forward propagation links, and both search trees are queried inO (logN) time. All

the search trees containing a path endpoint of a pair are updated. Each endpoint can be contained in

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:15

ALGORITHM 1: Co-linear chaining between a sequence and a DAG using a path cover.

Input: DAG G = (V ,E), a path cover P1, P2, . . . , PK of G, and N pairsM[1],M[2], . . . ,M[N] of the form

(P , [c ..d]).
Output: The index j giving maxj C[j].

Use Lemma 3.1 to find all forward propagation links;

for i ← 1 to K do
Initialize search trees Ti and Ii with keysM[j].d , 1 ≤ j ≤ N , and with key 0, all keys associated with

values −∞;

Ti .update(0, 0);
Ii .update(0, 0);

/* Save to start[i] (respectively, end[i]) the indexes of all pairs whose path starts

(respectively, ends) at i. */

for j ← 1 to N do
start[M[j].P . f irst].push(j);
end[M[j].P .last].push(j);
C[j]← 0;

for v ∈ V in topological order do
for j ∈ end[v] do

/* Update the search trees for every path that covers v, stored in paths[v]. */

for i ∈ paths[v] do
Ti .update(M[j].d,C[j]);

Ii .update(M[j].d,C[j] −M[j].d);

for (w, i) ∈ forward[v] do
for j ∈ start[w] do

Ca
[j]← (M[j].d −M[j].c + 1) + Ti .RMaxQ (0,M[j].c − 1);

Cb
[j]← M[j].d + Ii .RMaxQ (M[j].c,M[j].d);

C[j]← max(C[j],Ca
[j],Cb

[j]);

return argmaxj C[j];

at mostK paths, so this also gives the same bound 2NK on the number of updates. With Theorem 2.2

plugged in, we have K = k and the total running time becomes O (k |E | log |V | + kN logN). □

6.3 Co-linear chaining with path overlaps
We now consider how to extend the algorithms we developed for Problem 3 to work for the more

general case of Problem 2, where overlaps between paths are allowed in a solution. The detection

and merging of such path overlaps has been studied in [40], and we tailor a similar approach for

our purposes.

We use an FM-index [16] tailored for large alphabets [22], and a two-dimensional range search tree

[7] modified to support range maximum queries. The former is used for obtaining all ranges [i ′..i]
in the coverage array C such that all input pairsM[i ′], . . . ,M[i] have a pathM[i ′′].P , i ′ ≤ i ′′ ≤ i ,
overlapping with the pathM[j].P of j-th input pairM[j]. Here, the endpoint of the j-th input pair

is at node v visited in topological order. This implies that the paths of the input pairs [i ′..i] have
already been visited, and thus, by induction, that C[i ′..i] values have been correctly computed

(subject to the modification we are about to study). The sequence ranges [M[i ′′].c ..M[i ′′].d] for
all i ′′ ∈ [i ′..i] may be arbitrarily located with respect to interval [M[j].c ..M[j].d], so we need to

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:16 Mäkinen, V. et al

Fig. 7. Answering two-dimensional rangemaximumqueries. A search interval [i ′..i] is split intoO (log(i−i ′+1))
intervals / subtrees. In each subtree root we store a type T and a type I search tree of Lemma 3.2 containing
valuesC[i ′′] orC[i ′′]−M[i ′′].d , respectively, for indexes i ′′ in the corresponding subinterval. Figure modified
from one in [28].

maintain an analogous mechanism with search trees of type T and I as in our co-linear chaining

algorithm based on a path cover. This time we cannot, in advance, separate the input pairs to K
paths with different search trees, but we have a dynamic setting, with interval [i ′..i] deciding which
values should be taken into account. This is where a two-dimensional range search tree is used to

support these queries in O (log2 N) time: Figure 7 illustrates this.

In what follows we show that O (L) queries are sufficient to take all overlaps into account

throughout the algorithm execution (holding for both the trivial algorithm and for the one based

on a path cover), where L =
∑

i |M[i].P |—the sum of the path lengths—is at most the total input

length. The construction will actually induce an order for the input pairs such that O (L) queries
are sufficient: Since the other parts of the algorithms do not use the order of input pairs directly,

we can safely reorganize the input accordingly.

With this introduction, we are ready to consider how all the intervals [i ′..i] related to j-th pair

are obtained. We build in O (L log log |V |) time the FM-index version proposed in [22] of sequences

T = (
∏

i #(M[i].P)−1)#, where # is a symbol not in alphabet {1, 2, . . . , |V |} and considered smaller

than other symbols, e.g. # = 0, and X−1 denotes the reverse X [|X |]X [|X − 1]] · · ·X [1] of X .

For our purposes it is sufficient to know that the FM-index of T , when given an interval I (X)
corresponding to lexicographically-ordered suffixes that start with X , can determine the interval

I (cX) in O (log log |V |) time [22]. This operation is called backward step.
We use the index to searchM[j].P in the forward direction by searching its reverse with backward

steps. Consider we have found interval I ((M[j].P[1..k])−1), for some k , such that backward step

I (#(M[j].P[1..k])−1) results in a non-empty interval [i ′..i]. This interval [i ′..i] corresponds to all

suffixes ofT that have #(M[j].P[1..k])−1 as a prefix. That is, [i ′..i] corresponds to input pairs whose
path suffix has a length k overlap with the path prefix of j-th input pair. For this interval to match

with coverage array C , we just need to rearrange the input pairs according to their order in the

first N rows of the array storing the lexicographic order of suffixes of T .

, Vol. 0, No. 0, Article 0. Publication date: 2019.

Sparse Dynamic Programming on DAGs with Small Width 0:17

Since each backward step on the index may induce a range search on exactly one interval [i ′..i],
the running time is dominated by the range queries.

2
On the other hand, this also gives the bound

L on the number of range queries, as claimed earlier.

Alternatively, one can omit the expensive range queries and process each overlapping pair sepa-

rately, to compute in constant time its contribution toC[j]. This gives another boundO (L log log |V |+
#overlaps), where #overlaps is the number of overlaps between the input paths. This can be

improved toO (L+#overlaps) by using a generalized suffix tree to compute the overlaps in advance

[40, proof of Theorem 2]. We obtain the following result:

Theorem 6.5. Let G = (V ,E, ℓ, Σ) be a labeled DAG and let M be a set of N pairs of the form
(P , [c ..d]). The algorithms from Theorems 6.2 and 6.4 can be modified to solve Problem 2 with additional
time O (L log2 |V |) or O (L + #overlaps), where L is at most the input length and #overlaps is the
number of overlaps between the input paths.

7 GENERAL ALIGNMENT-SPECIFIC FRAMEWORK
We will now express the framework of Section 3 in the light of alignments, removing special

features of CLC, but adding different gap costs to the model, as in [13, 14].

We assume the reader is familiar with the concept of alignments (see e.g. [28, Section 6]).

Consider an input sequence R[1..m], a labeled input DAG G = (V = [1..n],E, ℓ, Σ), and a sparse

set A ⊆ [1..m] × [1..n] of alignment anchors. We wish to compute the global alignment score

S (m + 1,n + 1) of the best alignment of R with a source-to-sink path ofG among alignments whose

substitutions are a subset of A. We call such alignment anchored. With proper initialization one can

compute the score using recurrence

S (j,v) = s (j,v) + max

j′<j,u ∈R− (v), (j′,u)∈A
{S (j ′,u) +w (j ′, j,u,v)}, (4)

where s (j,v) is the substitution score of aligning R[j] with ℓ(v),w is the gap cost function associated

to P[j ′ + 1..j − 1] and to the shortest path from u to v .
Our general framework applies at least when the gap cost is defined as a linear function of

the gap length in R, that is, under the affine gap cost model. For α and β constants, consider the

following cost function:

w (j ′, j,u,v) =



0, for j ′ = j − 1, and

−α − β (j − j ′ − 1), for j ′ < j − 1.

Then one can write Eq. (4) as

S (j,v) = max




s (j,v) + max

u ∈R− (v), (j−1,u)∈A
{S (j − 1,u)},

s (j,v) − α − βj + max

j′<j,u ∈R− (v), (j′,u)∈A
{S (j ′,u) + βj ′},

(5)

where the first part handles the case of two consecutive substitutions in the sequence and the

second part the case of a gap between two substitution in the sequence. Here we used the same

invariant trick as in co-linear chaining.

The rest of the details are analogous to the LIS, LCS, and CLC algorithms, except that the first part

of Eq. (5) needs a different approach. Assume we have a path cover of G of size K and forward[u]
computed for all u ∈ V . Let Ti be a data structure of Lemma 3.3 initialized with Ti .update(0, 0),
for each i ∈ [1..K]. These will be used for handling the second part of Eq. (5). Let Mi [1..m] be

2
A simple wavelet tree based FM-index would provide the same bound, but in case the range search part is later improved,

we used the best bound for the subroutine.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:18 Mäkinen, V. et al

an array initialized with values −∞, for each i ∈ [1..K]. These will be used for handling the first

part of Eq. (5). The algorithm proceeds in a fixed topological ordering on G. At a node u, for every
(v, i) ∈ forward[u] we now update S (j,v) for all j such that (j,v) ∈ A as follows:

S (j,v) = max




S (j,v),

s (j,v) +Mi [j − 1],

s (j,v) − α − βj + Ti .RMaxQ (0, j − 1).

The update step of Ti when the algorithm reaches a node v , for each covering path i containing
v , is done as Ti .update(j ′, S (j ′,v) + βj ′) for all j ′ such that (j ′,v) ∈ A. We also update Mi [j

′
] =

max(Mi [j
′
], S (j ′,v)) for all j ′ such that (j ′,v) ∈ A. Initialization is handled by the (0, 0) key-value

at each Ti so that an alignment can start with a gap, and with values −∞ in each Mi so that the

first anchored substitution is handled properly.

Combined with the path cover algorithm, this global alignment generalization to the sequence-

to-DAG case can thus be solved in the same running time as the LCS problem, with the match set

M replaced now by the given set of anchors A.

Theorem 7.1. Let G = (V ,E, ℓ, Σ) be a labeled DAG of width k , let R ∈ Σ∗, and A be a set of
alignment anchors. We can compute the maximum anchored global alignment score of the sequence R
and a source-to-sink path in G in time O (k |E | log |V | + (|V | + |R |) log |R | + k |A| log log |R |), under
affine gap costs in R.

8 DISCUSSION
For applying our solutions to Problem 2 in practice, one first needs to find the alignment anchors.

As explained in the problem formulation, alignment anchors are such pairs (P , [c ..d]) where P is

a path in G and ℓ(P) matches R[c ..d]. With sequence inputs, such pairs are usually taken to be

maximal exact matches (MEMs) between the two sequences and can be retrieved in small space in

linear time [5, 6]. It is largely an open problem how to retrieve MEMs between a sequence and a

DAG efficiently: The case of length-limited MEMs is studied in [43], based on an extension of [44]

with features such as suffix tree functionality. On the practical side, anchor finding has already

been incorporated into tools for conducting alignment of a sequence to a DAG [20, 27, 34]. We

also implemented the co-linear chaining algorithm
3
, and reported some preliminary experimental

results in the conference version of this article [26].

On the theoretical side, it remains open whether the MPC algorithm could benefit from a better

initial approximation and/or one that is faster to compute. More generally, it remains open whether

the overall bound O (k |E | log |V |) for the MPC problem can be improved. Also, many of the non-

sparse solutions to pattern matching on graphs work also on general graphs (see e.g. [33]), while

our solutions are restricted to DAGs. NP-hardness of path cover on general graphs is the main

bottleneck, but even if a path cover is given, it is not clear how to extend the sparse dynamic

programming framework to handle cycles.

In addition to the case of cycles, our dynamic programming framework could be extended to

various gap cost models [13, 14]. We demonstrated that the framework applies to the case of affine

(linear) gap costs in the input sequence, but it remains open how to handle more complex costs

functions, and gap costs in the graph.

Finally, we have studied a sparse dynamic programming framework for sequence-to-DAG align-

ment problems, but it would also be natural to consider DAG-to-DAG alignment. Finding a path

PA from DAG A = (VA,EA) and path PB from DAG B = (V B ,EB) that minimizes the edit distance

3
https://github.com/Anna-Kuosmanen/Seq2DagChainer

, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://github.com/Anna-Kuosmanen/Seq2DagChainer

Sparse Dynamic Programming on DAGs with Small Width 0:19

between ℓ(PA) and ℓ(PB) can easily be done in O (|EA | |EB |) time [28, Section 6.6.5]. Extending

the sparse dynamic programming framework to this problem area is an interesting direction to

consider.

ACKNOWLEDGMENTS
We thank Djamal Belazzougui for pointers to backward step on large alphabets, Gonzalo Navarro

for pointing out the connection to pattern matching on hypertexts, and the anonymous reviewers

for suggestions that improved the presentation and helped to put the contributions into a larger

context.

This work was funded in part by the Academy of Finland (grant 274977 to AIT and grants 284598

and 309048 to AK and to VM), by Futurice Oy (to TP), and by Fondecyt grant 1171058 (to TG).

REFERENCES
[1] Mohamed Ibrahim Abouelhoda. 2007. A Chaining Algorithm for Mapping cDNA Sequences to Multiple Genomic

Sequences. In 14th International Symposium on String Processing and Information Retrieval (LNCS), Vol. 4726. Springer,
1–13.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[3] Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. 2000. Pattern Matching in Hypertext. J. Algorithms 35, 1
(2000), 82–99.

[4] Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in Strongly Subquadratic Time (Unless

SETH is False). In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC ’15).
ACM, 51–58.

[5] Djamal Belazzougui. 2014. Linear time construction of compressed text indices in compact space. In Proc. Symposium
on Theory of Computing STOC 2014. ACM, 148–193. http://doi.acm.org/10.1145/2591796.2591885.

[6] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. 2013. Versatile Succinct Representations of the

Bidirectional Burrows-Wheeler Transform. In Proc. 21st Annual European Symposium on Algorithms (ESA 2013) (LNCS),
Vol. 8125. Springer, 133–144. http://dx.doi.org/10.1007/978-3-642-40450-4_12.

[7] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and
Applications (3rd ed. ed.). Springer-Verlag TELOS, Santa Clara, CA, USA.

[8] Y. Chen and Y. Chen. 2008. An Efficient Algorithm for Answering Graph Reachability Queries. In 2008 IEEE 24th
International Conference on Data Engineering. IEEE, 893–902.

[9] Y. Chen and Y. Chen. 2014. On the Graph Decomposition. In 2014 IEEE Fourth International Conference on Big Data and
Cloud Computing. IEEE, 777–784.

[10] Deanna M Church, Valerie A Schneider, Karyn Meltz Steinberg, Michael C Schatz, Aaron R Quinlan, Chen-Shan Chin,

Paul A Kitts, Bronwen Aken, Gabor T Marth, Michael M Hoffman, et al. 2015. Extending reference assembly models.

Genome biology 16, 1 (2015), 13.

[11] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and Distance Queries via 2-Hop Labels.

SIAM J. Comput. 32, 5 (2003), 1338–1355. http://dx.doi.org/10.1137/S0097539702403098.
[12] Maxime Crochemore and Ely Porat. 2010. Fast computation of a longest increasing subsequence and application.

Information and Computation 208, 9 (2010), 1054 – 1059.

[13] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. 1992. Sparse Dynamic Programming I: Linear

Cost Functions. J. ACM 39, 3 (July 1992), 519–545. http://doi.acm.org/10.1145/146637.146650.

[14] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. 1992. Sparse Dynamic Programming II: Convex

and Concave Cost Functions. J. ACM 39, 3 (1992), 546–567.

[15] Stefan Felsner, Vijay Raghavan, and Jeremy Spinrad. 2003. Recognition Algorithms for Orders of Small Width and

Graphs of Small Dilworth Number. Order 20, 4 (Nov 2003), 351–364. https://doi.org/10.1023/B:ORDE.0000034609.

99940.fb.

[16] Paolo Ferragina and Giovanni Manzini. 2005. Indexing Compressed Text. J. ACM 52, 4 (July 2005), 552–581. http:

//doi.acm.org/10.1145/1082036.1082039.

[17] Michael L Fredman. 1975. On computing the length of longest increasing subsequences. Discrete Mathematics 11, 1
(1975), 29–35.

[18] D. R. Fulkerson. 1956. Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Amer. Math. Soc. 7, 4
(1956), 701–702.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://doi.acm.org/10.1145/2591796.2591885
http://dx.doi.org/10.1007/978-3-642-40450-4_12
http://dx.doi.org/10.1137/S0097539702403098
http://doi.acm.org/10.1145/146637.146650
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb
http://doi.acm.org/10.1145/1082036.1082039
http://doi.acm.org/10.1145/1082036.1082039

0:20 Mäkinen, V. et al

[19] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. 1984. Scaling and Related Techniques for Geometry

Problems. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing (STOC ’84). ACM, New

York, NY, USA, 135–143. http://doi.acm.org/10.1145/800057.808675.

[20] Garrison Erik, Sirén Jouni, Novak Adam M, Hickey Glenn, Eizenga Jordan M, Dawson Eric T, Jones William, Garg

Shilpa, Markello Charles, Lin Michael F, Paten Benedict, and Durbin Richard. 2018. Variation graph toolkit improves

read mapping by representing genetic variation in the reference. Nature Biotechnology 36 (aug 2018), 875.

[21] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A. Pevzner. 2002. Splicing graphs and EST assembly

problem. Bioinformatics 18 Suppl 1 (2002), S181–S188.
[22] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. 2009. Breaking a Time-and-Space Barrier in Constructing

Full-Text Indices. SIAM J. Comput. 38, 6 (2009), 2162–2178. http://dx.doi.org/10.1137/070685373.
[23] John E. Hopcroft and Richard M. Karp. 1973. An n5/2

Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J.
Comput. 2, 4 (1973), 225–231.

[24] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive Closure. ACM Trans. Database Syst. 15, 4
(Dec. 1990), 558–598. http://doi.acm.org/10.1145/99935.99944.

[25] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An Efficient Reachability Indexing Scheme

for Large Directed Graphs. ACM Trans. Database Syst. 36, 1 (March 2011), 7:1–7:44. http://doi.acm.org/10.1145/1929934.

1929941.

[26] Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexandru I. Tomescu, and Veli Mäkinen. 2018. Using

Minimum Path Cover to Boost Dynamic Programming on DAGs: Co-linear Chaining Extended. In Proc. 22nd Annual
International Conference on Research in Computational Molecular Biology (RECOMB 2018) (Lecture Notes in Computer
Science), Vol. 10812. Springer, 105–121.

[27] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peterlongo. 2016. Read mapping on de Bruijn graphs. BMC
bioinformatics 17, 1 (2016), 237.

[28] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. 2015. Genome-Scale Algorithm Design.
Cambridge University Press.

[29] Veli Mäkinen, Leena Salmela, and Johannes Ylinen. 2012. Normalized N50 assembly metric using gap-restricted

co-linear chaining. BMC Bioinformatics 13 (2012), 255. https://doi.org/10.1186/1471-2105-13-255.
[30] U. Manber and S. Wu. 1992. Approximate string matching with arbitrary costs for text and hypertext. In IAPR Workshop

on Structural and Syntactic Pattern Recognition, Bern, Switzerland. 22–33.
[31] Tobias Marschall et al. 2018. Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics

19, 1 (2018), 118–135.

[32] Gene Myers and Webb Miller. 1995. Chaining Multiple-Alignment Fragments in Sub-Quadratic Time. In Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1995. San Francisco, California. SIAM,

38–47. http://dl.acm.org/citation.cfm?id=313651.313661.

[33] Gonzalo Navarro. 2000. Improved approximate pattern matching on hypertext. Theor. Comput. Sci. 237, 1-2 (2000),
455–463.

[34] Adam M Novak, Erik Garrison, and Benedict Paten. 2016. A graph extension of the positional Burrows-Wheeler

transform and its applications. In International Workshop on Algorithms in Bioinformatics (LNCS), Vol. 9838. Springer,
246–256.

[35] S. C. Ntafos and S. Louis Hakimi. 1979. On path cover problems in digraphs and applications to program testing. IEEE
Trans. Software Engrg. 5, 5 (1979), 520–529.

[36] James B. Orlin. 2013. Max flows in O (nm) time, or better. In Proceedings of the 45th Annual ACM Symposium on the
Theory of Computing (STOC ’13). ACM, New York, NY, USA, 765–774.

[37] Kunsoo Park and Dong Kyue Kim. 1995. String Matching in Hypertext. In CPM (LNCS), Vol. 937. Springer, 318–329.
[38] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. 2017. Salmon provides fast and bias-aware

quantification of transcript expression. Nature Methods 14, 4 (04 2017), 417–419. http://dx.doi.org/10.1038/nmeth.4197.

[39] Mikko Rautiainen and Tobias Marschall. 2017. Aligning sequences to general graphs in O (V +mE) time. bioRxiv
(2017), 216–127.

[40] Romeo Rizzi, Alexandru I. Tomescu, and Veli Mäkinen. 2014. On the complexity of Minimum Path Cover with Subpath

Constraints for multi-assembly. BMC Bioinformatics 15, S-9 (2014), S5.
[41] Claus-Peter Schnorr. 1978. An Algorithm for Transitive Closure with Linear Expected Time. SIAM J. Comput. 7, 2

(1978), 127–133.

[42] Tetsuo Shibuya and Igor Kurochkin. 2003. Match Chaining Algorithms for cDNA Mapping. In Proc. Algorithms in
Bioinformatics (WABI 2003) (LNCS), Vol. 2812. Springer, 462–475.

[43] Jouni Sirén. 2017. Indexing Variation Graphs. In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 13–27.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://doi.acm.org/10.1145/800057.808675
http://dx.doi.org/10.1137/070685373
http://doi.acm.org/10.1145/99935.99944
http://doi.acm.org/10.1145/1929934.1929941
http://doi.acm.org/10.1145/1929934.1929941
https://doi.org/10.1186/1471-2105-13-255
http://dl.acm.org/citation.cfm?id=313651.313661
http://dx.doi.org/10.1038/nmeth.4197

Sparse Dynamic Programming on DAGs with Small Width 0:21

[44] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. 2014. Indexing graphs for path queries with applications in genome

research. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11, 2 (2014), 375–388.
[45] J. Su, Q. Zhu, H. Wei, and J. X. Yu. 2017. Reachability Querying: Can It Be Even Faster? IEEE Transactions on Knowledge

and Data Engineering 29, 3 (March 2017), 683–697.

[46] Alexandru I. Tomescu, Travis Gagie, Alexandru Popa, Romeo Rizzi, Anna Kuosmanen, and Veli Mäkinen. 2015.

Explaining a Weighted DAG with Few Paths for Solving Genome-Guided Multi-Assembly. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 12, 6 (2015), 1345–1354.

[47] Raluca Uricaru, Célia Michotey, Hélène Chiapello, and Eric Rivals. 2015. YOC, A new strategy for pairwise alignment

of collinear genomes. BMC Bioinformatics 16, 1 (Apr 2015), 111. http://dx.doi.org/10.1186/s12859-015-0530-3.
[48] Peter van Emde Boas. 1977. Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space. Inf. Process.

Lett. 6, 3 (1977), 80–82.
[49] Peter van Emde Boas, R. Kaas, and E. Zijlstra. 1977. Design and Implementation of an Efficient Priority Queue.

Mathematical Systems Theory 10 (1977), 99–127.

[50] Vijay V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag.
[51] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. 2015. A Long Fragment Aligner called ALFALFA.

BMC Bioinformatics 16, 1 (May 2015), 159. http://dx.doi.org/10.1186/s12859-015-0533-0.

[52] Michaël Vyverman, Dieter De Smedt, Yao-Cheng Lin, Lieven Sterck, Bernard De Baets, Veerle Fack, and Peter Dawyndt.

2014. Fast and Accurate cDNA Mapping and Splice Site Identification. In Proceedings of the International Conference on
Bioinformatics Models, Methods and Algorithms (BIOSTEC 2014). SCITEPRESS, 233–238. http://hdl.handle.net/1854/
LU-6851320.

[53] Sebastian Wandelt and Ulf Leser. 2014. RRCA: Ultra-Fast Multiple In-species Genome Alignments. In Algorithms for
Computational Biology - First International Conference, AlCoB 2014, Tarragona, Spain, July 1-3, 2014, Proceedings (LNCS),
Vol. 8542. Springer, 247–261.

[54] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2010. GRAIL: Scalable Reachability Index for Large Graphs.

Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 276–284. http://dx.doi.org/10.14778/1920841.1920879.

, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://dx.doi.org/10.1186/s12859-015-0530-3
http://dx.doi.org/10.1186/s12859-015-0533-0
http://hdl.handle.net/1854/LU-6851320
http://hdl.handle.net/1854/LU-6851320
http://dx.doi.org/10.14778/1920841.1920879

	Abstract
	1 Introduction
	2 The MPC algorithm
	3 The dynamic programming framework
	4 Two simple applications
	4.1 Reachability queries
	4.2 The LIS problem

	5 The LCS problem
	6 Co-linear chaining
	6.1 Co-linear chaining on sequences revisited
	6.2 Co-linear chaining on DAGs using a minimum path cover
	6.3 Co-linear chaining with path overlaps

	7 General alignment-specific framework
	8 Discussion
	Acknowledgments
	References

